

Martin is getting the
projector
to work
with his
laptop.

Replicated
Service Objects

A Strategy for
Distributed
Applications

Martin McClure

Background:
GemStone/S

30 Years!

GemStone/S
•Server-side Smalltalk
•Object Database

Server-side
Smalltalk
•Headless
•Multi-User
•Scalable

Object
Database
•One persistent “image”
•Shared transactionally
• Merged at commit
• Conflicts are detected

GemBuilder for
Smalltalk (GBS)
•Interfaces VW or VA
Smalltalk to GemStone

GemBuilder for
Smalltalk (GBS)
•Interfaces VW or VA
Smalltalk to GemStone

GBS Main Features
•Forwarders

• Remote messaging
•Replicates

• Synchronized copy
• (new) Remote

messaging

Forw
arder

Server
Client

Forw
arder

Server
Client

Forw
arder

Server
Client

Forw
arder

Server
Client

R
eplicate

Server
Client

R
eplicate

Server
Client

R
eplicate

Server
Client

R
eplicate

Server
Client

R
eplicate

Server
Client

R
eplicate

Server
Client

R
eplicate

Server
Client

R
eplicate

Server
Client

R
eplicate

Server
Client

R
eplicate

Server
Client

Transparent
Distribution

Transparent
Distribution

Good Idea

Transparent
Distribution

Good IdeaBAD

Distribution
Concerns
•Correctness
•Reliability
•Performance

Distribution
Concerns
•Correctness
•Reliability
•Performance

Distribution
Concerns
•Correctness
•Reliability
•Performance

Distribution
Concerns
•Correctness
•Reliability
•Performance

An
Embarrassing

Story

n2

One
Month

Tools used
Forwarders

Lessons
•Test scaling
•Test with latency
•Need better design
pattern

Replicated
Service
Objects

Example:
Inspector
Service

Server
Client

Server
Client

Inspector
Service

theObject
properties

Server
Client

Inspector
Service

theObject
properties

'self' -> '0@0'
'class' -> 'Point'

'x' -> '0'
'y' -> '0'

Dictionary

Server
Client

Inspector
Service

theObject
properties

'self' -> '0@0'
'class' -> 'Point'

'x' -> '0'
'y' -> '0'

Dictionary

Inspector
Service

properties
'self' -> '0@0'

'class' -> 'Point'
'x' -> '0'
'y' -> '0'

Dictionary

Server
Client

Inspector
Service

theObject
properties

'self' -> '0@0'
'class' -> 'Point'

'x' -> '0'
'y' -> '0'

Dictionary

Inspector
Service

properties
'self' -> '0@0'

'class' -> 'Point'
'x' -> '0'
'y' -> '0'

Dictionary

Server
Client

Inspector
Service

theObject
properties

'self' -> '0@0'
'class' -> 'Point'

'x' -> '0'
'y' -> '0'

Dictionary

Inspector
Service

properties
'self' -> '0@0'

'class' -> 'Point'
'x' -> '0'
'y' -> '0'

Dictionary

Server
Client

Inspector
Service

theObject
properties

'self' -> '0@0'
'class' -> 'Point'

'x' -> '0'
'y' -> '0'

Dictionary

Inspector
Service

properties
'self' -> '0@0'

'class' -> 'Point'
'x' -> '0'
'y' -> '0'

Dictionary

Server
Client

Inspector
Service

theObject
properties

'self' -> '0@0'
'class' -> 'Point'

'x' -> '0'
'y' -> '0'

Dictionary

Inspector
Service

properties
'self' -> '0@0'

'class' -> 'Point'
'x' -> ' 42 '

'y' -> '0'

Dictionary

Server
Client

Inspector
Service

theObject
properties

'self' -> '0@0'
'class' -> 'Point'

'x' -> '0'
'y' -> '0'

Dictionary

Inspector
Service

properties
'self' -> '0@0'

'class' -> 'Point'
'x' -> ' 42 '

'y' -> '0'

Dictionary

Server
Client

Inspector
Service

theObject
properties

Dictionary

Inspector
Service

properties
'self' -> '0@0'

'class' -> 'Point'
'x' -> ' 42 '

'y' -> '0'

Dictionary

'self' -> '0@0'
'class' -> 'Point'

'x' -> ' 42 '
'y' -> '0'

Server
Client

Inspector
Service

theObject
properties

Dictionary

Inspector
Service

properties
'self' -> '0@0'

'class' -> 'Point'
'x' -> ' 42 '

'y' -> '0'

Dictionary

'self' -> '0@0'
'class' -> 'Point'

'x' -> ' 42 '
'y' -> '0'

Server
Client

Inspector
Service

theObject
properties

Dictionary

Inspector
Service

properties
'self' -> '0@0'

'class' -> 'Point'
'x' -> ' 42 '

'y' -> '0'

Dictionary

'self' -> '0@0'
'class' -> 'Point'

'x' -> ' 42 '
'y' -> '0'

Principles
•Replicate everything
you'll need frequently

Principles
•Represent information
as basic objects when
necessary.

Principles
•Do everything you can
predict in a single round
trip.

Replicated
Service Objects

A Strategy for
Distributed
Applications

Martin McClure

