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Background:
GemStone/S



  

30 Years!



  



  

GemStone/S
•Server-side Smalltalk
•Object Database



  

Server-side
Smalltalk
•Headless
•Multi-User
•Scalable



  

Object
Database
•One persistent “image”
•Shared transactionally
• Merged at commit
• Conflicts are detected



  

GemBuilder for 
Smalltalk (GBS)
•Interfaces VW or VA 
Smalltalk to GemStone
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GBS Main Features
•Forwarders

• Remote messaging
•Replicates

• Synchronized copy
• (new) Remote 

messaging
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•Correctness
•Reliability
•Performance
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An 
Embarrassing 

Story



  

n2



  

One 
Month



  

Tools used 
Forwarders



  

Lessons
•Test scaling
•Test with latency
•Need better design 
pattern
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Example:
Inspector
Service
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Principles
•Replicate everything 
you'll need frequently



  

Principles
•Represent information 
as basic objects when 
necessary.



  

Principles
•Do everything you can 
predict in a single round 
trip.
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