
A low Overhead Per
Object Write Barrier

for the Cog VM
Clément Béra

Introduction

• The Cog VM is the standard VM for:

• Pharo

• Squeak

• Newspeak

• Cuis

Introduction

• Working runtime optimizer for Cog’s JIT

• Problem with literal mutability

Problem

• Is it possible to mark any object as read-
only ?

• Smalltalk code to handle mutation
failure

• Overhead

Terminology

• Discussion on VM mailing-list

• Immutable: state cannot change after
object’s initialization

• Write barrier or read-only object

Use-cases

• Modification tracker

• Read-only literals

• Compiler optimizations

• Inconsistent literal modifications

• Others...

This paper

• NOT about framework built using read-
only objects

• Implementation details to limit the
overhead

Feature
• Any object can be marked as read-only,

except:

• Immediate objects

• Context instances

• Objects related to Process scheduling

• Objects internal to the runtime

APIs

• Object >> isReadOnlyObject

• Object >> setIsReadOnlyObject:

• Object >> beWritableObject

• Object >> beReadOnlyObject

Read-only object

• Instance variable store fail

• Primitives mutating a read-only object fail

IV store failure

• Instance variable is not set.

• A call-back is sent:

Primitive failure

• First value of array is not set

Primitive error code

• new error code: #'no modification'

Other details

• Support flags

• Mirror primitives

• Object >> object:setIsReadOnlyObject:

VM compilation option

• VM C compiler flag

• The VM can be compiled with or without
the feature.

Implementation

• Object representation

• Interpreter support

• JIT support

Implementation

• Most critical part:

• How to keep IV store efficient ?

• Machine code generated by the JIT

• Discussed in the paper...

IV Store details
• Wanted

• to show it,

x86 Assembly Meaning

 movl -12(%ebp), %edx

 popl %edi

 movl %edi, %ds:0x8(%edx)

 testl 0x00000003, %edi If the value to store is
immediate, jump after the
store check. jnz after_store
Jump after the store check if
the receiver is young:
compare the young object
space limit with receiver
address

 movl 0x00040088, %eax

 jb after_store

 cmpl %eax, %edx

Load the receiver in %edx.

 jnb after_store

 cmpl %eax, %edi If the value to store is an old
object, jump after the store
check.

 jnz after_store

 testb 0x20, %al

 movzbl %ds:0x3(%edx), %eax
If the receiver is already in
the remembered table, jump
after the store check.

 call store_check_trampoline Calls the store check
trampoline.

Perform the store in the first
instance variable using both
registers (%edx and %edi)

Load the value to store in
%edi.

after_store: Code following the store.

x86 Assembly Meaning

 movl -12(%ebp), %edx

 popl %ecx

 movl %ecx, %ds:0x8(%edx)

 testb 0x03, %cl If the value to store is
immediate, jump after the
store check. jnz after_store

If the receiver is a young
object, jump after the store
check.

 movl 0x00040088, %eax

 jb after_store

 cmpl %eax, %edx

 jnb after_store

 cmpl %eax, %ecx If the value to store is an old
object, jump after the store
check.

 jnz after_store

 testb 0x20, %al

 movzbl %ds:0x3(%edx), %eax
If the receiver is already in
the remembered table, jump
after the store check.

 call store_trampoline
Calls the store check
trampoline.

Perform the store in the first
instance variable using both
registers (%edx and %ecx)

Load the receiver in %edx.

Load the value to store in
%ecx.

 movl -12(%ebp), %edx

 movl %ds:(%edx), %eax

 testl 0x00800000, %eax

 jnz store_trampoline

If the receiver is read-only,
jump to the store trampoline.

Restore the receiver (to keep
its register live).

store_trampoline:

after_store: Code following the store.

Evaluation: Slow-down

• Binary trees

• IV Store intensive

• No significant difference

Evaluation: Slow-down

• Pathological case: setter

Evaluation: Slow-down

• At writing time, setter overhead was 17%

• Stack frame creation problem

• Two path compilation

• Now faster than before

Conclusion

• New feature: read-only object

• Overhead is very limited

