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University of Bern

spasojev@inf.unibe.ch

Mohammad Ghafari
University of Bern
ghafari.unibe.ch

Oscar Nierstrasz
University of Bern
oscar@inf.unibe.ch

Abstract
In this paper we propose the idea of constructing an Object
Repository – a repository of code snippets that, when ex-
ecuted, produce an instances of some class. Such a repos-
itory may be useful for several software engineering tasks
like augmenting software documentation, testing object in-
spectors, improving program comprehension etc.

We mine code snippets from existing software systems
via brute force execution of code segments obtained through
converting AST nodes of methods to source code. The gath-
ered snippets are known to be executable, and this is a nov-
elty which is not possible with existing approaches.

We show that applying the proposed approach to 141
open source Pharo projects results in an Object Repository
that can instantiate almost 80% of the available classes in
these projects.

Categories and Subject Descriptors CR-number [subcat-
egory]: third-level

Keywords keyword1, keyword2

1. Introduction
Every object-oriented language includes a mechanism for
creating new objects, and developers leverage this mecha-
nism to create complex objects needed in software systems.
Most classes contain a default constructor, a way to create a
default instance of that class, but some classes do not have
a default representation, and are instantiated through more
complex construction mechanisms such as parametrized
constructors, factory methods, the builder design pattern and
so on. Fully formed objects can also be created through any

[Copyright notice will appear here once ’preprint’ option is removed.]

valid object usage protocol, which may include an arbitrary
number of interacting objects and method invocations.

Finding a way to properly instantiate classes can be non-
trivial, yet, code snippets that instantiate these classes exist
throughout their client classes. Existing approaches for min-
ing code snippets provide useful information about object
creation and usage, but they lack the feature of being exe-
cutable which is important to enable approaches that require
objects on demand.

We propose to mine available software projects for code
snippets that instantiate classes, henceforth referred to sim-
ply as snippets. We aim to create a repository of such snip-
pets, which can be used to facilitate several software engi-
neering tasks such as augmenting documentation, new test-
ing approaches, support for program comprehension and
others. We realize this approach by extracting all AST nodes
from all methods of all available classes, converting them to
their source code representation and attempting to execute
them. If the execution is successful, i.e., produces an object,
we save the snippet in a database and associate it to the type
of the produced object.

For our case study we chose Pharo, a Smalltalk inspired
language. This choice was made because of the high reflec-
tivity of Smalltalk [6], which enables us to move quickly
with implementing such a system. We applied this approach
to 141 open source Pharo projects and a selection of classes
contained in the base Pharo image. We find that the result
of this approach is that around 10% of AST nodes, when
converted to source code and executed, produce objects for
almost 80% of all the analysed classes. We check several
aspects of the snippets to better understand their properties
and also analyse the nodes that failed to produce objects, and
discuss how to tackle the reasons for the failures.

The paper is organised as follows: Section 2 discusses
potential uses of the Object Repository, Section 3 describes
the proposed approach to realize such a repository, Section 4
presents the evaluation and discusses the results, Section 5
review related work to this research. Section 6 explains our
future plan, and Section 7 concludes the paper.
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2. Motivation
This section presents some of potential use cases for the
Object Repository. Though there are several software engi-
neering tasks that can benefit from the availability of such a
repository, our discussion advocates three of which that we
found most applicable.

2.1 Software Documentation
Documentation, when available and up to date, is still the
most reliable and widely used resource for understanding
software systems and APIs. Much work has been done
around the idea of mining usage examples to enrich docu-
mentation [2, 9, 23], however, none of the example snippets
given are usable to directly create objects. Code snippets
from the Object Repository could be used as a complemen-
tary source for such examples, with the additional knowl-
edge that the snippets are immediately executable. The main
requirement for this use case is to have concise and repre-
sentative snippets.

Also, since the snippets in the Object Repository produce
objects, one could introduce a concept of a “playground”
within the documentation where a developer could experi-
ment with a given live instance of the class whose documen-
tation she is reading. Many similar “playgrounds” exist for
languages such as Go1 and Haskell2, allowing developers to
simply try out parts of the language.

This requires at least one snippet associated with the
documented class. Unlike the previous case, the quality of
snippet is of no importance, as the user is only meant to
interact with the object.

2.2 Software Testing
Modern approaches to inspecting objects rely on object spe-
cific representations [4]. This means that the author of a
class, or anyone else through extensions, can specify a way
that the object can represent itself. The object inspectors pro-
vide the user all available ways to represent the object, and
the user chooses one that suits the current context.

According to our discussion with researchers in the field,
testing new representations is laborious since they are usu-
ally required to create the objects manually. Alternatively,
the Object Repository could provide a set of objects gath-
ered from the ecosystem that enables testing the new repre-
sentation of such objects automatically.

Testing software by generating random test inputs is a
well researched field [3, 5, 17]. Integrating objects from the
Object Repository with the random input generated by these
approaches could help cover the corner cases that are hard
to detect with raw random testing. Moreover, starting from
actual instances from the Object Repository instead of, or in
combination with, random ones could improve the results.
For instance in case of genetic algorithms [15], this can

1 https://play.golang.org/
2 https://tryhaskell.org/

guide the genetic algorithm to an acceptable population of
input data much faster while also avoids local maximums.

Method arguments are usually checked for validity at the
beginning of a method. In case the argument is not valid, the
method should signal this fact to the caller in a standardized
manner e.g., by throwing an exception, or returning an error
value. In order to test this a developer would require multiple
instances of the argument type both valid and invalid in the
context of being input for that method. Assuming that argu-
ments of the method are of a type that is present throughout
the ecosystem, the Object Repository should contain code
snippets needed to create such instances. This facilitates, to
some extent, verifying automatically that the validation of
the method arguments behaves as expected.

To realize these use case the Object Repository should
contain as many snippets associated with a class as possible.
The snippets should also produce representative and diverse
objects.

2.3 Software evolution and maintenance
While studying source code is the main way that developers
interact with programs [10, 11] many program comprehen-
sion tasks require runtime observation [12, 13]. Neverthe-
less, running a system and placing it in a desired state can
be challenging for several reasons like lack of input to the
system, lack of knowledge about the system, long system
running time before reaching a desired point.

Having a way to create a live object of a required type
could spawn a running system at any point in the source
code by filling all the gaps in the execution context with
blank objects of the adequate type. These objects should
be presented in an object-inspector-like interface allowing
the developer to set the values of these context objects and
guide the execution of the program, as one would do in a
debugging session. One example of one such usage could
be in the domain of application security. Executing parts of
source code in a sandbox created from objects taken from
the Object Repository could ensure that the execution does
not have any unexpected side effects.

Objects taken from the Object Repository could be used
to help disambiguate results of type inference engines for
dynamically typed languages [19]. Many of these type infer-
ence engines provide a list of potential candidate types for a
variable. Thanks to the Object Repository, having instances
of those types, and attempting to execute the code with each
of those objects assigned to the variable in question could
shed some light on the types which are more likely false pos-
itives.

The main requirement for these use cases is to have an
Object Repository that contains snippets associated to as
many classes as possible, extending the applicability of this
use case to more project.
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Figure 1. Abstract syntax tree of the method in Listing 1.

3. The Approach
We aim to mine code snippets from projects by transforming
all available methods into their abstract syntax tree (AST)
representation, transforming each AST node3 into its source
code representation, attempting to execute it and observing
the return value of the execution. We ignore this code snippet
if the execution fails to compile, or to produce a return
value. The ones that return an object are saved the Object
Repository and associated to the type of object produced by
their execution.

For example, Listing 1 shows a method from the Po-
modoro project4. This method, checks if an instance vari-
able progressBar is nil(line 2) and, if so, assigns it a new in-
stance of ProgressBarMorph (line 3). Finally, it returns this
instance variable (line 5).

1 PomodoroMorph>>progressBar
2 progressBar ifNil: [
3 progressBar := ProgressBarMorph new
4 ].
5 ˆ progressBar

Listing 1. Example method used to ilustrate the approach.

We first parse this method and build the AST. Figure 1
shows a graphical representation of this AST with all the

3 Each AST node is technically an AST tree i.e., the subtree of the AST of
the method with the node in question at the root. We use the term “AST
node” in place of “AST subtree with the node at the root” for simplicity.
4 http://smalltalkhub.com/#!/~TorstenBergmann/Pomodoro

C : Domain of classes (1)

M : Domain of methods (2)

defm : M → C (3)

N : Domain of AST nodes (4)

defn : N →M (5)

S : Domain of snippets (6)

toCode : N → S (7)

O : Domain of objects (8)

O0 = O ∪ ∅ (9)

instanceof : O → C (10)

execute : S → O0 (11)

Nexec = {n ∈ N | (execute ◦ toCode)(n) 6= ∅} (12)

Sexec = {toCode(n),∀n ∈ Nexec} (13)

objectRepo(c ∈ C) = {s ∈ Sexec|
(instanceof ◦ execute)(s) = c}

(14)

Figure 2. The core domains and functions of the formal
model.

nodes indexed and the type of the node shown next to it.
We then transform each node into a source code snippet, and
attempt to execute it.

Table 1 summarizes the results. This table represents each
AST node by index, the type of the node, the source code
representation of the node, and finally the type of the value
obtained by executing the snippet. We can see from this table
that out of the 9 AST nodes only 2 are, when transformed
into source code, executable and produce objects.

3.1 Formal Model
To better explain the proposed approach, we introduce a
small set-theoretical model. This subsection discusses do-
mains and sets used in this model, the function that models
the execution of the snippets, as well as the function used to
retrieve snippets for a given class.

As shown in Figure 2, C (Equation 1) is the domain of
classes, M (Equation 2) is the domain of methods defined
in the classes and N (Equation 4) is the domain of AST
nodes defined in the methods. Each method is defined in one
class (Equation 3), and each node is defined in one method
(Equation 5).

The conversion of the AST nodes into source code is
defined as a function toCode (Equation 7). The codomain
of this function is S, the domain of all code snippets. Since
multiple AST nodes in N can have the same source code
representation, toCode is a surjective function, and thus for
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# Node Type Corresponding Snippet Result Type

1 SeqenceNode progressBar ifNil: [progressBar := ProgressBarMorph new]. ˆ progressBar -
2 MessageNode progressBar ifNil: [ progressBar := ProgressBarMorph new ] -
3 BlockNode [ progressBar := ProgressBarMorph new ] -
4 SeqenceNode progressBar := ProgressBarMorph new -
5 AssignmentNode progressBar := ProgressBarMorph new -
6 MessageNode ProgressBarMorph new ProgressBarMorph
7 VariableNode ProgressBarMorph Metaclass
8 ReturnNode ˆ progressBar -
9 VariableNode progressBar -

Table 1. The results of applying out proposed approach to the example method from Listing 1.

any N ′ ⊆ N and the corresponding S′ it holds that |S′| ≤
|N ′|.

The execution of source code from S is defined as a
function called execute (Equation 11). Since not all snippets
from S will, when executed, yield an object, the codomain
of this function is the set O0 (Equation 9). This set is defined
as the union of object domain (Equation 8) and an empty set,
used to denote a failed snippet execution. Each object is an
instance of a class (Equation 10).

With all this in place, we define the set Nexec (Equa-
tion 12) as the set of all AST nodes that, when converted to
source code and executed, produce an instance of any class
from C. We call members of this domain “executable AST
nodes”. Correspondingly, Sexec (Equation 13), defines the
domain of all “executable” code snippets.

Lastly, the objectRepo function (Equation 14) returns, for
a given class from C, a set of snippets from Sexec that, when
executed, produce an instance of the given class.

3.2 Implementation
We implemented the approach in Pharo Smalltalk because
of it’s reflective nature which allows us to move fast with
the implementation. Most of the needed implementation was
readily available in Pharo i.e., parsing the source code to the
AST, converting AST nodes to code snippets, etc. The main
challenge was implementing the execute function

First, we wrap a code snippet inside a closure. We then
create a temporary method in a temporary class whose
source code is solely the execution of the mentioned clo-
sure. We then compile this method and, if the compilation is
successful, we execute it wrapped in the Smalltalk equiva-
lent of a try-catch block that catches all possible errors and
exceptions.

This setup is enough to catch errors caused by a snippet
not being compilable (e.g., containing an undeclared vari-
able) and the snippet failing to execute (e.g., throwing a di-
vision by zero exception).

During the execution of code snippets, we encountered
some never terminating executions. Further investigation re-
vealed that such issues arise due to concurrency. For exam-

ple, the snippet might wait on a signal from a different thread
to continue the execution. However, we only execute a sin-
gle snippet at a time, which means there is no chance of re-
ceiving such a signal. To restrain such executions, we limit
the execution time for each snippet to 10 seconds. The time
interval was chosen as an arbitrary cut of point with the rea-
soning that the execution of any snippet should terminate in
less than 10 seconds in order for the snippets to be usable in
any way. Though, a vast majority of snippets terminate quite
quickly, we chose a very long timeout to include as many
snippets whose execution will eventually terminate.

4. Evaluation
To evaluate our approach we developed a research prototype,
and ran it on all classes taken from 141 open source Pharo
projects whose source code was accessible from the Pharo
package management system and on a selection of classes
from the base Pharo image. We do not include all the classes
from the base image because a large part of the functionality
of the Pharo language is implemented in Pharo itself. Exe-
cuting code snippets from such classes caused many errors
that could not be handled from within the language, but re-
quired intervention at the Virtual Machine level. Examples
are the contents of packages such of the Kernel, Compiler,
Debugger, NativeBoost and others.

This evaluation includes a set of classes we call C ′ con-
taining 13,909 classes. Correspondingly, the set of all meth-
ods from C ′ is noted as M ′ and contains 256,362 methods.
These methods are comprised of 1,525,914 AST nodes de-
fined in a set called N ′. The number of nodes that are ex-
ecutable is only |N ′

exec| = 154, 904 or 10.15% of all the
nodes. Converting these nodes into code produces |S′

exec| =
92, 460 unique snippets of code. Table 2 presents the cardi-
nalities of these sets.

In the rest of this section we define several sets, shown in
Table 3, using which we discuss our findings from different
perspectives.

We define a set Cd as the domain of the objectRepo func-
tion as shown in Figure 4, Equation 15. The cardinality of
this set is 10,917 or 78.49% of all classes used in the evalu-
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Set Cardinality

C ′ 13,909
M ′ 256,362
N ′ 1,525,914
N ′

exec 154,904 (10.15% of |N |)
S′
exec 92,460

Table 2. The cardinalities of the core sets used in the evalu-
ation.

Set Cardinality %|C ′| %|Cd| %|C1|
Cd 10,917 78.49% - -
C1 8,779 63.12% 80,42% -
Cnew 2,384 17.14% 21.84% 27.16%
Cl 6,091 43.79% 55.79% 69.38%
Cg 2,442 17.56% 22.37% -

Table 3. Cardinalities of the sets defined in Figure 4 and
their relations.

ation. Being able to instantiate almost 80% of all the classes
seems to be a promising result considering the minimalistic
approach of extracting snippets.

4.1 Snippet Distribution
We call the set of all classes that can be instantiated through
only one snippet C1 as shown in Figure 4, Equation 16. This
set helps us to better understand the quality of the snippets,
by showing that 8,779 classes, or 80,42% of all instantiable
classes, have only one associated snippet.

This, plus the fact that |S′
exec| = 92, 460 shows that the

distribution of snippet counts is heavily skewed to a minority
of classes i.e., about 20%. Further inspection of the snippets
shows that the ten classes with the most snippets accumulate
over 60% of all snippets. Table 4 presents some information
about these classes.

Most of the classes from Table 4, namely Array, Block-
Closure, ByteString, ByteArray, Point and Association, have
a very specific construction pattern. Some, like Array,
ByteString, and ByteArray, have an idiomatic way of con-
struction. For example, anything in source code between
square brackets is considered a BlockClosure, anything be-
tween single quotation marks is a ByteString. Other classes,
like Point or Association, have a very distinctive construc-
tor, e.g., two integers with the @ character between define a
point with those integers as coordinates.

With all of this in mind we conclude that the heavy
skewing of snippets is not surprising, but it might have a very
negative impact on the usability of an Object Repository
built with this approach. Although the Object Repository can
instantiate almost 80% of all available classes, over 80% of
those classes can be instantiated in only one way, and only
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Figure 3. Distribution of classes in Cd according to the
number of snippets that can instantiate each class.

c ∈ C ′ |objectRepo(c)| %|S|
Array 16,907 18.29%
ByteString 14,968 16.19%
BlockClosure 8,826 9.55%
ByteSymbol 4,199 4.54%
ByteArray 3,807 4.12%
Point 2,725 2.95%
SmallInteger 2,502 2.71%
Association 1,237 1.34%
FixedDate 855 0.92%
Measure 759 0.82%∑

56,785 61.42%

Table 4. Ten classes with the most associated code snippets.

a handful of classes account for a majority of snippets. In
Figure 3 we show a distribution of classes in Cd according
to how many snippets can instantiate that class. We can see
that just under 17% of classes can be instantiated by between
two and ten snippets, while less than 3% with ten or more.

4.2 Trivial and Literal snippets
To further focus on the quality of the snippets we define
the Cnew set in Figure 4, Equation 17. This set includes all
classes that have only one associated snippet, and that snip-
pet is “trivial” i.e., the default way of creating instances in
Pharo. This is achieved by matching snippets with a regular
expression that checks if the snippet is of form “Class new”.
An example of such a snippet would be “Dictionary new”
which trivially creates a Dictionary object.

The cardinality of this set, as shown in Table 3, is 2,384 .
This accounts for 27.16% of the classes with a single asso-
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Cd = {c ∈ C ′| ∃s ∈ S′, objectRepo(s) = c} (15)

C1 = {c ∈ Cd| |objectRepo(c)| = 1} (16)

Cnew = {c ∈ C1| ∃s ∈ objectRepo(c),

regexMatch(s,“ˆ[a-zA-Z0-9 ]* new$”)}
(17)

Cl = {c ∈ C1| ∃s ∈ objectRepo(c),

regexMatch(s,“ˆ[a-zA-Z0-9 ]*$”)}
(18)

Cg = Cd \ (Cnew ∪ Cl) (19)

Co = {c ∈ C| ∃n ∈ N ′
exec, (defm ◦ defn)(n) = c} (20)

Figure 4. Sets used during the evaluation of the Object
Repository.

ciated snippet, or 21.84% of all classes from |Cd|. Consid-
ering that this is the default pattern of instantiating objects
in Pharo, the percentage of classes instantiated only in this
manner is not as high as might be expected.

We move on to other poor quality snippets by defining
the Cl set as shown in Figure 4, Equation 18. This set is a
subset of C1, and contains all classes whose sole associated
snippet is just one literal. This set is quite large as can be
seen in Table 3. It has a cardinality of 6,091 or 55.79% of
Cd. The size of this set is a result of Smalltalk’s high reflec-
tive nature. Namely, following the “everything is an object”
philosophy, each class in Smalltalk is essentially an instance
of a corresponding metaclass, which in turn is an instance of
the Metaclass class [8]. This leads to the phenomenon that
executing a class name literal in Smalltalk will result in the
object representing that class i.e., an instance of the corre-
sponding metaclass. This phenomenon accounts for all but 8
of the elements of Cl which are global variables which are
mapped to concrete instances of regular (not meta) classes.

4.3 Promising Snippets
An interesting set to focus on is the set of all classes that can
be instantiated by the objectRepo function in a non-trivial
and non-literal way. This is essentially the domain of the
objectRepo function excluding the sets Cnew and Cl, and
is defined as such in Figure 4, Equation 19. This set, named
Cg , is actually containing the kind of data we wish to have
to realize different use cases introduced in Section 2.

As shown in Table 3 this set contains 2,442 elements, or
17.56% of all classes included in the evaluation. This is not
a large percentage of the classes analysed, but considering
the minimalistic approach seems promising as the first step
towards realizing the idea of building an Object Repository.

4.4 Snippet size
The sizes of snippets in the Object Repository varies greatly.
The smallest snippets are only one character long, an integer
constant producing an instance of SmallInteger. The largest
snippet is 1,279,918 characters long and is a declaration of

Minimum 1
25% Quartile 16
Median 28
75% Quartile 51
Maximum 1,279,918

Table 5. Five number summary of snippet sizes.
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Figure 5. A sorted plot of sizes of snippet less then 1000
characters long.

a ByteArray object. Table 5 summarizes the distribution of
snippet sizes. We can see by the first quartile (16), median
(28) and third quartile (51) that the distribution of the snippet
sizes is heavily centred around a much more reasonable size.

Since the maximum is so far away from the third quartile,
we assumed there are outliers that need to be excluded. But,
our attempt to exclude outliers using one and a half times the
interquartile range as the limit marked 10.44% of the data as
outliers, and we thus include all the data points.

Figure 5 demonstrates a sorted plot of all the sizes bellow
1000, a total of 90,839 snippets or 97.2% of the data set.
The remainder of the set was excluded from the plot because
the drastic increase in values made the plot very difficult
to understand. We can see from the plot that values are
mostly under 100, after which a small number of values rises
dramatically.

4.5 Origin of snippets
To better understand our approach and the resulting snippets
we look at where the snippets are coming from. Firstly, we
wish to understand how many classes in the C ′ set actually
contributed snippets to the Object Repository. We call these
classes “origin classes” and they are members of the Co set
defined in Figure 4, Equation 20. This set contains 9,138
elements, or 65.70% of C ′. Manual inspection of a sample of
the classes not in this set reveals that they are mostly classes
with none or very few declared methods. These are very
often meta classes with no functionality outside the trivial
instantiation of objects.
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We further investigate this set by identifying which
classes in this set are meta classes or test classes. We find
that meta classes account for 9.78% (894 elements) of Co

that indicates meta classes are less likely to contain snippets,
but should not be discarded from the analysis. Test classes
account for 16.45% (1,503 elements) of Co. This initially
seems to be not much better than the meta classes but adjust-
ing for the number of test classes in C ′ we can see that the
contribution of test classes is much greater. Namely, there
is a total of 1,797 test classes in C ′, which means that over
80% of the available test classes contributed an executable
node.

We also find that only 112 classes (1.23% of Co) con-
tributed a snippet that produces an instance of the same class
(a snippet that originated in c ∈ C ′ and whose execution re-
sults in an instance of c). This, coupled with the fact that the
remaining 73.77% of Co are regular classes suggests that the
clients of a class is the best place to look for snippets to in-
stantiate that class.

Finally, we aim to answer which types of AST nodes are
common sources for snippets. Table 6 shows the percentage
of occurrences of each type in N ′

exec with simple, synthetic
examples for easier understanding. As one might expect, the
most common type of AST node is the LiteralValueNode,
as it represents a value in the source code and is thus ex-
ecutable by default. The second most common type is the
MessageNode, which represents sending a message. This is
also typical, since in Smalltalk everything happens by send-
ing messages. Third on the list is VariableNode, which in our
data denotes global variables i.e., meta classes. The remain-
der of the list can be divided into two categories: wrappers
and literals that we discuss in the following.

The wrappers are SequenceNode, ReturnNode and Cas-
cadeNode. The SequenceNode represents a sequence of
nodes. For instance, the node indexed 4 in Figure 1 rep-
resents a sequence of one node indexed 5 and thus yields
the same snippet. The ReturnNode just adds the return char-
acter in front of the node that it is wrapping. In Smalltalk,
the last evaluated expression is returned by default and the
return statement may not change the result of executing the
snippet. For example, the snippets for LiteralValueNode and
ReturnNode in Table 6 have the same execution result. A
CascadeNode represents a series of message sends to one
object. These types of nodes together account for 17.38% of
executable nodes.

The literals are BlockNode, LiteralArrayNode and Ar-
rayNode. Closures are very commonly used in Smalltalk and
even have their own AST node representation, the BlockN-
ode. The other two types of nodes represent a compile time
array (LiteralArrayNode) and a run time array (ArrayNode).
These together account for 9.1% of N ′

exec.

4.6 Failed executions
Studying the reasons why about 90% of AST nodes failed
to execute would be necessary towards improving the ap-

Node Type % Example snippet

LiteralValueNode 33.68% ’A String’
MessageNode 22.34% Dictionary new.
VariableNode 17.50% Dictionary
SequenceNode 9.45% -
ReturnNode 7.59% ˆ ’A String’
BlockNode 6.20% [ 1 + 1 ]
LiteralArrayNode 2.63% #(1 2 3)
CascadeNode 0.34% XMLWriter new

tag: ’one’;
tag: ’two’

ArrayNode 0.27% {1 2 3}

Table 6. The distribution of types of executable nodes with
examples. The SequenceNode represents a sequence of other
nodes so no example is given.

proach. We primarily hypothesized that a node execution
may fail for following reasons:

• Undefined variable in snippet
• Error or exception5

• Code snippet returns nil

As one might suspect, the execution of the majority of
nodes, i.e., over 82%, where prevented because the source
code representation of the node failed to compile due to the
snippet referring to an unidentified variable.

The other two hypothesised faults are not as numerous.
Errors and exceptions account for 1,880 AST nodes (0.12%
of the total failing AST nodes), and returning nil accounts for
17,425 AST nodes (1.14% of the total failing AST nodes).

Surprisingly an additional 113,954 nodes (8.31% of the
total failing ones) fall outside the hypothesised faults. Man-
ual inspection of a sample of the available logs identifies that
the main reason for failure was the snippets expecting inter-
actions from the user e.g., opening a dialog for the user to
choose a file. Such attempts were immediately shut down
due to our code snippets being executed in a headless Pharo
environment, meaning that no GUI elements are possible.

4.7 Missing classes
To understand why certain classes have no snippets attached
to them, we took a sample of 20 such classes and did a
manual investigation.

In our sample, 6 classes where test classes. It is not sur-
prising that test classes are never explicitly instantiated, as
they are only used by the unit testing framework. Out of all
classes with no attached snippets in our data set, around 25%
are test classes. Further, 4 classes of our sample where meta
classes, and manual inspection shows that these classes, as

5 This also includes the nodes terminated by our timeout mechanism de-
scribed in Section 3.2
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well as their instances i.e., corresponding non-meta classes,
are never used. Looking at all the classes without associated
snippets, we find that around 21% are meta classes. The re-
maining 10 elements of our sample are regular classes, and
manual inspection finds that these classes are simply never
instantiated. Some are never mentioned in the source code,
and some have only class side methods invoked.

5. Related Work
Mining code snippets from existing repositories is not a
novel idea and much work has already been done in the
field. To the best of our knowledge, this is the first work
focusing on mining executable snippets, with a special focus
on gathering object creating snippets.

A strong use case for mining snippets in the existing work
is to obtain real world examples of API usage. This is typi-
cally used to improve documentation or code search engines.
Tools such as MAPO [23] focus on mining API methods
that are frequently called together and their usages follow
sequential rules. Other approaches such as those presented
by Buse et al. [2] focus on a different kind of static analy-
sis based on combination of path sensitive dataflow analysis,
clustering, and pattern abstraction. A tool called PROSPEC-
TOR [14] introduces the concept of jungloid source code in
an attempt to simplify the mined snippets in order to enable
synthesis and combining to form more complex code frag-
ments. Other work, such as that of Ghafari et al. [7] focuses
on mining examples from unit tests claiming that this is a
good source of examples as they are concise, relevant and
trustworthy.

Multiple approaches have been proposed which mine rel-
evant code examples and use them to improve code comple-
tion tools. Holmes et al. propose Strathcona in an attempt to
minimise the amount of effort for the developer to query for
examples. Bruch et al. [1] explore three different strategies
for using information gathered from existing code repos-
itories. Their approach, given a set of methods that have
been called on a variable and the enclosing method as con-
text, recommend missing method calls for that variable. The
PARSEWeb tool [21], rather than performing the analysis of
open source systems itself, is build atop of code search en-
gines in order to try to generalise their approach. Pavlinovic
et al. [18] mines code snippets that occur more than a given
threshold in a given code repository, and provides relevant
snippets on demand and taking in to account the developers
current context. Zhang et al. focus on automatically filling
the parameter list of API calls automatically [22].

6. Future Work
We identify several directions of potential future work. The
main focus of the future work should be bringing the use
cases described in Section 2 to fruition, and performing user
studies to determine how beneficial the Object Repository
would be to developers. This means both improving the

approach for building up the object repository which is still
in its primary steps, as well as implementing the necessary
tools that would serve as the front end facing the developer.

We believe the proposed approach can be improved via
applying more solid static analysis techniques such as con-
trol and data flow analysis, constant propagation, function
inlining and etc. For instance, in Section 4.6 we identified
that the main reason that executing AST nodes fails is that
code snippets contain unidentified variables. In a statically
typed language, this could, to a large extent, be addressed
by bootstrapping the Object Repository i.e., using the Ob-
ject Repository to instantiate all undefined variables at the
beginning of the snippet, making all undefined variables not
just defined, but instantiated. Lacking static type informa-
tion would make this not so easily applicable, but still pos-
sible through type inference [16, 19, 20], or brute force. The
downside of this approach is that the instances created would
be somewhat synthetic rather than directly pulled from the
ecosystem.

Finally, once we have an approach that is shown to be
beneficial to developers, we would like to branch out to
different programing languages and examine how different
language features such as type systems, reflectivity or mode
of execution (compiled vs interpreted) affect the benefits or
usability of the Object Repository.

7. Conclusion
In this paper we propose the idea of building an Object
Repository, a repository of code snippets that, when ex-
ecuted, produce an instance of a class. We present mul-
tiple software engineering tasks that could be improved
by the Object Repository. We further present an initial at-
tempt to realize the Object Repository for the Pharo lan-
guage, through mining AST nodes and converting them to
code snippets. We applied the approach to 141 open source
projects , and discussed the results. Using this approach we
could instantiate almost 80% of all classes that were in-
cluded in the study, however, slightly less than 20% of in-
stantiable classes have more than one associated snippets.
Anyways, keeping the simplicity of our approach in mind,
the obtained results still seem promising.

We also take a look at the percent of AST nodes that
actually produce a type, and discuss the main reasons why
other nodes fail to do so. We find that the main reason
for this is unidentified variables, accounting for more than
90% of nodes that failed to produce an instance. This is not
unexpected, and can be addressed in several ways, including
a bootstrapping of the Object Repository, i.e., using data
from a previous run of the Object Repository to instantiate
missing variables.
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[18] Z. Pavlinović and D. Babić. Interactive code snippet synthe-
sis through repository mining. Technical Report UCB/EECS-
2013-23, EECS Department, University of California, Berke-
ley, mar 2013.
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