
Submitted to IWST 2016

Pragmas: Literal Messages as Powerful Method Annotations

S. Ducasse E. Miranda A. Plantec

Abstract
Often tools need to be extended at runtime depending on the
availability of certain features. Simple registration mecha-
nisms can handle such a situation: It often boils down to
represent an action and describe such action with some meta-
data. However, ad-hoc registration mechanisms have some
drawbacks: they often not uniform and do not fit well with
code navigability. In addition, meta data is not automatically
synchronized with the data or behavior it describes. In this
article we present the notion of Pragmas, method annota-
tions, as it was introduced in VisualWorks and now it is
an important extensibility mechanism of Pharo. We present
some examples of pragmas within Pharo.

1. Introduction
Often tools need to be extended at runtime depending on the
availability of certain features. This is typically the case for
menubar offering access to currently loaded tools. Before
pragmas were introduced in VisualWorks [6], the launcher’s
menubar was static and had lots of disabled entries for
launching tools that were sold separately such as DLLAndC-
Connect. It was a clear signed that a registration mechanism
was missing at method level.

Simple registration mechanisms can handle such a situa-
tion: It often boils down to represent an action and describe
such action with some metadata [4]. However, ad-hoc regis-
tration mechanisms have some drawbacks:

• They often not uniform. The user has to adapt to each of
them.

• They do not fit well with code navigability and their
existence and use may be difficult to discover.

• One important aspect with registration mechanisms is
how to keep meta-data and method in sync. With ad-hoc

[Copyright notice will appear here once ’preprint’ option is removed.]

registration mechanisms, meta data is not automatically
synchronized with the data or behavior it describes. It is
often the responsibility of the user to keep such informa-
tion up to date.

• Finally ad-hoc registration mechanisms do not fit well
with the variability of arguments.

In this article we present Pragmas, method annotations,
as it was introduced in VisualWorks [6, 7] and now it is
an important extensibility mechanism of Pharo [3]. Method
pragmas are method level annotation that integrate smoothly
with the Smalltalk syntax and tools.

The outline of the paper is the following: first we present
a simple set of requirements for code annotations. Then we
present the history and motivation behind first implementa-
tion of Pragmas. In the subsequent sections we present the
API and propose an analysis of Pragmas. Finally, we present
some examples of pragmas within Pharo. In particular, we
show that while pragmas as method annotations are inher-
ently a static constructs they are the basis to build dynamic
solutions that react to method annotation changes.

2. An Analysis for Program Annotations
A good use of method annotations is to associate meta-data
with a particular method. Having calls off to the side always
introduces the need for book-keeping to keep those methods
off to the side in sync with the methods they’re describing.
Typically everyone rolls their own registration mechanism.
But at the expense of adding a level of triggering just to keep
the metadata methods in sync.

Annotation Requirements. Here is a simple list of require-
ments for program annotation mechanisms.

• Uniformity. Introducing a special syntax for annotations
can lead to large engineering efforts and should be mini-
mized when possible.

• Handle variability. A good annotation system should be
able to handle the variability of of the annotation needs.
Since method annotations are static in the sense that
they annotate program elements, they cannot access to
runtime elements such as receiver and method arguments.

• Discoverable/Searchable. The introduction of a new
mechanism should also consider the impact on the dis-
covery of such new constructs. When cross-referencers

1 2016/5/22

are more advanced than mere textual references, it is im-
portant that annotations can be found as an high-level
concept.

• Synchronized metadata. The annotation and its associ-
ated element should be kept synchronized. The distance
between the annotation and its element should be as short
as possible to make sure that the users can understand that
an element is annotated.

• Any type of program element. An annotation mechanism
should be able to annotate any program elements.

We now present method pragmas an method level anno-
tation system integrating smoothly with the Smalltalk syn-
tax and the tools, and keeping the distance minimal with the
annotated method. But we start first with a little history of
Pragmas.

3. Some History First
Steve Dahl and Eliot Miranda developed pragmas at Par-
cPlace, with Vassili Bykov adding abstractions for access-
ing them. The first step was to replace some ugly class-side
code to set unwind bits in ensure: and ifCurtailed: [1, 2] by a
pragma the compiler would recognize and set the bits itself.
The first real use was to make the VisualWorks launcher’s
menus extensible. With pragmas the launcher’s menu was
defined with the base system’s tools and then extended as
each tool package was loaded, or cut-back as each tool was
unloaded. So that decoupled the launcher from introducing
new tools.

VisualWorks then started using it for the browser and one
could plug-in a single tool without redefining the browser’s
menu methods, which decoupled each extension. All this
was done in the context of the parcel system [7]. Pragmas
allowed one to decouple these tools where they collided in
places like menu definition, tool registration.

Then Tami Lee, who was managing the COM connection
that turned a VW image into a COM server, became the
first "user" of pragmas. She used it to replace a lot of class-
side methods that defined the signatures of methods that
comprised the server. One could define the COM signature
for a method in the method itself, and the class side lost
about three separate methods that defined all that metadata.
One could read the server method itself and understand its
semantics without having to consult the class-side methods.
One didn’t have to know that there was metadata hidden on
the class side because it was right there in your face.

Then Vassili Bikov used it for the inspector framework,
Trippy, which was a huge improvement over the old Inspec-
tor framework, again resulting in a much more pluggable,
decoupled and extensible system. Vassili also added the ab-
stractions for accessing pragmas in methods.

Then VisualWorks added checking so that one could re-
strict the compiler to accept only legal pragmas for a given
class. But if we defined the legal pragmas in a class-side

method, say legalPragmas, then this would be exactly the
kind of single point for extensions that causes collisions be-
tween packages, each of which might want to add its own
set of pragmas. The solution was to use a pragma to mark
a class-side method as defining a set of legal pragmas for a
class. One could have more than one method defining a set of
legal pragmas; packages wishing to add their own cool prag-
mas were decoupled. Once the system because recursive.

4. Pragma: Method Annotation for Smalltalk
Pragmas are a Smalltalk-centric way of adding arbitrary
metadata to methods; Smalltalk-centric in that a pragma is
a Message instance. It may be queried for senders, executed,
etc, and that it can be parsed using the standard compiler -
they add no new syntax.

A pragma represents the occurrence of an annotation in
a compiled method. A pragma is a literal message pattern
that occurs between angle brackets at the start of a method
after any temporaries. A common example is the primitive
pragma:

<primitive: 123 errorCode: ’errorCode’>

But one can add one’s own and use them as metadata at-
tached to a method. Because pragmas are messages, one can
browse senders and implementors and perform them. One
can query a method for its pragmas by sending it the pragmas
message, which answers an Array of pragma instances, one
for each pragma in the method. A pragma holds information
about its defining class, method, its selector, as well as the
information about the pragma keyword and its arguments.
Instances are retrieved using one of the pragma search class
methods.

In Pharo, the expression SystemNavigation new browseAllS-
elect: [:m| m pragmas notEmpty] browse all methods with
pragmas in the system. The following expression System-
Navigation new browseAllSelect: [:m| m primitive isZero and: [m
pragmas notEmpty]] let us browse all non-primitive methods
with pragmas.

5. Discovering the API
In this section, we present the essential aspects of the Pragma
API as in Pharo [3]. We start with the static navigation and
then we show how pragmas can be executed.

Declaring a Pragma. First a pragma should be declared or
attached to a method using the < > syntax. Such syntax is the
same as the ones used to mark primitive methods [5]. Here
we see that the method gtInspectorColorIn: of the class Color is
annotated with the pragma gtInspectorPresentationOrder: 30.
Such pragma takes 30 as argument.

Color >> gtInspectorColorIn: composite
<gtInspectorPresentationOrder: 30>

composite morph

2 2016/5/22

selector
methodClass
pragmas

CompiledMethod
keyword
methodClass
selector

Pragma

Figure 1. Pragma structural API.

title: ’Color’;
display: [BorderedMorph new color: self]

The pragma syntax follows the one of message sends.
But since they are static code annotations their argument can
only contain literal objects.

Accessing method annotation. A method can be anno-
tated by several pragmas. We can access a pragma from the
method it annotated using the pragmas message (see Fig-
ure 1).

pragma := (Color >> #gtInspectorColorIn:) pragmas first
pragma arguments
> 30

Once we get the pragma object itself we can access its
selector using the message keyword (which should have been
named selector to match the message API).

pragma keyword
> #gtInspectorPresentationOrder:

Accessing annotated method. From a pragma we can ac-
cess the method its annotates using the message method. The
message selector returns the method selector. It should have
been named methodSelector. to be coherent with the message
methodClass which returns the class defining the method (see
Figure 1).

pragma selector
> #gtInspectorColorIn:
pragma method
> Color>>#gtInspectorColorIn:
pragma methodClass
> Color

Querying Pragmas. Pragmas act as a registration mecha-
nism since they can be queried at different scope (full sys-
tem, package, class). Once the pragmas are collected the pro-
grammer can have access to the pragma itself and its anno-
tated method.

Pragma allNamed: #alarm: in: Pragma

The Pragma class provides some functionality to query
the methods. The previous expression gathers all the pragma
named #alarm: limited to the class Pragma itself. The next
expression shows that we can scope the lookup to a branch
in the hierarchy.

Pragma allNamed: aSym from: Point to: Object

selector
methodClass
pragmas

CompiledMethod keyword
methodClass
selector
sentTo: anObject
withArgumentsDo:

Pragma

Figure 2. Pragma behavioral API.

The PragmaCollector tool developed in Pharo offers more
advanced querying facilities.

Executing a Pragma. A pragma is not just a method anno-
tation. Pragma are similar to messages (Instance of the class
Message). As a message, a pragma it can also be executed
once provided with a receiver. The message sendTo: anOb-
ject allows one to execute pragma by providing one receiver.

Imagine that we have the following code: In a class we
define the method test. This method is annotated with a
pragma named alarm:. Then we define a class named Alarm.
This class defines the method alarm:.

AClass >> test
<alarm: ’Executing pragma’ >
^ 12

Alarmer >> alarm: aString
UIManager default alert: aString

The following code snippet then asks the pragma asso-
ciated to the method AClass»#test to execute itself with an
instance of Alarmer. As a result the alarm: method of such
class is executed.

(AClass >> #test) pragmas first sendTo: Alarmer new

The message withArgumentsDo: aBlock executes a block
on the values of the arguments passed as block values. We
can get a similar result than with the message sendTo: using
the message withArgumentsDo: as follows:

(AClass >> #test) pragmas first withArgumentsDo: [:each | UIMan-
ager default alert: each]

6. Analyzing Pragmas
Now we analyze the Pragmas both at the conceptual level
and implementation.

6.1 First class method annotations
We now evaluate the design of Pragmas.

Uniformity. Introducing a special syntax for annotations
can lead to large engineering efforts and should be mini-
mized when possible. In addition, the user has to learn a new
syntactic.

Pragmas do not introduce any new syntactical elements
and as such their integration and tooling is really easy.

3 2016/5/22

selector
methodClass
pragmas

CompiledMethod
selector
methodClass
methodSelector

Pragma

Figure 3. Alternate API.

Handle variability. Pragmas are generic enough as all the
use cases in the Pharo system shows it. Since pragmas are
static annotation, only literal objects can be used as parame-
ters. However, since we can invoke the associated methods,
it is possible to use argument less pragmas and pass an argu-
ment to the method that acts as a builder (The Setting frame-
work [2] uses this technique).

Discoverable/Searchable. Pragmas are perfectly discover-
able using plain normal message browser. The tools manag-
ing the navigation in the IDE are able to handle pragmas.
As already mentioned SystemNavigation queries return mes-
sages as well as pragma usage.

Synchronized metadata. As a summary, pragmas are al-
ways in sync with the methods they describe because they
are embedded in their methods. In addition we can use trig-
gering to do useful things, adding a pane to open inspec-
tors as soon as we define the method that describes the pane,
adding or removing a menu entry, etc.

Any type of program element. Pragmas are limited to
method annotations. Class annotations are missing, even
though developers annotate class methods to represent class
annotations.

6.2 API
It is a bit confusing that while a pragma is supposed to be
using the message syntax it does not follow its API. Hence
keyword should be renamed selector and selector should be
renamed methodSelector as in Figure 3.

6.3 Compiled-time vs. Runtime
Some pragmas do cause processing at compile time. For ex-
ample, an FFI signature pragma can be checked at compile-
time. But it’s in keeping with Smalltalk that type checking is
not performed at compile time in most cases, isn’t it? Why
should one require that pragmas be semantically checked at
compile time when normal Smalltalk code isn’t? At least one
knows that the message instance the pragma is compiled to
is a valid object and canbe performed. So one does know at
least that the pragma is executable. Obviously whether that
ability to be executed only becomes potent with the right
receiver. So any compiled pragma as the potential to be use-
fully evaluated.

6.4 Coupled Actions: Declaration and Execution
The ability to execute a pragma is a key element to its design.
Indeed in many use cases the pragma helps to identify the

method to be executed. This is the case in inspector, settings,
and menu extensions.

The method is a component to be included in some larger
structure, e.g., it is an action method on a menu, or it is
an implementation of a pane in an inspector. The pragma
is the message to be sent to the object that manipulates
that larger structure to add the method to it. This is how
menu pragmas work in VisualWorks and Pharo. There is
an menu builder object. To add a method to a menu (and
which menu is described by the pragma) the menu builder
sets the method as its current method and then performs
the pragma. In VisualWorks, the parameters in the pragma
allow the MenuBuilder to add the method in the right way to
the menu. In Pharo the pragma is without argument but the
method has an argument that acts as a builder. The design is
similar in the Setting framework [2] But the execution of the
pragma is what actually adds the method to the menu. So its
a combination of specification and execution.

7. Managing Pragmas Dynamically with the
PragmaCollector

Querying pragmas can be achieved by using dedicated ser-
vices provided by the Pragma class. But a tool may depend
on the actual set of pragmas. In such a situation, a tool may
need to adapt its internal state whenever a method contain-
ing a particular pragma is added, removed or updated. This
is the role of the PragmaCollector.

This section describes the PragmaCollector and the pattern
that is typically used by tools to dynamically update their
internal state according to the actual set of pragmas.

7.1 The PragmaCollector
PragmaCollector responsibilities are to store a set of particu-
lar Pragmas and to dynamically keep its set of pragmas up-
to-date. The selection of Pragmas is based on a filter which
can be passed as a valuable with one argument at instantia-
tion time. As an example, the following code shows how to
instantiate a PragmaCollector to get the actual set of primi-
tives.

(PragmaCollector
filter: [:pragma | pragma keyword = ’primitive:’]) reset

At initialization time, a PragmaCollector registers itself
as a SystemAnnouncer subscriber. (SystemAnnouncer is the
central notification for system event such class creation,
method modifications...). The consequence is that a particu-
lar message is sent to the PragmaCollector each time a method
is added, removed or updated in the system. When such an
event occurs, an announcement is sent to all the registered
PragmaCollector instances. Then a PragmaCollector may up-
date its set of pragmas accordingly if the method is defined
with a valid pragma according to the PragmaCollector filter.
As an example, the sequence diagram of Figure 4 depicts

4 2016/5/22

Figure 4. A sequence diagram for the method adding case

how a PragmaCollector can update its set of pragmas dynam-
ically when a method is added in the system.

A PragmaCollector owns an announcer that can register
objets which needs to be notified each time the PragmaCol-
lector set of pragmas is changed. PragmaAnnouncement is
the superclass of all pragma related announcement classes.
In case of an adding, a removing or an updating, correspond-
ing announcement classes are, respectively, PragmaAdded,
PragmaRemoved and PragmaUpdated. Thus, a tool can reg-
ister itself as a listener of its PragmaCollector announcer to
be able to adapt its internal state whenever a method tagged
with a particular kind of pragma is added, removed or up-
dated. The next part of this section explains the design pat-
tern which is typically used by tools to keep their internal
state up-to-date.

7.2 Menu Builder Pattern
The Pharo root menu building uses pragmas. The menu tree
is built by evaluating all the class methods declared with
the pragma <worldMenu>: the receiver is the class owning
the method and a menu builder is passed as argument. The
menu builder is stored as an instance variable value of the
WorldState singleton. A menu builder stores the menu tree.
It uses a PragmaCollector instance to get the actual set of
methods with the <worldMenu> pragma. Note that pragmas
are spread over the classes supporting a modular design.
Here we show two examples on in WorldState and one in
StartupPreferencesLoader.

WorldState class >> quitItemsOn: aBuilder
<worldMenu>
(aBuilder group: #QuitPharo)

order: 9999;
with: [

(aBuilder item: #’Save’)
target: self;
selector: #saveSession;
help: ’save the current version of the image on disk’;
keyText: ’S’;
icon: Smalltalk ui icons smallSaveIcon.

(aBuilder item: #’Save as...’)

target: self;
selector: #saveAs;
help: ’save the current version of the image on disk un-

der a new name.’;
icon: Smalltalk ui icons smallSaveAsIcon.

(aBuilder item: #’Save and quit’)
target: self;
selector: #saveAndQuit;
help: ’save the current image on disk, and quit Pharo.’;
icon: Smalltalk ui icons smallQuitIcon.

...]

StartupPreferencesLoader class >> systemStartupMenuOn: aBuilder
<worldMenu>

(aBuilder item: #SystemStartup)
label: ’Startup’;
parent: #System;
order: 2;
help: ’System startup related’;
icon: Smalltalk ui icons scriptManagerIcon

8. Some Pragma Applications
Pragmas are heavily used both in VisualWorks and Pharo.
The examples cover different categories: Pragmas are used
for pluggable UIs (extensible menus, inspectors, setting dec-
laration) where the method specifies an operation within the
framework and the pragma specifies where and how the op-
eration fits within a UI. Pragmas are also used as metadata
used by a compilation system: the VW COM server ex-
ports Smalltalk methods through COM to make a VW COM
server; the types for Smalltalk methods used to be specified
in a single class-side initialize method; the use of pragmas
allowed the metadata to be added to each server method, al-
lowing the system to be extensible again.

In the following we present examples that are heavily
used in Pharo: the customization of inspector panes and the
setting declarations.

8.1 Use 1: GTInspector Panes
There is a problem for extending a system where there is a
separate registration method that specifies the set of oper-
ations to be integrated. This method is a point of collision
between different subsystems that want to extend a shared
resource. There is a combinatorial explosion of all the differ-
ent combinations of subsystems resulting in all the different
possible versions of this registration method. Pragmas solve
this problem by putting the registration coordinates into the
operations, so that the registration method only has to regis-
ter, it doesn’t have to decide what to register.

GTInspector uses pragmas to extend classes with the dif-
ferent views that they want to expose the user in the inspec-
tor. The following methods show three of the views proposed
by CompiledMethod. Figure 5 shows some of the different
panes that the programmer has access to.

5 2016/5/22

Figure 5. GTInspector shows different aspects of a com-
piled method.

CompiledMethod >> gtInspectorASTIn: composite
<gtInspectorPresentationOrder: 35>
(GTSimpleRBTreeBrowser new treeIn: composite)

title: ’AST’;
display: [:anObject | anObject ast]

CompiledMethod >> gtInspectorBytecodeIn: composite
<gtInspectorPresentationOrder: 30>
^ (GTBytecodeBrowser new treeIn: composite)

title: ’Bytecode’

CompiledMethod >> gtInspectorSourceIn: composite
<gtInspectorPresentationOrder: 30>
^ composite pharoMethod

title: ’Source’;
smalltalkClass: [self methodClass];
display: [self getSource];

act: [self browse] icon: GLMUIThemeExtraIcons glam-
orousBrowse entitled: ’Browse’

8.2 Use 2: Settings
A setting is a description of a preference value. To be viewed
and updated through the Setting Browser, a preference value
must be described by a setting. Such a setting is built by
a particular method tagged with a specific pragma. This
specific pragma <systemsettings> serves as a classification
tag which is used to automatically identify the method as a
setting.

One Setting. Let’s take the example of the caseSensi-
tiveFinds preference. It is a boolean preference which is used
for text searching. If it is true, then text finding is case sensi-
tive. This preference is stored in the CaseSensitiveFinds class
variable of the class TextEditor. Its value can be queried and
changed by, respectively, TextEditor class»caseSensitiveFinds
and TextEditor class»caseSensitiveFinds: given below:

TextEditor class >> caseSensitiveFinds
^ CaseSensitiveFinds ifNil: [CaseSensitiveFinds := false]

TextEditor class >> caseSensitiveFinds: aBoolean
CaseSensitiveFinds := aBoolean

CodeHolderSystemSettings class >> caseSensitiveFindsSet-
tingsOn: aBuilder

<systemsettings>
(aBuilder setting: #caseSensitiveFinds)

target: TextEditor;
label: ’Case sensitive search’ translated;
description: ’If true, then the "find" command in text will al-

ways make its searches in a case-sensitive fashion’ translated;
parent: #codeEditing.

Figure 6. The caseSensitiveFinds setting.

The domain of preferences is large: To describe all pos-
sible preference kinds (color, strings, boolean, url, emails)
and default values, we would need a lot of pragma parame-
ters - many of which would not be relevant for certain set-
tings. The method definitions below show variations of such
parameters.Therefore Settings used pragmas as a simple tag
and coupled it with a builder whose responsibility is to offer
an adequate and flexible API to specify settings.

In the method declaring a setting, the pragma <systemset-
tings> identifies the method and the Setting framework in-
voke it with a setting builder that the method uses to specify
a specific setting.

SourceCodeFonts class >> settingsOn: aBuilder
<systemsettings>

(aBuilder setting: #useSourceCode)
parent: #appearance;
order: 4;
target: self;
icon: Smalltalk ui icons smallConfigurationIcon;
label: ’Source Code Fonts’;
description: ’Use Source Code Pro Fonts’;
precondition: [FT2Library current notNil];
dialog: [self fontSourceCodeRow].

A Layered Architectural as Benefits. The use of pragmas
supported the building a layered architecture. Figure 7 shows
important points of the architecture put in place: The Settings
package can be unloaded and a package defining preferences

6 2016/5/22

does not depend on the Settings package. This architecture
is supported by the following points:

Customization points. Each application customization points
should be defined. In Figure 7, the class RealStateAgent of
the package UI-Basic defines the class variable UsedStrat-
egy which defines where the windows appear. The flow
of the package UI-Basic is modular and self-contained:
the class RealStateAgent does not depend on the settings
framework. The class RealStateAgent has been designed
to be parametrized.

Description of customization point. The Settings frame-
work supports the description of the setting UsedStrat-
egy. In Figure 7, the package UI-Basic Setting defines a
method. The important point is that the method declaring
the setting does not refer directly to Setting classes but
describes the setting using a builder. This way the de-
scription could even be present in the UI-Basic package
without introducing a reference.

Collecting settings for user presentation. The Settings pack-
age defines tools to manage settings such as a Setting
Browser that the user opens to change her/his prefer-
ences. The Setting Browser collects settings by querying
pragmas and uses their description to change the value
of preferences. The control flow of the program and the
dependencies are always from the package Settings to the
package that has preferences and not the inverse.

9. Conclusion
In this paper we presented Pragmas: method annotations
that act as statically described message sends. Pragmas do
not require the modification of the syntax and are fully
integrated in the IDE and tools supporting code navigation.
In addition, we presented the PragmaCollector a tool to
dynamically keep a set of pragmas up-to-date. Each time a
method is recompiled or redefined the pragmas are updated.
We present to use cases in production in Pharo since a couple
of years. Finally we showed that pragmas support the design
of modular libraries and as such more modular systems.

Acknowledgements
This work was supported by Ministry of Higher Education
and Research, Nord-Pas de Calais Regional Council, CPER
Nord-Pas de Calais/FEDER DATA Advanced data science
and technologies 2015-2020.

References
[1] American National Standards Institute, Inc. Draft American

National Standard for Information Systems — Programming
Languages — Smalltalk. American National Standards Insti-
tute, 1997.

[2] A. Bergel, D. Cassou, S. Ducasse, and J. Laval. Deep
Into Pharo. Square Bracket Associates, 2013. ISBN

978-3-9523341-6-4. URL http://rmod.inria.fr/archives/books/
Berg13a-PBE2-ESUG-2013-09-06.pdf.

[3] A. P. Black, S. Ducasse, O. Nierstrasz, D. Pollet, D. Cassou,
and M. Denker. Pharo by Example. Square Bracket Asso-
ciates, Kehrsatz, Switzerland, 2009. ISBN 978-3-9523341-
4-0. URL http://pharobyexample.org/,http://rmod.inria.fr/archives/
books/Blac09a-PBE1-2013-07-29.pdf.

[4] S. Demeyer, S. Ducasse, and O. Nierstrasz. Object-Oriented
Reengineering Patterns. Morgan Kaufmann, 2002. ISBN 1-
55860-639-4. URL http://www.iam.unibe.ch/~scg/OORP.

[5] A. Goldberg. Smalltalk 80: the Interactive Programming Envi-
ronment. Addison Wesley, Reading, Mass., 1984. ISBN 0-201-
11372-4.

[6] VisualWorks. Cincom Smalltalk.
http://www.cincomsmalltalk.com/, archived at
http://www.webcitation.org/5p1rRxls5, 2010. URL
http://www.cincomsmalltalk.com/.

[7] R. Wuyts and S. Ducasse. Unanticipated integration of develop-
ment tools using the classification model. Journal of Computer
Languages, Systems and Structures, 30(1-2):63–77, 2004.
. URL http://scg.unibe.ch/archive/papers/Wuyt04aClassifications.
pdf.

7 2016/5/22

http://rmod.inria.fr/archives/books/Berg13a-PBE2-ESUG-2013-09-06.pdf
http://rmod.inria.fr/archives/books/Berg13a-PBE2-ESUG-2013-09-06.pdf
http://pharobyexample.org/, http://rmod.inria.fr/archives/books/Blac09a-PBE1-2013-07-29.pdf
http://pharobyexample.org/, http://rmod.inria.fr/archives/books/Blac09a-PBE1-2013-07-29.pdf
http://www.iam.unibe.ch/~scg/OORP
http://www.cincomsmalltalk.com/
http://scg.unibe.ch/archive/papers/Wuyt04aClassifications.pdf
http://scg.unibe.ch/archive/papers/Wuyt04aClassifications.pdf

Figure 7. A package declares and uses customization points as variables. As an example, UsedStrategy is declared as a class
variable of RealEstateAgent. Such customization points are described with Setting instances that are created by the automatic
running of setting declaration methods. The Setting Browser collects the setting instances by querying pragmas and presents
them to the user.

8 2016/5/22

	Introduction
	An Analysis for Program Annotations
	Some History First
	Pragma: Method Annotation for Smalltalk
	Discovering the API
	Analyzing Pragmas
	First class method annotations
	API
	Compiled-time vs. Runtime
	Coupled Actions: Declaration and Execution

	Managing Pragmas Dynamically with the PragmaCollector
	The PragmaCollector
	Menu Builder Pattern

	Some Pragma Applications
	Use 1: GTInspector Panes
	Use 2: Settings

	Conclusion

