

Lowcode:
Extending Pharo with C Types to

Improve Performance
Ronie Salgado

Universidad de Chile
Stéphane Ducasse
RMoD, INRIA, Lille

Dynamic languages vs static
languages

● Performance gap between them
● Static languages are interpreted” by the CPU
● Cost of marshalling when doing FFI
● Runtime type checking for primitive operations
● Big cost when having to manipulate memory

directly

What we did?

● Extending the VM with low-level bytecodes
● Type system with primitive types and object.
● Smalltalk compiler extended with primitive

types, type inference and type checking
● Benchmarks
● Performance improvement between 50-400%

Lowcode: low-level bytecodes

● New (~270) low-level bytecodes
● Implemented as Sista “inline primitives”
● Operations with primitive data (int32, int64, float32,

float64)
● Marshalling/unmarshlling
● Pointer load/store
● Local stack frame
● Native C function call

Specification and implementation

● Byte codes are specified formally in a XML
● Virtual machine implementation generated from

the Spec
● Additional VM stack for native data that is not

inspected by the GC
● Shadow Native callout stack in the interpreter

(not in the jit)

Instruction specification

Extensible Type System

● Primitive types, primitive data references,
pointers and object

● Type syntax based in Smalltalk syntax
● Types are parsed by sending a message
● Sending #asLowcodeType to an array or a

Symbol

Types

Agregate types

● Using Slots for defining structures and unions

Extending the compiler

● Extensions to the semantic analyzer:
– Type annotations

– Type checking

– Local type inference

– Special messages for type conversión

– Trivial accessors and trivial constructors marked
with a pragma are inlined

Trivial Accessors and constructors

Lowcode Method Sample

Generated CompiledMethod

Benchmarks

● Executed with the JIT and the Interpreter VM
● Basic linear algebra operations used commonly

in 3D graphics:
– 3x3 matrix with matrix multiplication (2.96, 1.05)

– 3x3 matrix with 3D vector multiplication (4.73, 1.63)

– 3D vector normalization (3.82, 1.72)

Benchmarks

Conclusions

● No performance regressions in the Interpreter
only VM

● Big performance improvement
● Not many changes are required to the Pharo

methods

Future work

● Unchecked pointers and arrays
● More inlining (maybe working with Sista)
● Calling C functions directly avoing the FFI
● Making a C compiler

Thank you!

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18

