
The road to the remote
debugger

Remote debugger behind the scenes

Seamless

Basys

ObjectTravel ObjectStatistics

TostSerializer

GT Extensions
GTInspector
GTDebugger

The road to the remote debugger

Debugger picture to
show separate views

StackView

SourceCodeView

VariablesView

Process suspendedContext
Stack
Sender context 1
Sender context 2

…

Each context

receiver

classselector
arguments
temps
method methodClass

temp names

instVarNames

source code
arg names

Exception signalerContext

Sender context 3

Root context

Each object
printString

Demo for slow remote
debugger

Seamless

• New Remote Smalltalk implementation

• Started at 2012 by Nikolaos Papoulias

• Redesigned this year

• http://smalltalkhub.com/#!/~Pharo/Seamless

http://smalltalkhub.com/#!/~Pharo/Seamless

Asynchronous network
• Simultaneous sending and receiving data

• Data sending not depends on data receiving

• Asynchronous processing of received data

• Data processing not blocks new incoming data

• Every received data is processed in separate
thread

Basys
• Bidirectional asynchronous network

• Client can send data to server

• Server can send data to client

• Both directions are equivalent

• But usually server can’t establish new
connections

• Asynchronous data transfer

Peer B

Peer A

Peer C

Basys models network as
connected peers

Network peer structure

BasysNetwork

BasysRemotePeer B

BasysLocalPeer

BasysRemotePeer C

localPeer

remotePeers

Peers interact by connection pool

Peer B
RemotePeer A

Peer A
RemotePeer B

Connection 1

Connection 2

Connection 3

Connection 1

Connection 2

Connection 3

Connection pool Connection pool

• Users not work directly with connections

• Users ask peer to send data to remote side

peer := network remotePeerAt: tcpAddress.
peer sendDataPacket: dataObject

• Connections are established by demand

• Established connections are reused

Peers interact by connection pool

Seamless implements Basys network

• What is data?

• aSeamlessRequest (MessageSendRequest, DeliveryResultRequest)

• What to do with data?

• aSeamlessRequest executeFor: senderPeer

Seamless implements Basys network
• What is data?

• aSeamlessRequest (MessageSendRequest, DeliveryResultRequest)

• What to do with data?

• aSeamlessRequest executeFor: senderPeer

• How to send data?

• objects are serialized on connection stream by serialization library.

• transfer strategies are applied to each node of given object graph to decide how to transfer
them:

• by value

• by reference

• others

• strategies are object specific and could be redefined for application

• How to receive data?

• objects are materialized from connection stream by serialization library.

• on receiver side they could be represented by specific objects (proxies, local globals)

Seamless
• First class strategies to transfer objects

• by value

• by reference

• by reference with cached properties

• properties can be transferred by reference too

• by referenced copy

• by deep copy

• by global name (to transfer well known globals)

• other specific strategies

Remote debugger tuning
 network transferByReference: (Kind of: CompiledMethod) withCacheFor: #(selector
methodClass isTestMethod argumentNames).

 network transferByReference: (Kind of: Context) withCacheFor: #(receiver method
methodClass methodSelector isBlockContext home tempNames isDead selector sender
debuggerMap outerContext outerMostContext closure).

 network transferByValue: (Kind of: Slot).

 network transferByReference: (Kind of: ClassDescription) withCacheFor: #(name
allInstVarNames allSlots).

 network transferByValue: (Kind of: OrderedCollection).

 network transferByValue: (Kind of: Set).

 network transferByValue: (Kind of: Interval).

 network transferByValue: (Kind of: Array).

Real debugger demo

• On server side:

• RemoteUIManager registerOnPort: 40423

• On client side:

• RemoteDebugger connectTo: anAddress

GT extensions
• GTInspetor on proxies:

• Raw tab for remote state

• Proxy tab for internal proxy state

• DoIt by SeamlessRemoteClassCompiler

• all variables and globals are bound to proxies

• self is bound to proxy

• #doIt method is compiled locally but executed on remote side

• remote side could not have compiler

TostSerializer
• Transient objects transport

• not for persistence

• serialize on sender and materialize on receiver

• No meta information for objects

• no versioning

• no migration support

• Objects are stream of references

• which directly written on output stream in same order

• which directly read from input stream in same order

• Support objects with cyclic references

• duplicated objects are encoded by stream position of original object

• Support for object substitutions

• substitutions are just injected into object stream

• Compact encoding for well known objects and classes

• one byte for encoding

TostSerializer in Seamless
• One pass object traversal

• With Fuel it was two:

• Fuel itself analyses object graph

• Seamless traverse object graph to build substitution map

• Very compact for small objects

• Smallest communication unit (integer return):

• 21 bytes for Tost versus 400 bytes for Fuel

• Many possibilities for new features and optimizations:

• references should not send cache back to server

• objects state synchronization between client and server

• cache should be updated when reference is received again from server

ObjectTravel

• Main part of TostSerializer

ObjectTravel
• Tool to stream objects

• traversal stream of inst vars and indexed fields
traveler := ObjectTravel on: (1@2 corner: 3@4).
traveler nextReference. “ => 1@2”
traveler nextReferece; nextReference. “=> 1”

“or”
traveler referencesDo: [:each |].

• Support cyclic object graphs

• Allow inject external objects

traveler referencesDo: [:each |
 each = 2 ifTrue: [traveler atNextStepVisit: 5@6]].

• Allow replace references
traveler referencesDo: [:each |
 each = 2 ifTrue: [traveler replaceCurrentReferenceWith: 5]].

ObjectTravel
• Useful methods:

traveler := ObjectTravel on: (1@2 corner: 3@4).

• traveler countReferences “=> 6”

• traveler collectReferences “=> {1@2. 3@4. 1. 2. 3. 4}”

• traveler copyObject “=> deep copy of rectangle”

• traveler findAllPathTo: 2 “=> { {1@2} }”

ObjectStatistics
• Tool to analyze set of objects

• computes different kind of metrics from
different perspective (dimensions)

• simplistic OLAP Cube in objects space.

• Implements suitable GT extension

• Metrics and dimensions shown in tree way
inside GTInspector

SeamlessStatistics
 stat := ObjectStatistics new.
 stat
 countAllAs: 'requests';
 countDifferent: [:r | r receiver] as: 'instances' for: (Kind of: SeamlessMessageSendRequest);
 countAllSuch: #isOutgoing as: 'outgoing';
 countAllSuch: #isIncoming as: 'incoming'.
 stat
 dimension: [:r | r class] named: 'requests';
 for: (Kind of: SeamlessMessageSendRequest) with: [
 stat
 dimension: [:r | r receiver nameForSeamlessStatistics] named: 'classes';
 with: [
 stat dimension: [:r | r selector] named: 'msgs'].
 stat
 dimension: [:r | r selector] named: 'msgs';
 with: [
 stat dimension: [:r | r receiver nameForSeamlessStatistics] named: 'classes']].

 stat accumulateAll: requests.

Future work
• Remote browser

• More optimizations

• Better presentation of remote contexts

• Support for stepInto for remote call

• distributed stack in debugger

• Distributed garbage collection

• now it is absent

• “debugger disconnect” cleans everything

The end

• follow me on https://dionisiydk.blogspot.com

• questions?

