
Prototyping Software Product Lines analysis with Pharo

Abdelghani Alidra

Science Faculty,
20 Aout 55 University, Skikda

Algeria

alidrandco@yahoo.fr

Mohamed Tahar Kimour

LASE Laboratory,
 Badji Mokhtar University,

Algeria

mtkimour@hotmail.fr

Abstract

Software Product Lines (SPLs) are an emerging software
engineering paradigm that aims to optimize software
development costs and time to market trough systematic
development of reusable of core assets. At the heart of SPL
engineering is variability modelling. Feature models (FM) are a
common way to model variability and reason about it. Examples
of reasoning are for instance checking that at least one product is
represented by a given FM (satisfiability) or finding the product
that best fits a given set of requirements. In practice however,
such operations are often complex and time consuming. In order
to address these challenges, we introduce in the present article
the notion of transitive dependency between features and show
how it can be used as the basis for efficient analysis and
automatic reasoning on feature models. We exploit this new
concept to implement a first platform for prototyping and
reasoning on large SPLs in Pharo. Finally we illustrate the
efficiency of our proposal on the problem of features selection
optimisation.

Keywords Software Product Lines, Feature models, automatic
reasoning, analysis environment

1. Introduction

Software Product Lines (SPLs) are an emerging software
engineering paradigm that aims to optimize software’s
development costs and time to market trough systematic
development and exploitation of reusable core assets.

Product line engineering is a concept comprising methods,
tools, and techniques for the development of product lines
[1][6][7]. A software product line is the process aiming at
designing and managing a set of related software products that
target a specific domain and share some parts of their code. By
selecting varying sets of assets, different products (aka variants),
fulfilling different requirements of a specific application, can be
generated. Software product lines engineering has attracted
considerable research effort and shown to bring tremendous
improvement in software development costs and time-to-market
[1]. At the heart of SPL engineering is variability modelling.
Feature models (FM) are a common way to model variability
and reason about it.

A central idea in SPL Engineering is the explicit modelling
of commonalities and variations between the family software
products [4]. Feature Models [3][4][5] are frequently used to this
end. A feature model represents the hierarchical arrangement of
system functionalities and the relationships among them which

constrains the valid composition of functionalities defining the
products of the software family.

An important advantage of using feature models is the
capacity of automatic reasoning on the valid combination of
features (and thus core assets). For instance, a stakeholder may
want to check the satisfiability of the feature model, that is,
check whether at least one product is derivable from the product
line. Another example is identifying the derivable products,
calculating the number of derivable products, checking whether
a given product belongs to the software family, identifying the
product optimizing the stakeholder requirements…

In practice however, such operations are often difficult to
implement and time consuming [9][10][11][12][13][14][18].
This is especially true for a number of real world systems with
many features (hundreds or even thousands). For instance,
finding the optimal Linux configuration (the Linux kernel has a
6888 features) may take from tens of minutes to hundreds of
hours [18]. The introduction of dynamic software product lines,
where the automatic reasoning is delayed to runtime to
implement adaptable systems, makes this limitation even more
critic [15][16][17][8].

To overcome these limitations, we introduce the notion of
transitive dependencies between features. Indeed, features in the
FM depend on each others. A feature depends on another feature
if the inclusion (respectively, the exclusion) of the first one
implies the inclusion or exclusion (respectively the exclusion) of
the second one. For instance, if A is a sub feature of B then, the
inclusion of feature A in a given product implies the inclusion of
B. Moreover, the exclusion of feature B implies the exclusion of
A. Furthermore, dependencies between features are transitive.
For instance, if feature A implies feature B, then A implies all
the features that are implied by B and excludes all those that B
excludes. This means that the inclusion of feature A can impact
a large number of other features resolving much of the
variability of the FM and consequently reducing the complexity
of the analysis problem.

In order to exploit the notion of transitive selection, we also
introduce the transitive selection operator which intuition is the
propagation of feature’s selection to all it dependencies. We then
employ this operator to implement a number of reasoning
algorithms representing a first step towards a platform for
efficient analysis of large SPLs in Pharo.

In order to access the benefits of our proposal, we illustrate
the use of the transitive selection operator on the problem of
optimal features selection. The algorithm based on the new
introduced operator is shown to be up to 90% faster than one of

the most effective algorithms for optimal features selection in
the literature [11].

The rest of this article is organized as follows: section 2
remind the main concepts relative to software product lines and
feature modelling and reviews the most common operations for
automated analysis of feature models. Section 3 introduces the
dependency relationship between features and some algorithms
for automated analysis of feature models. We present the genetic
algorithm for products derivation and compare its performances
to the one from the literature in section 4. Some related works
are discussed in section 5 and section 6 concludes the paper and
highlights future works.

2. Background

2.1 Software product lines and feature modeling

Software product line engineering (SPLE) is a software
engineering paradigm comprising methods, techniques and tools
for developing software intensive systems that share a set of
common functionalities and that are intended for a specific
market segment. [30]

Recent works have shown that SPLE can significantly
improve software development in terms of software quality,
time-to-market and production costs. This is made possible
because of the systematic approach to core assets reuse. These
advantages make SPLE particularly attractive for the
development of software based systems such as smart-homes,
cell-phones or automotive systems.

The central idea behind SPLE is the reusability of core
assets. The general process is separated in two main phases:
"Domain Engineering" which aims at developing the core assets
for the software family (that is a common architecture,
requirements and reusable components) and "Application
Engineering", consisting in the derivation of the final products
that meet the specific requirements of customers by exploiting
the core assets developed during the first phase.

At the heart of SPLE is the management of commonalities
and variations between products. Feature models are one of the
most popular tools to document the commonalities and
variations throw the concept of features [31][32][33]. A software
feature is “a distinguishing characteristic of a software item”
[30]. A feature model represents the hierarchical arrangement of
the system functionalities and the relationships among them.
Relationships between features determine valid compositions.
Additional information may be included concerning trade-offs,
rationale, and justifications for features selection. Feature
modeling has attracted increasing research effort and provides
good tool support for automatic reasoning and verification [20]

Figure.1 depicts a possible (much simplified) feature model
of smart-phones product family. The feature model of figure.1 is
a hierarchical representation of variability relationships between
features, variability relationships are for instance: mandatory,
optional, single and multiple-choice. Cross-tree constraints can
also be modeled such as excludes and requires.

For instance, all smart-phones need to include the two
components: hardware and software. Hardware includes a
processor, a screen, a RAM memory and sometimes a 3G
connector and a GPS. Software would imply an OS whether
Windows-Phone or a Linux, a set of applications amount of a
specific control application that can be a Win32 (that requires
running on Windows) or a Posix application (that requires
running on Linux).

For more details on FM notations semantic, reader can refer
to [31][33].

In the recent years, much works explored the idea of
exploiting the Software Product Line paradigm to handle
systems online adaptation. This is known as Dynamic Software
Product Lines [34]. More specifically, A DSPL uses feature
modeling to represent and reason on the system’s variants
(configurations) at execution time taking advantage of existing
model-based techniques and tools to achieve dynamic
adaptation. While promising, this trend puts even more

Figure. 1 A sample feature model for the smart-Phones software family

System
Software

Smart phone

Applications

Hardware

O.S. Task Scheduler

Windows Linux

Normal
mode

Safe
mode

RAM

CPU Screen

CPU 1 CPU 2 GPU

Win32
Control

Application

Posix
Control

Application

Other
Applications

3G Connector

GPS

constraints on the automatic operations because of the limited
resources and response time.

2.2 Automated reasoning on feature models

As mentioned earlier, the automated reasoning on feature
models is a key capability for studying, developing or using
software product lines. Automated reasoning allows researchers
to study, prototype and develop new SPL techniques. It allows
SPL developers define and verify the scope of the product
family they work on and finally, it assists stakeholders in
deriving the product that best fit their requirements.

Benavides et al surveyed the automated operations on feature
models in [19] and [20]. In the following we review the most
commonly used ones.
1. Feature models validation (satisfiability): satisfiability is

the quality of a feature model from which at least one
product can be derived. Because of the inclusion of cross-
tree constraints, an FM may be unsatisfiable: it does not
accept any derivable products. This may happen if two
mandatory features are exclusives.

2. Calculating the scope of the feature model: This operation
returns the best of all possible products that can be derived
from the FM. A subsequent operation is the calculation of
the number of derivable products which increases the
flexibility and the complexity of the product line.

3. Calculating commonality: the commonality of a feature is
the percentage of products where this features is present. It
reveals information about the importance of the feature in the
product line.

4. Optimizing: this operation aims at calculating the product(s)
that best fit stakeholder’s requirements. Stakeholder’s
satisfiability is described in terms of one or many criterion
expressed as fitness functions. A utility (or cost) value is
associated to every feature or to combinations of features and
the objective is to maximise the overall fitness value. A
typical example of such objectives is the cost or energy
consumption (to minimize). This operation is NP hard.

5. Decision Propagation: Typically, in the process of products
derivation, features are selected (or deselected) gradually
until a final product is obtained (also known as variability
resolution). This process can be either automatic or manual.
In both cases, it is important to ensure that features selection
respects the FM structural and cross-tree constraints. To do
so, every selection (or deselection) must be automatically
propagated to the rest of the FM features.

6. Dead features detection: Dead features are those that will
never appear in any derivable products. Dead features are
due to cross-tree constraints. For instance a feature is
considered dead if it is part of an exclusion cross-tree
constraint together with the root feature.

7. Providing explanation: When a feature model is
unsatisfiable or when dead features are detected, it is
desirable to provide some information about the source of
the problem (i.e. the cross-tree constraint). A more
appreciable (and rare) option is to provide a corrective
explanation to fix the problem.

8. Product validation: This operation answers the question
whether a given product (features combination) is valid
against the feature model structural and cross-tree
constraints. Here again, an explanation in case the product

does not satisfy the feature model and a corrective
suggestion are highly appreciable.

9. Generation of random feature models: In order to test new
proposed operations and techniques, it is often useful to
apply them to feature models with different characteristics.
This operation is however not trivial since the generated
feature model must have some properties essentially the
satisfiability and the absence of dead features. This operation
can be very complex and time consuming especially if the
ratio of cross-tree constraints is high.

In the next section, we introduce the notion of dependency
between features as well as the transitive selection operator that
relies on it. We will then explain how these concepts can be
exploited to performed a large number of the afore mentioned
operations

3. Features Dependencies and Transitive

Selection.

In order to introduce the notion of features’ dependencies, let us
first recall the different kinds of constraints in classical feature
models. Les us have for notation: xi = 0 means feature i is
deselected. xi=1 meaning that feature i is selected.

Thus, we can express the different kinds of constraints as
follows:

 Paternity : Feature j is the father of feature i meaning
that featurej must be selected whenever featurei is
selected : xi=1 => xj=1

 Mandatory : Featurej is a mandatory sub feature of
featurei. Then, whenever featurei is selected, featurej
must be selected too : xi=1 => xj=1.

 Alternative : supposing features 1.. feature n belong to an
alternative group. Then only one feature featurei may be
selected in the group : xi=1=>xj=0.

 sub features : Featurei is the parent feature of
features1..featuren meaning that whenever featurei is
selected, there must be at least one sub feature featurej
selected : xi=1=>j=1..n/xj=1

 Imply : featurei implies featurej meaning that featurej
must be selected whenever featurei is selected :
xi=1=>xj=1.

 excludes : featurei excludes featurej meaning that
whenever featurei is selected featurej must be deselected
and reciprocally : xi=1=>xj=0 and xj=1=>xi=0.

Definition.1: a feature featurei is said to be dependent of another
feature feature j, if and only if setting featurei implies setting
featurej, A feature is said to be set if it has a known state
whether selected or deselected.

From the above, we can distinguish four kind of dependencies
between features:

 implying : feature i implies features j if and only if feature j is

selected every time feature i is selected : feature j is the
parent of feature i, feature j is a mandatory sub feature of

feature i or feature i requires feature j according to a cross-

tree constraint. Note that implying is transitive: if feature i

implies feature k and feature k implies feature j => feature i
implies feature j.

 exclusion : feature i excludes feature j if and only if : feature j

is deselected every time feature i is selected : feature i and
feature j belong to the same xor group or feature i excludes

feature j according to a cross-tree constraint. Note that

exclusion is reflexive: feature i excludes feature j <=> feature

j excludes feature i. Note also that if feature i requires feature

k and feature k excludes feature j => featurei excludes feature

j.

 impliedBy : feature i is impliedBy feature j if and only if
feature j implies feature i. Note that impliedBy is transitive :

if feature i is impliedBy feature k and feature k is impliedBy

feature j => feature i is impliedBy feature j. this means also
that if feature i is deselected then feature j must be deselected

too (otherwise, an FM constraint will be violated).

 subFeature : this is trivial form the feature model
hierarchical structure.

Further, we can define for every featurei the sets inclusions,
exclusions and impliedBy as follows:

 inclusionsOf: featurei = {featurej/ featurei -> featurej |
featurej isTheParentOf: featurei| featurej

isMandatorySubFeatureOf: featurei | k/ featurej

inclusionsOf: featurek and featurek inclusionsOf: featurei}

 exclusionsOf: featurei = { featurej/ featurei->!featurej |

featurei xor featurej | k/featurek inclusionsOf: featurei

and featurej exclusionsOf: featurek}

 impliedByOf: featurei = {featurej/ featurej->featurei, or

featurei isMandatorySubFeatureOf: featurej or featurej

isSubFeatureOf: featurei or k/featurej impliedByOf:

featurek and featurek impliedByOf: featurei}

 childrenOf: featurei can be naturally defined as
{featurej/featurei is parentOf: featurej}.

3.1 Calculating Dependencies between Features

Figure 2 represents the general overview of the proposed
platform for reasoning on large product lines and its
implementation in Pharo. The proposed platform is based on
Moose, an open source project for agile reengineering1. The blue
boxes in figure 2 represent existing projects. Green boxes
represent tools that we have already developed whereas purple
boxes represent future works.

1
 http://moosetechnologie.org

3.1.1 Data Structures

For representing Feature Models, we reused and extended the
code of the FAMILIAR project 2. FAMILIAR is a platform that
supports decomposition of complex SPLs by providing
visualisations of internal and external constraints between FMs
[41]

We particularly extended the package with methods to
generate and access features dependencies as follows:
FMFeatureModel>>generateDependencies
fmEncoder:= FMEncoder new
 generateDependenciesWith: self.

FMEncoder essentially maintains a dictionary associating to
every feature its’ dependencies. Then, accessing features’
dependencies is performed the following operations :

implyingsOf:aFeature, returns the features

implied by aFeature.

exclusionsOf:aFeature, returns the features

excluded by aFeature.

implyedByOf:aFeature, returns the features

that imply aFeature.

Here, a feature dependency (as well as features
combinations, i.e. products) is encoded as an instance of the
BitSet class. At the present moment, BitSet is just implemented
as a subclass of Array whom elements are binary values.
Therefore,

aBitSet at:i = 1 means that featurei is contained in the set
represented by aBitSet.

Additionally, BitSet implements the following methods:

 bitUnion:aBitUnion. Updates the receiver to encode the
union of the sets represented by the receiver and the
argument. Answers true if the receiver has been changed.

 bitIntersection:aBitUnion. Updates the receiver to
encode the intersection of the sets represented by the
receiver and the argument. Answers true if the receiver
has been changed.

2
 http://smalltalkhub.com/#!/~abergel/Familiar.

Figure 2. The general architecture of large SPLs analysis platform

 X-FAMILIAR: Our large SPLs analysis platform

The Moose agile reengineering platform

FAMILIAR Project

FM Meta model

Internal/external

constraints visualizations

Extended FM Meta model

Transitive Selection operator

Dependencies generator Transitive Features Dependencies

Rand
om

 FM
s

gen
erator

D
ead

 Features

D
etection

…

Satisfiability

O
ptim

ization

(G
A

)

Visualization

V
isu

alization

External

parser

XML Descriptor

V
isu

al

FM
 Editor

False option
als

D
etection

D
ecision

Propagatio
n

Product
valid

ation

 asCollectionOfFeatures. Answers the collection of
features encoded by the BitSet.

3.1.2 Calculating dependencies

 Algorithm1 represents the code for the generation of feature
dependencies of aFeatureModel. This code is inspired by the
well known Dijkstra Algorithm in order to reduce the
computation complexity.
FeatureModel>>generateDependencies
self initializeDependencies.
encodersHaveChanged := true.
[encodersHaveChanged]whileTrue:[
encodersHaveChanged:= self updateDependencies
]

Algorithm1: The generation code of dependency sets.

The code starts with the initialisation of the dependencies with
the neighbour features

3
. This operation is trivial from the feature

model (for instance the inclusions of featurei can be initialised
with:
1-The features that featurei requires according to a cross-tree
constraint,
2-the parent of featurei
3 The-mandatory subfeatures of featurei
Then, a loop structure updates the dependencies of every feature
by iteratively including the neighbours’ dependencies. This loop
is exited as soon as no more dependencies are found.

Algorithm2 represents the Smalltalk code we implemented to
update the dependencies of every feature with those of its
neighbours1.

FMFeature>>updateWithImplyings:
aCollectionOfNeighbors

aCollectionOfNeighbors do:[:aFeature|
self inclusions bitUnion: aFeature inclusions.
feature impliedByOf bitUnion: self impliedBy.
Self exclusions bitUnion: feature exclusionsOf
]

^ self hasChanged.

FMFeature>>updateWithExclusions:
aCollectionOfNeighbors

 aCollectionOfNeighbors do:[:aFeature|
self exclusions bitUnion: aFeature impliedByOf.

]
^ self hasChanged.
Algorithm2: updating features dependencies with those of the
neighbours.

The update is made according to the definitions of the

dependency sets given in section3. Namely, for a featurei:
 if featurei implies featurek and featurek implies featurej

then featurei implies featurej
 if featurei implies featurek and featurei isImplyedBy

featurej then featurek is implyedBy featurej
 if featurei implies featurek and featurek excludes featurej

then featurei excludes featurej
 and finally:
 if featurei excludes featurek and featurek isImpliedBy

featurej then featurei excludes featurej
At the end of the overall process, we have the dependencies of
every feature of the FM. Next, we propose to exploit these
dependencies to efficiently implement the different operations
on features models.

3
 neighbhour feature is the one that is directly dependent

3.2 Exploiting features dependencies to efficiently

implement FM operations.

From the features dependencies, we can trivially define the
operations 1, 6 and 8 as follows:
1. Feature model satisfiability:

A feature model is satisfiable if for all the features the
intersection of the inclusions and exclusions sets is an empty
collection:
FeatureModel>>isSatisfiable
features do:[:aFeature|

[(aFeature inclusions bitIntersection:
aFeature)

 asCollectionOfFeatures]
ifNotEmpty:[^false]

]
^true

6.Dead Feature
Dead features are all the features that belong to the

exclusions set of the root feature:
FMFeatureModel>>deadFeatures
^self root exclusions asCollectionOfFeatures

8. Product validation
A product consisting in a collection of (selected) features is

valid if and only if for every feature, if the feature is selected in
the product, all its implied features are selected and all its
exclusions are deselected. If the feature is deselected, all the
features that imply it are deselected too:
FeatureModel>>IsValidProduct: aCollecOfFeatures
Self features do:[:aFeature|
(aCollecOfFeatures contains: aFeature) ifTrue:[
((aCollectionOfFeatures containsAll: aFeature
inclusions)
 and:
aCollectionOfFeatures containsNone:
aFeature exclusions)) ifFalse:[^false]
]
ifFallse:[
(aCollectionOfFeatures containsNone:
aFeature implyedBy)
 ifFalse: [^ false]
]
^ true

In order to implement other operations, we introduce the
transitiveSelectionOperator. The intuition behind the
transitiveSelectionOperator is to instantly propagate the
selection or de-selection of a given feature based on its
dependencies. Algorithm3 depicts this operator.
FMFeature>>selectIn: aBitSet

 “aBitSet encodes a potential product”

self set: aBitSet atAll:self implyings at: 1
self set: aBitSet atAll: self exclusions at: 0.

FMFeature>>desectIn aBitSet
self set aBitSet atAll: self impliedBy at:0.

Algorithm.3 The Transitive Selection Operator
These two operations can be exploited to implement FM
operations as follows:

2. Calculating the derivable products: This operation
simply generates valid products by brute force calculation. This
operation is therefore NP hard. However, using the transitive
selection operator reduces the complexity of the algorithm
because the search space is drastically reduced as multiple
features are set simultaneously. Besides, the generated product is
guaranteed to be valid Therefore, there is no need the check its
validity (which is an additional factor for increasing the brute

force algorithm). To this end, we implemented the method that
brute forces the solutions as follows:

FeatureModel>>evaluateSubconfigurationsOf:
aBitSet at: index

(aBitSet at: index) ifNil:[
 “feature at index has not been set yet”

self deSelectandExploreFeatureAt: index in:
aBitSet.
selectAndExploreFeatureAt: index in aBitSet

]
ifNotNil:[
 “feature has ealready been set, then set the
next one”
 evaluateSubconfigurationsOf:aBitSet at:index+1
]

Where:
selectAndExploreFeatureAt: i in: aBitSet is a

recursive method that performs a transitive selection of the
featurei. The result is a subset of derivable products that include
featurei. The method sets bit i and all dependent bits (bits
corresponding to the implying and exclusions of featurei) in
aBitSet. If all the bits are set in the bitset, (we have a final
product) then the product is added to the set of derivable ones
else, the algorithm continuous evaluating sub configurations
with the next index. The deselection operation is performed in
according to the same logic with the method:
deselectAndExploreFeatureAt:i from:aBitSet

Then, the process of finding derivable products starts with
selecting the root feature (index = 1) in a bitSet of nil
elements:

FeatureModel>>derivableProducts
self selectAndExploreFeatureAt:1 in:
nilElemBitSet.
^ products.
The number of derivable products is simply obtained as follows
:
FeatureModel>>numberOfDerivableProducts
^ self derivableProducts size
}

3. Calculating commonality:

This is the ratio of products including a given feature to the
total number of derivable products:
FeatureModel>>RatioOfProductsIncluding: aFeature
products:=self selectAndExploreFeatureAt: (self
indexOf:aFeature) in: nilElemBitSet.
^ (products size)/self numberOfDerivableProducts
4. Optimizing

Optimizing can be performed by associating fitness values to
features, then evaluating all the products generated with
allDerivableProducts and selecting the one with the highest
fitness. However, proceeding this way is time consuming and
thus inapplicable to large feature models (FM with many
hundreds or thousands of features). To be effective, optimizing
needs to use some meta-heuristics as will be shown in the next
section.
5. Generating random Feature models

Exploiting the dependencies between features, it is possible to
generate random feature models guarantying their validity. In
order to avoid generating contradictory crosstree constraints, the
generation algorithm uses the chooseRightSideFeature
method which takes as argument the leftSideFeature. This
is to avoid connecting two features that are already dependent in
an inconsistent way. This may result in an invalid feature model
if for instance the leftSideFeature is the parent of the

rightSideFeature and the generated constraint is an
exclusion constraint.

In the next section the genetic algorithm for optimal features
selection is presented and serves to illustrate the benefit of the
proposed dependence relationship.

4. Evaluating The Proposed Approach: A

Genetic Algorithm for optimal features selections

based on the transitive selection operator

In order to evaluate our proposal, we implemented a genetic
algorithm features’ selection optimization based on features’
dependencies. Features’ selection optimization has been
recognized as a complex and time consuming task. Indeed,
calculating and evaluating all the products is only possible for
small feature models whereas it is impractical for large ones.

4.1 Genetic algorithms

Genetic algorithms are “stochastic-based search techniques
that comprise a population of individuals, where each individual
encodes a candidate solution in a chromosome” [35]. They are
inspired by biological evolution of chromosomes which includes
mutation, recombination, and selection [36][37]. The main idea
behind genetic algorithms is to gradually evolve an initial set of
(possibly random) solutions for an optimization problem, to
newer ones in a way that their fitness is improved from
generation to generation.

Figure 3 depict the general behaviour of genetic algorithms
The genetic algorithm starts with an initial population of

population_Size individuals. These individuals are generated
randomly and evolved throughout generations. The evolution of
solutions is performed through selection, crossover and
mutation. This process is repeated until some condition is
verified (typically a predefined number of generations is
reached)

Figure 3. Genetic algorithms main steps

Evolve Population

Crossover

mutation

Select two parent

individuals

Update population

with offspring(s)

Termination

Criterion?

Return best

individual(s)

No

Yes

Generate population_size

random individuals

Selection consists in choosing the parent chromosomes based
on their fitness. With this survival of the fittest strategy, Genetic
Algorithms often quickly converge to a (near) optimal solution
for optimization problems.

Crossover mixes two good parent solutions hopefully
producing a better one (the offspring). For the purpose of our
experimentation we implemented the uniform crossover. The
uniform crossover uses a random N-sized binary mask to
describe the way each offspring gene takes its value from the
first parent (mask geneAt:i = 1) or the second parent (mask
geneAt:i = 0)

Mutation in the other hand simply flips individuals’ genes
according to a specific mutation rate M_Rate. The role of the
mutation operator is to enhance the exploration capabilities of
the genetic algorithm and getting trapped in local optimums.

4.2 Applying genetic algorithms for optimal features

selection

Employing genetic algorithms to optimise the selection of
features for products derivation has already been explored in

various previous approaches [11][8][21][39]. In this context, an
individual represents a particular product i.e. a valid
combination of features. To encode such individuals, binary
chromosomes are used. They consist in arrays of bits where the
element at index i equals 1 if the featurei is included in the
encoded product and 0 otherwise.

It is worth mentioning that individuals that are randomly
generated by the GA operations are most likely to be invalid. In
order to fix that, one can transform the generated individuals to
conform the FM constraints. This approach has been
implemented by Guo et al in [11] and extended in [8] and [21].
In the contrary, we proposed new initialisation and mutation
operators that generate only valid individuals using features
dependencies and the transitiveSelection operator (please
refer to [40] for more details).

Algorithm 4.a depicts the general structure of the genetic
algorithm based on transitive selection whereas Algorithm4.b
depicts Guo’s Genetic algorithm.

As mentioned earlier the genetic algorithm of Guo et al
transforms randomly generated individuals so that they become
valid. This is performed through the implementation of the
fmTransform operator [11]. This operator uses two operations:
includeFeature(f) and excludeFeature(f) to determine whether a
feature should be included or be excluded. They are recursively
implemented according to FM Constraints as follows [11]:

a. includeFeature(f)

1. if f is not root then includeFeature the parent of f.

2. if f is in an Alternative group, then excludeFeature all

the brothers of f in the Alternative Group.

3. if f has mandatory sub features then includeFeature all
mandatory sub feature of f.

4. if f is part of a require crosstree constraint then

includeFeature all Features crosstree required by f.

5. if f is part of an exclude crosstree constraint then
excludeFeature all features that f CrossTree Excludes

6. if f has any sub features then includeFeature at least one

sub feature of f

b. excludeFeature(f)

1. if f has any sub features then excludeFeature all
subfeatures of f

2. if: f is a mandatory SubFeature of another feature

excludeFeature the parent of f

3. if a feature crosstree Requires f then excludeFeature all
features that crosstree requires f

Obviously, the fmTransform operator selection and
deselection operations are heavily recursive while the transitive
selection operator is not. Our intuition is then that our genetic
algorithm will be faster than Guo’s genetic algorithm. To
confirm this intuition, we performed a certain number of
experimentations as explained in the next sub section.

4.3 Comparing the two genetic algorithms

Hereafter, empirical results are reported from our experiments
and used to evaluate the proposed approach. The objective of
these experiments is to asses about the efficiency of using
features dependencies to reason about feature models. We
compare our algorithm to the one presented in [11] in terms of
solutions quality and convergence time to show that the first one
can produces solutions of equivalent quality in less time. The
last comparison criterion is the number of explored
combinations in order to ensure that the use of dependencies

Algorithm 4. Genetic algorithms for features selection

Generate population_size

random valid individuals

with transitive selection

Evolve Population

Crossover

Select two parent

individuals

Update population

with offspring(s)

Termination

Criterion?

Return best

individual(s)

Generate random individual

Evolve Population

Crossover

mutation

Select two parent

individuals

Update population

with offspring(s)

Termination

Criterion?

Return best

individual(s)

Mutation with

transitive selection

Transform to a

valid solution with

fmTransform

Is it

valid?

Are their
population_size

valid individuals?

Add to population

no

No

No No

Yes Yes

Yes

Yes

fmtransform

(b)fmTransform based
Genetic Algorithm

 based

(a) transitive selection

based Genetic Algorithm

between features does not restrain the exploration capabilities of
the genetic algorithm.

4.3.1 Experimental setup

We performed our experiments on randomly generated feature
models with different sizes. To this end we adopted the method
presented in [22]. According to the survey conducted by the
authors, this method generates feature models reflecting the
characteristic of software families that can be met in real world.

To generate optimisation problems with the randomly
generated feature models, we associated random values in the
range minVal, maxVal to each feature. The fitness value of a
given solution is then obtained as the sum of the utility values of
all active features in this solution: objectiveFunction = Σ (utility
xi) such as xi=1. in the presence of multiple objectives, a vector
of randomly generated utility values is associated to each feature
and each objective function Fi equals the sum of the fitness
value i of each selected feature.

 We applied the two genetic to a number of feature models
with varying sizes. We measured the time to generate a (near)
optimal solution, the total number of generated solutions and the
quality of the best found solutions. The above experiments are
repeated 100 times for each generated feature model in order to
avoid the fluctuations caused by random parameters.

To support the experiments we implemented all the
algorithms in Pharo/Smalltalk. and performed the experiments
on an 2,66 GHz Intel Core 2 Duo MacBook Pro running the
Mac OS X Yosemite and having 8GB of 1067 MHz Ram.

4.4 Discussion of results and threats of validity

We have executed our genetic algorithm and compared its
performances with the genetic algorithm presented in [11]. We
have configured our genetic algorithm as well as well the
genetic algorithm of [11] with the following parameters:

Population size: 800
Mutation Rate: 0.1
Stop criteria: number of generation < 800
Uniform Rate: 0.5

We compared the different algorithms according to tree values:
a) The of number of explored solutions : this is to assess about

the exploration capabilities of the genetic algorithms

b) The fitness of the best individuals : this is to compare about
the convergence capabilities of the genetic algorithms

c) The total time: this is to compare the response time of the
different solutions.

Table 1 shows the experimental results obtained from the
comparison of different runs of the two genetic algorithms
presented above on feature models of varying runs. The first
column of Table 1 shows the size (i.e. number of features) of the
feature models. Columns 2 and 3 show the execution times of
our genetic algorithm and the one from [11] respectively,
whereas column 4 shows the ratio of the execution time of the
first to the second. Column 5 shows the ratio of the number of
explored combinations of both algorithms and column 6 the
ratio of their best fatnesses. We have repeated each experience

100 times and calculated the medium of each column.
From Table 1, one can clearly notice that our genetic

algorithm evolves more quickly than the one from [11] without
any significant impact on performances. Indeed, the ratios of
best fitness values as well as the ratio of the number of explored
combinations oscillate around 1 and the medium variation value
is less than 0.01.

In the other hand, it is obvious from Table 1 that the genetic
algorithm exploiting features dependencies converges in less
time than the one from [11]. Moreover, the difference between
the two execution times is proportional to the number of feature
models and our algorithm can be 99% faster than the one from
the literature.

5. RELATED WORKS

Several works have addressed the problem of automatic
reasoning on feature models and panoply of approaches and
tools exist to support it. A good survey on the topic can be found
for instance in [19] and [20].

A first category of approaches uses propositional logic to
analyse FMs. For instance, in [23], authors propose to translate
FMs into propositional formulas and some operations were
implemented accordingly. Zhang et al [24] and Sun et al [25]
formalised FM using SVM and Z + Alloy Analyser respectively
and were able to formulate some basic operations such as dead
features detection and explanation in case of FM inconsistency.
In [38] authors suggest the use of SAT solvers and constraint
propagation algorithms to the same purpose.

Another family of techniques uses description logic reasoners
[26]. A typical example is the translation of FMs into a
sublanguage of OWL and the exploitation of tools such as the
Renamed ABox and Concept Expression Reasoner to perform
certain operations on FMs.

CSP Solvers have also been used in this perspective [27]
[28]. To this end, the FM is translated into a Constraint
Satisfaction Problem. Then, constraint programming techniques
are leveraged to support automatic operations not only on
classical feature models but also on some extended ones.

Finally, in [29] Cao et al. propose to transform FMs to a
normalised form then encode the FM in a particular data
structures that represents the valid combinations of the parent
feature and its children. The children themselves can be encoded
as sub features models. The proposed approach does not seem to
deal with cross-tree constraints or support future integration of
extended forms of FMs.

6. CONCLUSION AND PERSPECTIVES

Software Product Lines engineering is a promising paradigm to
optimize core assets reuse in order to enhance software quality,
costs and time to market. At the heart of SPL engineering is
variability modelling. In this sense variability models (and more
specifically, feature models) not only serve to help developers
identify the reusable assets of the software factory, but also help
them detect design inconsistencies and help stakeholders making
the right decisions.

From this perspective, the automatic reasoning on feature
models is a critic task. Often, as the size of modern systems

Table 1. The experimental results

Number Of Features
Execution time of our GA (in

seconds)

Execution Time of the GA from

[11] (in seconds)
Gain En temps d'execution

Ratio of the number of explored

combinaisons
Ratio of the best fitnesses

100 1,00 8,00 88% 1,059820576 0,944061692

200 2,00 32,00 94% 0,999064291 1,042535895

500 4,00 165,00 98% 1,030866725 1,032808419

800 14,00 634,00 98% 0,999769554 0,946222716

1000 15,00 682,00 98% 1 0,904538341

2000 26,00 2056,00 99% 1 0,843161857

Gain in execution time

increases, this operation can be very time consuming. This even
more true in the case of Dynamic SPL where the automatic
operations are performed on runtime.

In the present article we introduced a new concept of features
dependencies. This notion has then been exploited to efficiently
implement some operations on FMs. To assess the efficiency of
our proposal, we implemented a genetic algorithm for features
optimisation and compared it to one notable one from the
literature. The experimental results clearly show the superiority
of the dependencies based genetic algorithm in terms of
convergence time while quality of generated solutions is
maintained.

The article represents a first evaluation of the notion of
dependencies. Comparison with other existing approaches
(especially, SAT and CSP based approaches) needs to be
performed in the future. The generalisation of features
dependencies to extended feature models is also an interesting
perspective (For instance, feature attributes can be handled as
sub-features as it has been suggested in [8] for instance). Lastly,
the performance of FM operations can be enhanced by changing
the BitSet encoding as arrays of bits instead of arrays of integers
as operations on bits can be performed much quicker.

Acknowledgments

This work has been partially supported by ESUG, the European
Smalltalk Users Group. The hospitality offerd by Dr S. Ducasse
of the Rmod team at Lille is gratefully acknowledged. The
authors would also like to thank Dr. N. Anquetil for
proofreading and helpful comments.

References

[1] F. van der Linden, K. Schmid, and E. Rommes. Software Product

Lines in Action: The Best Industrial Practice in Product Line

Engineering. Springer-Verlag New York, Inc., Secaucus, NJ, USA,

2007.

[2] IEEE Std 829-1998. “IEEE Standard for Software Test

Documentation”. September 16th 1998.

[3] S. Apel and C. K¨astner. An overview of feature-oriented software

development. Journal of Object Technology (JOT), 8(5):49–84,

2009.

[4] Mark Dalgarno. Software Product Line Engineering with Feature

Models, Design of applications and programs, Overload Journal

#78 - Apr 2007

[5] K. Kang, et al., Feature Oriented Domain Analysis (FODA)

Feasibility Study, Technical report CMU/SEI-90-TR-021, Software

Engineering Institute, Carnegie Mellon University, 1990

[6] K. Czarnecki, U.W. Eisenecker, Generative Programming:

Methods, Tools, and Applications, Addison-Wesley, 2000

[7] klaus pohl, gruner bockle, and frank j. van der linden Software

product line engineering : foundation, principles and techniques.

Springer_verlag 2005

[8] Gustavo G. Pascual, Mónica Pinto, Lidia Fuentes, Self-adaptation

of mobile systems driven by the Common Variability Language,

Future Generation Computer Systems, Volume 47, June 2015,

Pages 127-144, ISSN 0167-739X,

http://dx.doi.org/10.1016/j.future.2014.08.015.

[9] M. Harman, Y. Jia, J. Krinke, B. Langdon, J. Petke, Y. Zhang,

Search based software engineering for software product line

engineering: a survey and directions for future work (keynote

paper), in: 18th International Software Product Line Conference

(SPLC 14), Florence, Italy, 2014, pp. 5–18.

[10] A. Sayyad, J. Ingram, T. Menzies, H. Ammar, Scalable product line

configuration: A straw to break the camel’s back, in: 2013

IEEE/ACM 28th International Conference on Automated Software

Engineering (ASE), 2013, pp. 465–474.  

[11] J.Guo,J.White,G.Wang,J.Li,Y.Wang,A genetic algorithm for

optimised feature selection with resource constraints in software

product lines, Journal of Systems and Software 84 (12) (2011)

2208 – 2221.

 [12] S. Soltani, M. Asadi, D. Gasevic, M. Hatala, E. Bagheri,

Automated planning for feature model configuration based on

functional and non-functional requirements, in: Proceedings of the

16th International Software Product Line Conference-Volume 1,

ACM, 2012, pp56–65.

[13] J. White, B. Dougherty, D. C. Schmidt, Selecting highly optimal

architectural feature sets with filtered cartesian flattening, Journal

of Systems and Software 82 (8) (2009) 1268 – 1284.

[14] J. White, B. Dougherty, D. Schmidt, D. Benavides, Automated

reasoning for multi-step feature model configuration problems, in:

Proceedings of the 13th International Software Product Line

Conference, Carnegie Mellon University, 2009, pp. 11–20.

[15] J.White,D.Schmidt,E. Wuchner,A. Nechypurenko,Automating

productline variant selection for mobile devices, in: Software

Product Line Conference, 2007. SPLC 2007. 11th International,

IEEE, 2007, pp. 129–140.  [16] G. Brataas, S.O. Hallsteinsen, R.

Rouvoy, F. Eliassen, Scalability of decision models for dynamic

product lines in: SPLC, (2), 2007, pp. 23–32.

[17] André Almeida, Francisco Dantas, Everton Cavalcante, Thais

Batista. A Branch-and-Bound Algorithm for Autonomic

Adaptation of Multi-Cloud Applications. IEEE. 14th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing

(CCGrid 2014), May 2014, Chicago, United States. pp.315-323.

[18] C. Henard, M. Papadakis, M. Harman, and Y. Le Traon, Combining

Multi-Objective Search and Constraint Solving for Configuring

Large Software Product Lines.

[19] D.Benavides,S.Segura,A.Ruiz-Cortes, Automated analysis of

feature models 20 years later: A literature review, Information

Systems 35 (6) (2010) 615–636.

[20] D. Benavides, P. Trinidad, A. Ruiz-Cortes, Automated reasoning on

feature models, in: Advanced Information Systems Engineering,

Springer, 2005, pp. 381–390.

 [21] Gustavo G. Pascual, Roberto E. Lopez-Herrejon, Monica Pinto,

Lidia Fuentes, Alexander Egyed, Applying Multiobjective

Evolutionary Algorithms to Dynamic Software Product Lines for

Reconfiguring Mobile Applications, The Journal of Systems &

Software (2015), doi: 10.1016/j.jss.2014.12.041

[22] Thum, T., Batory, D. S., Kastner, C., 2009. Reasoning about edits

to feature models. In: Proceedings of ICSE’09, Van- couver,

Canada, pp. 254-264.

.[23] M. Mannion. Using First-Order Logic for Product Line Model

Validation. In Proceedings of the Second Software Product Line

Conference (SPLC2), LNCS 2379, pages 176–187, San Diego, CA,

2002. Springer.

.[24] W. Zhang, H. Zhao, and H. Mei. A propositional logic-based

method for verification of feature models. In J. Davies, editor,

ICFEM 2004, volume 3308, pages 115–130. Springer–Verlag,

2004.

.[25]. Sun, H. Zhang, Y.F. Li, and H. Wang. Formal semantics and

verification for feature modeling. In Proceedings of the ICECSS05,

2005.  

.[26] H. Wang, Y. Li, J. Sun, H. Zhang, and J. Pan. A semantic web

approach to feature modeling and verification. In Workshop on

Semantic Web Enabled Software Engineering (SWESE’05),

November 2005.  

[27] D. Benavides, A. Ruiz-Cort ́es, B. Smith, Barry O’Sullivan, and P.

Trinidad. Computational issues on the automated analyses of

feature models using constraint programming. International Journal

of Software Engineering and Knowl- edge Engineering, in

preparation, 2006.

 [28] D. Benavides, A. Ruiz-Cort ́es, and P. Trinidad. Using constraint

programming to reason on feature models. In The Seventeenth

International Conference on Software Engineering and Knowledge

Engineering, SEKE 2005, 2005.  

[29] F. Cao, B. Bryant, C. Burt, Z. Huang, R. Raje, A. Olson, and M.

Auguston. Automating feature-oriented domain analysis. In

International Conference on Software Engineering Research and

Practice (SERP’03), pages 944–949, June 2003.  

[30] Carlos Cetina, Pau Giner, Joan Fons, and Vicente Pelechano,

“Autonomic Computing through Reuse of Variability Models at

Runtime: The Case of Smart Homes”, IEEE Computer, 2009, pp

46-52.

[31] A. S. Karata¸s, H. Oguztüzün, and A. Dogru. “Global Constraints

on Feature Models”. Proceedings of Principles and Practice of

Constraint Programming - 16th International Conference (CP-

2010), Scotland 2010. Springer, vol. 6308, pp. 537-551. ISBN

9783642153952.

[32] Carlos Eduardo Alvarez Divo, Automated Reasoning on Feature

Models via Constraint Programming, master thesis., June 2011

[33] A. S. Karata¸s, H. Oguztüzün, and A. Dogru. “Mapping Extended

Feature Models to Constraint Logic Programming over Finite

Domains”. Proceedings of Software Product Lines: Going Beyond -

14th International Conference, (SPLC-2010), South Korea 2010.

Springer, vol. 6287, pp. 286-299. ISBN 9783642155789.

[34] Nelly Bencomo, Jaejoon Lee, Svein O. Hallsteinsen, “How dynamic

is your Dynamic Software Product Line?”. In proceeding of:

Software Product Lines - 14th International Conference, SPLC

2010, Jeju Island, South Korea, September 13-17, 2010. Workshop

Proceedings

 [35] J. H. Holland. Adaptation in Natural and Artificial Systems. MIT

Press, Cambridge, MA, USA, 1992

 [36] Faezeh Ensan, Ebrahim Bagheri, Dragan Gasevic: Evolutionary

Search-Based Test Generation for Software Product Line Feature

Models. CAiSE 2012: 613-628

[37] K. De Jong, "An analysis of the behavior of a class of genetic

adaptive systems," Doctoral Dissertation. Ann Arbor: The

University of Michigan, 1975.

[38] D. Batory. Feature models, grammars, and propositional formulas.

In Software Product Lines Conference, LNCS 3714, pages 7–20,

2005

[39] A Alidra, MT Kimour. « A new evolutionary approach to decision-

making in autonomic systems ». In Proceedings of the 3th IEEE

control International Conference on System and control (), Algiers

2013

[40] A. Alidra, M.T. Kimour, A new genetic algorithm for enhanced

decision-making in large adaptable systems" submitted to the

International Journal of Computational Science and Engineering

(IJCSE).

[41] S. Urli, A. Bergel,M, Blay-Fornarino, P. Collet. A visual support

for decomposing complex feature models IEEE 3rd Working

Conference on Software Visualization. Pages 76 - 85 Bremen.

Sept. 2015

