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Abstract  

Software Product Lines (SPLs) are an emerging software 
engineering paradigm that aims to optimize software 
development costs and time to market trough systematic 
development of reusable of core assets. At the heart of SPL 
engineering is variability modelling. Feature models (FM) are a 
common way to model variability and reason about it. Examples 
of reasoning are for instance checking that at least one product is 
represented by a given FM (satisfiability) or finding the product 
that best fits a given set of requirements. In practice however, 
such operations are often complex and time consuming. In order 
to address these challenges, we introduce in the present article 
the notion of transitive dependency between features and show 
how it can be used as the basis for efficient analysis and 
automatic reasoning on feature models. We exploit this new 
concept to implement a first platform for prototyping and 
reasoning on large SPLs in Pharo. Finally we illustrate the 
efficiency of our proposal on the problem of features selection 
optimisation. 

Keywords Software Product Lines, Feature models, automatic 
reasoning, analysis environment 

1. Introduction 

Software Product Lines (SPLs) are an emerging software 
engineering paradigm that aims to optimize software’s 
development costs and time to market trough systematic 
development and exploitation of reusable core assets. 

Product line engineering is a concept comprising methods, 
tools, and techniques for the development of product lines 
[1][6][7]. A software product line is the process aiming at 
designing and managing a set of related software products that 
target a specific domain and share some parts of their code. By 
selecting varying sets of assets, different products (aka variants), 
fulfilling different requirements of a specific application, can be 
generated. Software product lines engineering has attracted 
considerable research effort and shown to bring tremendous 
improvement in software development costs and time-to-market 
[1]. At the heart of SPL engineering is variability modelling. 
Feature models (FM) are a common way to model variability 
and reason about it.  

A central idea in SPL Engineering is the explicit modelling 
of commonalities and variations between the family software 
products [4]. Feature Models [3][4][5] are frequently used to this 
end. A feature model represents the hierarchical arrangement of 
system functionalities and the relationships among them which 

constrains the valid composition of functionalities defining the 
products of the software family. 

An important advantage of using feature models is the 
capacity of automatic reasoning on the valid combination of 
features (and thus core assets). For instance, a stakeholder may 
want to check the satisfiability of the feature model, that is, 
check whether at least one product is derivable from the product 
line. Another example is identifying the derivable products, 
calculating the number of derivable products, checking whether 
a given product belongs to the software family, identifying the 
product optimizing the stakeholder requirements… 

In practice however, such operations are often difficult to 
implement and time consuming [9][10][11][12][13][14][18]. 
This is especially true for a number of real world systems with 
many features (hundreds or even thousands). For instance, 
finding the optimal Linux configuration (the Linux kernel has a 
6888 features) may take from tens of minutes to hundreds of 
hours [18]. The introduction of dynamic software product lines, 
where the automatic reasoning is delayed to runtime to 
implement adaptable systems, makes this limitation even more 
critic [15][16][17][8]. 

To overcome these limitations, we introduce the notion of 
transitive dependencies between features. Indeed, features in the 
FM depend on each others. A feature depends on another feature 
if the inclusion (respectively, the exclusion) of the first one 
implies the inclusion or exclusion (respectively the exclusion) of 
the second one. For instance, if A is a sub feature of B then, the 
inclusion of feature A in a given product implies the inclusion of 
B. Moreover, the exclusion of feature B implies the exclusion of 
A. Furthermore, dependencies between features are transitive. 
For instance, if feature A implies feature B, then A implies all 
the features that are implied by B and excludes all those that B 
excludes. This means that the inclusion of feature A can impact 
a large number of other features resolving much of the 
variability of the FM and consequently reducing the complexity 
of the analysis problem. 

In order to exploit the notion of transitive selection, we also 
introduce the transitive selection operator which intuition is the 
propagation of feature’s selection to all it dependencies. We then 
employ this operator to implement a number of reasoning 
algorithms representing a first step towards a platform for 
efficient analysis of large SPLs in Pharo. 

In order to access the benefits of our proposal, we illustrate 
the use of the transitive selection operator on the problem of 
optimal features selection. The algorithm based on the new 
introduced operator is shown to be up to 90% faster than one of 



the most effective algorithms for optimal features selection in 
the literature [11].  

The rest of this article is organized as follows: section 2 
remind the main concepts relative to software product lines and 
feature modelling and reviews the most common operations for 
automated analysis of feature models. Section 3 introduces the 
dependency relationship between features and some algorithms 
for automated analysis of feature models. We present the genetic 
algorithm for products derivation and compare its performances 
to the one from the literature in section 4. Some related works 
are discussed in section 5 and section 6 concludes the paper and 
highlights future works.   

2. Background 

2.1  Software product lines and feature modeling 

Software product line engineering (SPLE) is a software 
engineering paradigm comprising methods, techniques and tools 
for developing software intensive systems that share a set of 
common functionalities and that are intended for a specific 
market segment. [30]  

Recent works have shown that SPLE can significantly 
improve software development in terms of software quality, 
time-to-market and production costs. This is made possible 
because of the systematic approach to core assets reuse. These 
advantages make SPLE particularly attractive for the 
development of software based systems such as smart-homes, 
cell-phones or automotive systems. 

The central idea behind SPLE is the reusability of core 
assets. The general process is separated in two main phases: 
"Domain Engineering" which aims at developing the core assets 
for the software family (that is a common architecture, 
requirements and reusable components) and "Application 
Engineering", consisting in the derivation of the final products 
that meet the specific requirements of customers by exploiting 
the core assets developed during the first phase.  

At the heart of SPLE is the management of commonalities 
and variations between products. Feature models are one of the 
most popular tools to document the commonalities and 
variations throw the concept of features [31][32][33]. A software 
feature is “a distinguishing characteristic of a software item” 
[30]. A feature model represents the hierarchical arrangement of 
the system functionalities and the relationships among them. 
Relationships between features determine valid compositions. 
Additional information may be included concerning trade-offs, 
rationale, and justifications for features selection. Feature 
modeling has attracted increasing research effort and provides 
good tool support for automatic reasoning and verification [20] 

Figure.1 depicts a possible (much simplified) feature model 
of smart-phones product family. The feature model of figure.1 is 
a hierarchical representation of variability relationships between 
features, variability relationships are for instance: mandatory, 
optional, single and multiple-choice. Cross-tree constraints can 
also be modeled such as excludes and requires. 

For instance, all smart-phones need to include the two 
components: hardware and software. Hardware includes a 
processor, a screen, a RAM memory and sometimes a 3G 
connector and a GPS. Software would imply an OS whether 
Windows-Phone or a Linux, a set of applications amount of a 
specific control application that can be a Win32 (that requires 
running on Windows) or a Posix application (that requires 
running on Linux).  

For more details on FM notations semantic, reader can refer 
to [31][33]. 

In the recent years, much works explored the idea of 
exploiting the Software Product Line paradigm to handle 
systems online adaptation. This is known as Dynamic Software 
Product Lines [34]. More specifically, A DSPL uses feature 
modeling to represent and reason on the system’s variants 
(configurations) at execution time taking advantage of existing 
model-based techniques and tools to achieve dynamic 
adaptation. While promising, this trend puts even more 

 
 

Figure. 1 A sample feature model for the smart-Phones software family 
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constraints on the automatic operations because of the limited 
resources and response time. 

2.2 Automated reasoning on feature models 

As mentioned earlier, the automated reasoning on feature 
models is a key capability for studying, developing or using 
software product lines. Automated reasoning allows researchers 
to study, prototype and develop new SPL techniques. It allows 
SPL developers define and verify the scope of the product 
family they work on and finally, it assists stakeholders in 
deriving the product that best fit their requirements. 

Benavides et al surveyed the automated operations on feature 
models in [19] and [20]. In the following we review the most 
commonly used ones. 
1. Feature models validation (satisfiability): satisfiability is 

the quality of a feature model from which at least one 
product can be derived. Because of the inclusion of cross-
tree constraints, an FM may be unsatisfiable: it does not 
accept any derivable products. This may happen  if two 
mandatory features are exclusives. 

2. Calculating the scope of the feature model: This operation 
returns the best of all possible products that can be derived 
from the FM. A subsequent operation is the calculation of 
the number of derivable products which increases the 
flexibility and the complexity of the product line. 

3. Calculating commonality: the commonality of a feature is 
the percentage of products where this features is present. It  
reveals information about the importance of the feature in the 
product line. 

4. Optimizing: this operation aims at calculating the product(s) 
that best fit stakeholder’s requirements. Stakeholder’s 
satisfiability is described in terms of one or many criterion 
expressed as fitness functions. A utility (or cost) value is 
associated to every feature or to combinations of features and 
the objective is to maximise the overall fitness value. A 
typical example of such objectives is the cost or energy 
consumption (to minimize). This operation is NP hard. 

5. Decision Propagation: Typically, in the process of products 
derivation, features are selected (or deselected) gradually 
until a final product is obtained (also known as variability 
resolution). This process can be either automatic or manual. 
In both cases, it is important to ensure that features selection 
respects the FM structural and cross-tree constraints. To do 
so, every selection (or deselection) must be automatically 
propagated to the rest of the FM features. 

6. Dead features detection: Dead features are those that will 
never appear in any derivable products. Dead features are 
due to cross-tree constraints. For instance a feature is 
considered dead if it is part of an exclusion cross-tree 
constraint together with the root feature. 

7. Providing explanation: When a feature model is 
unsatisfiable or when dead features are detected, it is 
desirable to provide some information about the source of 
the problem (i.e. the cross-tree constraint). A more 
appreciable (and rare) option is to provide a corrective 
explanation to fix the problem. 

8. Product validation: This operation answers the question 
whether a given product (features combination) is valid 
against the feature model structural and cross-tree 
constraints. Here again, an explanation in case the product 

does not satisfy the feature model and a corrective 
suggestion are highly appreciable. 

9. Generation of random feature models: In order to test new 
proposed operations and techniques, it is often useful to 
apply them to feature models with different characteristics. 
This operation is however not trivial since the generated 
feature model must have some properties essentially the 
satisfiability and the absence of dead features. This operation 
can be very complex and time consuming especially if the 
ratio of cross-tree constraints is high. 

In the next section, we introduce the notion of dependency 
between features as well as the transitive selection operator that 
relies on it. We will then explain how these concepts can be 
exploited to performed a large number of the afore mentioned 
operations 

3. Features Dependencies and Transitive 

Selection. 

In order to introduce the notion of features’ dependencies, let us 
first recall the different kinds of constraints in classical feature 
models. Les us have for notation: xi = 0 means feature i is 
deselected. xi=1 meaning that feature i is selected.  

Thus, we can express the different kinds of constraints as 
follows: 

 Paternity : Feature j is the father of feature i meaning 
that featurej must be selected whenever featurei is 
selected : xi=1 => xj=1  

 Mandatory : Featurej is a mandatory sub feature of 
featurei. Then, whenever featurei is selected, featurej 
must be selected too : xi=1 => xj=1. 

 Alternative : supposing features 1.. feature n belong to an 
alternative group. Then only one feature featurei may be 
selected in the group : xi=1=>xj=0. 

 sub features : Featurei is the parent feature of 
features1..featuren meaning that whenever featurei is 
selected, there must be at least one sub feature featurej 
selected : xi=1=>j=1..n/xj=1 

 Imply : featurei implies featurej meaning that featurej 
must be selected whenever featurei is selected : 
xi=1=>xj=1. 

 excludes : featurei excludes featurej meaning that 
whenever featurei is selected featurej must be deselected 
and reciprocally : xi=1=>xj=0 and xj=1=>xi=0. 

Definition.1: a feature featurei is said to be dependent of another 
feature feature j, if and only if setting featurei implies setting 
featurej, A feature is said to be set if it has a known state 
whether selected or deselected. 

From the above, we can distinguish four kind of dependencies 
between features: 

 implying : feature i implies features j if and only if feature j is 

selected every time feature i is selected : feature j is the 
parent of feature i, feature j is a mandatory sub feature of 

feature i or feature i requires feature j according to a cross-

tree constraint. Note that implying is transitive: if feature i 

implies feature k and feature k implies feature j => feature i 
implies feature j. 

 exclusion : feature i excludes feature j if and only if : feature j 

is deselected every time feature i is selected : feature i and 
feature j belong to the same xor group or feature i excludes 



feature j according to a cross-tree constraint. Note that 

exclusion is reflexive: feature i excludes feature j <=> feature 

j excludes feature i. Note also that if feature i requires feature 

k and feature k excludes feature j => featurei excludes feature 

j. 

 impliedBy : feature i is impliedBy feature j if and only if 
feature j implies feature i. Note that impliedBy is transitive : 

if feature i is impliedBy feature k and feature k is impliedBy 

feature j => feature i is impliedBy feature j. this means also 
that if feature i is deselected then feature j must be deselected 

too (otherwise, an FM constraint will be violated). 

 subFeature : this is trivial form the feature model 
hierarchical structure. 

Further, we can define for every featurei the sets inclusions, 
exclusions and impliedBy as follows: 

 inclusionsOf: featurei  = {featurej/ featurei -> featurej | 
featurej isTheParentOf: featurei| featurej 

isMandatorySubFeatureOf: featurei | k/ featurej  

inclusionsOf: featurek and featurek  inclusionsOf: featurei} 

 exclusionsOf: featurei  = { featurej/ featurei->!featurej | 

featurei xor featurej | k/featurek  inclusionsOf: featurei 

and featurej  exclusionsOf: featurek} 

 impliedByOf: featurei = {featurej/ featurej->featurei, or 

featurei isMandatorySubFeatureOf: featurej or featurej 

isSubFeatureOf: featurei or k/featurej  impliedByOf: 

featurek and featurek  impliedByOf: featurei} 

 childrenOf: featurei can be naturally defined as 
{featurej/featurei is parentOf: featurej}. 

3.1 Calculating Dependencies between Features 

Figure 2 represents the general overview of the proposed 
platform for reasoning on large product lines and its 
implementation in Pharo. The proposed platform is based on 
Moose, an open source project for agile reengineering1. The blue 
boxes in figure 2 represent existing projects. Green boxes 
represent tools that we have already developed whereas purple 
boxes represent future works. 

                                                   
1
 http://moosetechnologie.org 

3.1.1 Data Structures 

For representing Feature Models, we reused and extended the 
code of the FAMILIAR project 2. FAMILIAR is a platform that 
supports decomposition of complex SPLs by providing 
visualisations of internal and external constraints between FMs 
[41] 

We particularly extended the package with methods to 
generate and access features dependencies as follows: 
FMFeatureModel>>generateDependencies 
fmEncoder:= FMEncoder new 
  generateDependenciesWith: self. 

 
FMEncoder essentially maintains a dictionary associating to 
every feature its’ dependencies. Then, accessing features’ 
dependencies is performed the following operations :  

implyingsOf:aFeature, returns the features 

implied by aFeature.  

exclusionsOf:aFeature, returns the features 

excluded by aFeature. 

implyedByOf:aFeature, returns the features 

that imply aFeature. 

  
 

Here, a feature dependency (as well as features 
combinations, i.e. products) is encoded as an instance of the 
BitSet class. At the present moment, BitSet is just implemented 
as a subclass of Array whom elements are binary values. 
Therefore,  

aBitSet at:i = 1 means that featurei is contained in the set 
represented by aBitSet. 

Additionally, BitSet implements the following methods: 

 bitUnion:aBitUnion. Updates the receiver to encode the 
union of the sets represented by the receiver and the 
argument. Answers true if the receiver has been changed. 

 bitIntersection:aBitUnion. Updates the receiver to 
encode the intersection of the sets represented by the 
receiver and the argument. Answers true if the receiver 
has been changed. 

                                                   
2
 http://smalltalkhub.com/#!/~abergel/Familiar.  

 

Figure 2. The general architecture of large SPLs analysis platform 
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 asCollectionOfFeatures. Answers the collection of 
features encoded by the BitSet. 

3.1.2 Calculating dependencies 

 Algorithm1 represents the code for the generation of feature 
dependencies of aFeatureModel. This code is inspired by the 
well known Dijkstra Algorithm in order to reduce the 
computation complexity. 
FeatureModel>>generateDependencies 
self initializeDependencies. 
encodersHaveChanged := true. 
[encodersHaveChanged]whileTrue:[ 
encodersHaveChanged:= self updateDependencies 
] 

Algorithm1: The generation code of dependency sets. 

 
The code starts with the initialisation of the dependencies with 
the neighbour features

3
. This operation is trivial from the feature 

model (for instance the inclusions of featurei can be initialised 
with:  
1-The features that featurei requires according to a cross-tree 
constraint,  
2-the parent of featurei  
3 The-mandatory subfeatures of featurei  
Then, a loop structure updates the dependencies of every feature 
by iteratively including the neighbours’ dependencies. This loop 
is exited as soon as no more dependencies are found. 

Algorithm2 represents the Smalltalk code we implemented to 
update the dependencies of every feature with those of its 
neighbours1.  

 
FMFeature>>updateWithImplyings: 
aCollectionOfNeighbors 

aCollectionOfNeighbors do:[:aFeature| 
self inclusions bitUnion: aFeature inclusions. 
feature impliedByOf bitUnion: self impliedBy. 
Self exclusions bitUnion: feature exclusionsOf 
] 

^ self hasChanged. 
 
FMFeature>>updateWithExclusions: 
aCollectionOfNeighbors  

 
 aCollectionOfNeighbors do:[:aFeature| 
self exclusions bitUnion: aFeature impliedByOf.  

] 
^ self hasChanged. 
Algorithm2: updating features dependencies with those of the 
neighbours. 

 
The update is made according to the definitions of the 

dependency sets given in section3. Namely, for a featurei: 
 if featurei implies featurek and featurek implies featurej 

then featurei implies featurej 
 if featurei implies featurek and featurei isImplyedBy 

featurej then featurek is implyedBy featurej  
 if featurei implies featurek and featurek excludes featurej 

then featurei excludes featurej 
 and finally: 
 if featurei excludes featurek and featurek isImpliedBy 

featurej then featurei excludes featurej 
At the end of the overall process, we have the dependencies of 
every feature of the FM. Next, we propose to exploit these 
dependencies to efficiently implement the different operations 
on features models. 

                                                   
3
 neighbhour feature is the one that is directly dependent 

3.2 Exploiting features dependencies to efficiently 

implement FM operations. 

From the features dependencies, we can trivially define the 
operations 1, 6 and 8 as follows: 
1. Feature model satisfiability: 

A feature model is satisfiable if for all the features the 
intersection of the inclusions and exclusions sets is an empty 
collection: 
FeatureModel>>isSatisfiable 
features do:[:aFeature| 

[(aFeature inclusions bitIntersection: 
aFeature) 

 asCollectionOfFeatures ] 
ifNotEmpty:[^false] 

] 
^true 

6.Dead Feature 
Dead features are all the features that belong to the 

exclusions set of the root feature: 
FMFeatureModel>>deadFeatures 
^self root exclusions asCollectionOfFeatures 
 

8. Product validation 
A product consisting in a collection of (selected) features is 

valid if and only if for every feature, if the feature is selected in 
the product, all its implied features are selected and all its 
exclusions are deselected. If the feature is deselected, all the 
features that imply it are deselected too: 
FeatureModel>>IsValidProduct: aCollecOfFeatures 
Self features do:[:aFeature| 
(aCollecOfFeatures contains: aFeature) ifTrue:[ 
((aCollectionOfFeatures containsAll: aFeature 
inclusions) 
     and:  
aCollectionOfFeatures containsNone:  
aFeature exclusions)) ifFalse:[^false] 
] 
ifFallse:[ 
(aCollectionOfFeatures containsNone:  
aFeature implyedBy) 
   ifFalse: [^ false] 
] 
^ true 
 
In order to implement other operations, we introduce the 
transitiveSelectionOperator. The intuition behind the 
transitiveSelectionOperator is to instantly propagate the 
selection or de-selection of a given feature based on its 
dependencies. Algorithm3 depicts this operator. 
FMFeature>>selectIn: aBitSet 
 
  “aBitSet encodes a potential product” 
 
self set: aBitSet atAll:self implyings at: 1 
self set: aBitSet atAll: self exclusions at: 0.  
 
FMFeature>>desectIn aBitSet 
self set aBitSet atAll: self impliedBy at:0. 

 

Algorithm.3 The Transitive Selection Operator 
These two operations can be exploited to implement FM 
operations as follows: 

2. Calculating the derivable products: This operation 
simply generates valid products by brute force calculation. This 
operation is therefore NP hard. However, using the transitive 
selection operator reduces the complexity of the algorithm 
because the search space is drastically reduced as multiple 
features are set simultaneously. Besides, the generated product is 
guaranteed to be valid Therefore, there is no need the check its 
validity (which is an additional factor for increasing the brute 



force algorithm). To this end, we implemented the method that 
brute forces the solutions as follows: 

 
FeatureModel>>evaluateSubconfigurationsOf: 
aBitSet at: index 
 
(aBitSet at: index) ifNil:[ 
 “feature at index has not been set yet”  
 
self deSelectandExploreFeatureAt: index in: 
aBitSet. 
selectAndExploreFeatureAt: index in aBitSet 

] 
ifNotNil:[ 
 “feature has ealready been set, then set the 
next one” 
 evaluateSubconfigurationsOf:aBitSet at:index+1 
] 
 

Where: 
selectAndExploreFeatureAt: i in: aBitSet is a 

recursive method that performs a transitive selection of the 
featurei. The result is a subset of derivable products that include 
featurei. The method sets bit i and all dependent bits (bits 
corresponding to the implying and exclusions of featurei) in 
aBitSet. If all the bits are set in the bitset, (we have a final 
product) then the product is added to the set of derivable ones 
else, the algorithm continuous evaluating sub configurations 
with the next index. The deselection operation is performed in 
according to the same logic with the method: 
deselectAndExploreFeatureAt:i from:aBitSet 

Then, the process of finding derivable products starts with 
selecting the root feature (index = 1) in a bitSet of nil 
elements: 
 
FeatureModel>>derivableProducts  
self selectAndExploreFeatureAt:1 in: 
nilElemBitSet. 
^ products. 
The number of derivable products is simply obtained as follows 
: 
FeatureModel>>numberOfDerivableProducts  
^ self derivableProducts size 
} 

 
3. Calculating commonality:  

This is the ratio of products including a given feature to the 
total number of derivable products: 
FeatureModel>>RatioOfProductsIncluding: aFeature 
products:=self selectAndExploreFeatureAt: (self 
indexOf:aFeature) in: nilElemBitSet. 
^ (products size)/self numberOfDerivableProducts 
4. Optimizing  

Optimizing can be performed by associating fitness values to 
features, then evaluating all the products generated with 
allDerivableProducts and selecting the one with the highest 
fitness. However, proceeding this way is time consuming and 
thus inapplicable to large feature models (FM with many 
hundreds or thousands of features). To be effective, optimizing 
needs to use some meta-heuristics as will be shown in the next 
section. 
5. Generating random Feature models 

Exploiting the dependencies between features, it is possible to 
generate random feature models guarantying their validity. In 
order to avoid generating contradictory crosstree constraints, the 
generation algorithm uses the chooseRightSideFeature  
method which takes as argument the leftSideFeature. This 
is to avoid connecting two features that are already dependent in 
an inconsistent way. This may result in an invalid feature model 
if for instance the leftSideFeature is the parent of the 

rightSideFeature and the generated constraint is an 
exclusion constraint. 

In the next section the genetic algorithm for optimal features 
selection is presented and serves to illustrate the benefit of the 
proposed dependence relationship. 

4. Evaluating The Proposed Approach: A 

Genetic Algorithm for optimal features selections 

based on the transitive selection operator 

In order to evaluate our proposal, we implemented a genetic 
algorithm features’ selection optimization based on features’ 
dependencies. Features’ selection optimization has been 
recognized as a complex and time consuming task. Indeed, 
calculating and evaluating all the products is only possible for 
small feature models whereas it is impractical for large ones. 

4.1 Genetic algorithms 

Genetic algorithms are “stochastic-based search techniques 
that comprise a population of individuals, where each individual 
encodes a candidate solution in a chromosome” [35]. They are 
inspired by biological evolution of chromosomes which includes 
mutation, recombination, and selection [36][37]. The main idea 
behind genetic algorithms is to gradually evolve an initial set of 
(possibly random) solutions for an optimization problem, to 
newer ones in a way that their fitness is improved from 
generation to generation. 

Figure 3 depict the general behaviour of genetic algorithms 
The genetic algorithm starts with an initial population of 

population_Size individuals. These individuals are generated 
randomly and evolved throughout generations. The evolution of 
solutions is performed through selection, crossover and 
mutation. This process is repeated until some condition is 
verified (typically a predefined number of generations is 
reached) 

 
Figure 3. Genetic algorithms main steps 
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Selection consists in choosing the parent chromosomes based 
on their fitness. With this survival of the fittest strategy, Genetic 
Algorithms often quickly converge to a (near) optimal solution 
for optimization problems. 

Crossover mixes two good parent solutions hopefully 
producing a better one (the offspring). For the purpose of our 
experimentation we implemented the uniform crossover. The 
uniform crossover uses a random N-sized binary mask to 
describe the way each offspring gene takes its value from the 
first parent (mask geneAt:i = 1) or the second parent (mask 
geneAt:i = 0) 

Mutation in the other hand simply flips individuals’ genes 
according to a specific mutation rate M_Rate. The role of the 
mutation operator is to enhance the exploration capabilities of 
the genetic algorithm and getting trapped in local optimums. 

4.2 Applying genetic algorithms for optimal features 

selection 

Employing genetic algorithms to optimise the selection of 
features for products derivation has already been explored in 

various previous approaches [11][8][21][39].  In this context, an 
individual represents a particular product i.e. a valid 
combination of features. To encode such individuals, binary 
chromosomes are used. They consist in arrays of bits where the 
element at index i equals 1 if the featurei is included in the 
encoded product and 0 otherwise.  

It is worth mentioning that individuals that are randomly 
generated by the GA operations are most likely to be invalid. In 
order to fix that, one can transform the generated individuals to 
conform the FM constraints. This approach has been 
implemented by Guo et al in [11] and extended in [8] and [21]. 
In the contrary, we proposed new initialisation and mutation 
operators that generate only valid individuals using features 
dependencies and the transitiveSelection operator (please 
refer to [40] for more details). 

Algorithm 4.a depicts the general structure of the genetic 
algorithm based on transitive selection whereas Algorithm4.b 
depicts Guo’s Genetic algorithm. 

As mentioned earlier the genetic algorithm of Guo et al  
transforms randomly generated individuals so that they become 
valid. This is performed through the implementation of the 
fmTransform operator [11]. This operator uses two operations: 
includeFeature(f) and excludeFeature(f) to determine whether a 
feature should be included or be excluded. They are recursively 
implemented according to FM Constraints as follows [11]:  

a. includeFeature(f) 

1. if f is not root then includeFeature the parent of f. 

2. if f is in an Alternative group, then excludeFeature  all  

the brothers of f in the Alternative Group. 

3. if f has mandatory sub features then includeFeature all 
mandatory sub feature of f. 

4. if f is part of a require crosstree constraint then 

includeFeature all Features crosstree required by f. 

5. if f is part of an exclude crosstree constraint then 
excludeFeature all features that f CrossTree Excludes 

6. if f has any sub features then includeFeature at least one 

sub feature of f 

b. excludeFeature(f) 

1. if f has any sub features then excludeFeature all 
subfeatures of f 

2. if: f is a mandatory SubFeature of another feature 

excludeFeature the parent of f 

3. if a feature crosstree Requires f then  excludeFeature all 
features that crosstree requires f 

Obviously, the fmTransform operator selection and 
deselection operations are heavily recursive while the transitive 
selection operator is not. Our intuition is then that our genetic 
algorithm will be faster than Guo’s genetic algorithm. To 
confirm this intuition, we performed a certain number of 
experimentations as explained in the next sub section. 

4.3 Comparing the two genetic algorithms 

Hereafter, empirical results are reported from our experiments 
and used to evaluate the proposed approach. The objective of 
these experiments is to asses about the efficiency of using 
features dependencies to reason about feature models. We 
compare our algorithm to the one presented in [11] in terms of 
solutions quality and convergence time to show that the first one 
can produces solutions of equivalent quality in less time. The 
last comparison criterion is the number of explored 
combinations in order to ensure that the use of dependencies 
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between features does not restrain the exploration capabilities of 
the genetic algorithm. 

4.3.1 Experimental setup 

We performed our experiments on randomly generated feature 
models with different sizes. To this end we adopted the method 
presented in [22]. According to the survey conducted by the 
authors, this method generates feature models reflecting the 
characteristic of software families that can be met in real world.  

To generate optimisation problems with the randomly 
generated feature models, we associated random values in the 
range minVal, maxVal to each feature. The fitness value of a 
given solution is then obtained as the sum of the utility values of 
all active features in this solution: objectiveFunction = Σ (utility 
xi) such as xi=1. in the presence of multiple objectives, a vector 
of randomly generated utility values is associated to each feature 
and each objective function Fi equals the sum of the fitness 
value i of each selected feature. 

 We applied the two genetic to a number of feature models 
with varying sizes. We measured the time to generate a (near) 
optimal solution, the total number of generated solutions and the 
quality of the best found solutions. The above experiments are 
repeated 100 times for each generated feature model in order to 
avoid the fluctuations caused by random parameters. 

To support the experiments we implemented all the 
algorithms in Pharo/Smalltalk. and performed the experiments 
on an 2,66 GHz Intel Core 2 Duo MacBook Pro running the 
Mac OS X Yosemite and having 8GB of 1067 MHz Ram. 

4.4 Discussion of results and threats of validity 

We have executed our genetic algorithm and compared its 
performances with the genetic algorithm presented in [11]. We 
have configured our genetic algorithm as well as well the 
genetic algorithm of [11] with the following parameters: 

Population size: 800 
Mutation Rate: 0.1 
Stop criteria: number of generation < 800 
Uniform Rate: 0.5 

We compared the different algorithms according to tree values: 
a) The of number of explored solutions : this is to assess about 

the exploration capabilities of the genetic algorithms 

b) The  fitness of the best individuals : this is to compare about 
the convergence capabilities of the genetic algorithms 

c) The total time: this is to compare the response time of the 
different solutions. 

Table 1 shows the experimental results obtained from the 
comparison of different runs of the two genetic algorithms 
presented above on feature models of varying runs. The first 
column of Table 1 shows the size (i.e. number of features) of the 
feature models. Columns 2 and 3 show the execution times of 
our genetic algorithm and the one from [11] respectively, 
whereas column 4 shows the ratio of the execution time of the 
first to the second. Column 5 shows the ratio of the number of 
explored combinations of both algorithms and column 6 the 
ratio of their best fatnesses. We have repeated each experience 

100 times and calculated the medium of each column. 
From Table 1, one can clearly notice that our genetic 

algorithm evolves more quickly than the one from [11] without 
any significant impact on performances. Indeed, the ratios of 
best fitness values as well as the ratio of the number of explored 
combinations oscillate around 1 and the medium variation value 
is less than 0.01. 

In the other hand, it is obvious from Table 1 that the genetic 
algorithm exploiting features dependencies converges in less 
time than the one from [11]. Moreover, the difference between 
the two execution times is proportional to the number of feature 
models and our algorithm can be 99% faster than the one from 
the literature. 

5. RELATED WORKS 

Several works have addressed the problem of automatic 
reasoning on feature models and panoply of approaches and 
tools exist to support it. A good survey on the topic can be found 
for instance in [19] and [20]. 

A first category of approaches uses propositional logic to 
analyse FMs. For instance, in [23], authors propose to translate 
FMs into propositional formulas and some operations were 
implemented accordingly. Zhang et al [24] and Sun et al [25] 
formalised FM using SVM and Z + Alloy Analyser respectively 
and were able to formulate some basic operations such as dead 
features detection and explanation in case of FM inconsistency. 
In [38] authors suggest the use of SAT solvers and constraint 
propagation algorithms to the same purpose. 

Another family of techniques uses description logic reasoners 
[26]. A typical example is the translation of FMs into a 
sublanguage of OWL and the exploitation of tools such as the 
Renamed ABox and Concept Expression Reasoner to perform 
certain operations on FMs. 

CSP Solvers have also been used in this perspective [27] 
[28]. To this end, the FM is translated into a Constraint 
Satisfaction Problem. Then, constraint programming techniques 
are leveraged to support automatic operations not only on 
classical feature models but also on some extended ones. 

Finally, in [29] Cao et al. propose to transform FMs to a 
normalised form then encode the FM in a particular data 
structures that represents the valid combinations of the parent 
feature and its children. The children themselves can be encoded 
as sub features models. The proposed approach does not seem to 
deal with cross-tree constraints or support future integration of 
extended forms of FMs. 

6. CONCLUSION AND PERSPECTIVES 

Software Product Lines engineering is a promising paradigm to 
optimize core assets reuse in order to enhance software quality, 
costs and time to market. At the heart of SPL engineering is 
variability modelling. In this sense variability models (and more 
specifically, feature models) not only serve to help developers 
identify the reusable assets of the software factory, but also help 
them detect design inconsistencies and help stakeholders making 
the right decisions. 

From this perspective, the automatic reasoning on feature 
models is a critic task. Often, as the size of modern systems 

Table 1. The experimental results 

 

Number Of Features
Execution time of our GA (in 

seconds)

Execution Time of the GA from 

[11] (in seconds)
Gain En temps d'execution

Ratio of the number of explored 

combinaisons
Ratio of the best fitnesses

100 1,00 8,00 88% 1,059820576 0,944061692

200 2,00 32,00 94% 0,999064291 1,042535895

500 4,00 165,00 98% 1,030866725 1,032808419

800 14,00 634,00 98% 0,999769554 0,946222716

1000 15,00 682,00 98% 1 0,904538341

2000 26,00 2056,00 99% 1 0,843161857

Gain in execution time 



increases, this operation can be very time consuming. This even 
more true in the case of Dynamic SPL where the automatic 
operations are performed on runtime. 

In the present article we introduced a new concept of features 
dependencies. This notion has then been exploited to efficiently 
implement some operations on FMs. To assess the efficiency of 
our proposal, we implemented a genetic algorithm for features 
optimisation and compared it to one notable one from the 
literature. The experimental results clearly show the superiority 
of the dependencies based genetic algorithm in terms of 
convergence time while quality of generated solutions is 
maintained. 

The article represents a first evaluation of the notion of 
dependencies. Comparison with other existing approaches 
(especially, SAT and CSP based approaches) needs to be 
performed in the future. The generalisation of features 
dependencies to extended feature models is also an interesting 
perspective (For instance, feature attributes can be handled as 
sub-features as it has been suggested in [8] for instance). Lastly, 
the performance of FM operations can be enhanced by changing 
the BitSet encoding as arrays of bits instead of arrays of integers 
as operations on bits can be performed much quicker. 
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