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Seamless

• New Remote Smalltalk implementation 

• Started at 2012 by Nikolaos Papoulias  

• Redesigned this year 

• http://smalltalkhub.com/#!/~Pharo/Seamless

http://smalltalkhub.com/#!/~Pharo/Seamless


Asynchronous network
• Simultaneous sending and receiving data 

• Data sending not depends on data receiving  

• Asynchronous processing of received data 

• Data processing not blocks new incoming data 

• Every received data is processed in separate 
thread



Basys
• Bidirectional asynchronous network 

• Client can send data to server 

• Server can send data to client 

• Both directions are equivalent 

• But usually server can’t establish new 
connections 

• Asynchronous data transfer
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Network peer structure
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Peers interact by connection pool
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• Users not work directly with connections 

• Users ask peer to send data to remote side 

peer := network remotePeerAt: tcpAddress. 
peer sendDataPacket: dataObject 

• Connections are established by demand  

• Established connections are reused

Peers interact by connection pool



Seamless implements Basys network

• What is data?

• aSeamlessRequest (MessageSendRequest, DeliveryResultRequest) 

• What to do with data?

• aSeamlessRequest executeFor: senderPeer



Seamless implements Basys network
• What is data? 

• aSeamlessRequest (MessageSendRequest, DeliveryResultRequest) 

• What to do with data? 

• aSeamlessRequest executeFor: senderPeer 

• How to send data?

• objects are serialized on connection stream by serialization library. 

• transfer strategies are applied to each node of given object graph to decide how to transfer 
them: 

• by value 

• by reference 

• others 

• strategies are object specific and could be redefined for application  

• How to receive data?

• objects are materialized from connection stream by serialization library. 

• on receiver side they could be represented by specific objects (proxies, local globals) 



Seamless
• First class strategies to transfer objects 

• by value 

• by reference 

• by reference with cached properties 

• properties can be transferred by reference too 

• by referenced copy 

• by deep copy 

• by global name (to transfer well known globals) 

• other specific strategies



Remote debugger tuning
 network transferByReference: (Kind of: CompiledMethod) withCacheFor: #(selector 
methodClass isTestMethod argumentNames). 

 network transferByReference: (Kind of: Context) withCacheFor: #(receiver method 
methodClass methodSelector isBlockContext home tempNames  isDead selector sender 
debuggerMap outerContext outerMostContext closure). 

 network transferByValue: (Kind of: Slot). 

 network transferByReference: (Kind of: ClassDescription) withCacheFor: #(name 
allInstVarNames allSlots). 

 network transferByValue: (Kind of: OrderedCollection). 

 network transferByValue: (Kind of: Set). 

 network transferByValue: (Kind of: Interval). 

 network transferByValue: (Kind of: Array).



Real debugger demo

• On server side: 

• RemoteUIManager registerOnPort: 40423 

• On client side: 

• RemoteDebugger connectTo: anAddress



GT extensions
• GTInspetor on proxies: 

• Raw tab for remote state 

• Proxy tab for internal proxy state 

• DoIt by SeamlessRemoteClassCompiler 

• all variables and globals are bound to proxies 

• self is bound to proxy 

• #doIt method is compiled locally but executed on remote side  

• remote side could not have compiler



TostSerializer
• Transient objects transport 

• not for persistence 

• serialize on sender and materialize on receiver 

• No meta information for objects 

• no versioning 

• no migration support 

• Objects are stream of references 

• which directly written on output stream in same order 

• which directly read from input stream in same order 

•  Support objects with cyclic references 

• duplicated objects are encoded by stream position of original object 

• Support for object substitutions 

• substitutions are just injected into object stream 

• Compact encoding for well known objects and classes 

• one byte for encoding



TostSerializer in Seamless
• One pass object traversal 

• With Fuel it was two: 

• Fuel itself analyses object graph 

• Seamless traverse object graph to build substitution map 

• Very compact for small objects 

• Smallest communication unit (integer return): 

• 21 bytes for Tost versus 400 bytes for Fuel 

• Many possibilities for new features and optimizations: 

• references should not send cache back to server 

• objects state synchronization between client and server 

• cache should be updated when reference is received again from server



ObjectTravel

• Main part of TostSerializer



ObjectTravel
• Tool to stream objects 

• traversal stream of inst vars and indexed fields 
traveler := ObjectTravel on: (1@2 corner: 3@4). 
traveler nextReference. “ => 1@2” 
traveler nextReferece; nextReference. “=> 1” 

“or”  
traveler referencesDo: [:each | ]. 

• Support cyclic object graphs 

• Allow inject external objects 

traveler referencesDo: [:each |  
        each = 2 ifTrue: [traveler atNextStepVisit: 5@6]]. 

• Allow replace references 
traveler referencesDo: [:each |  
        each = 2 ifTrue: [traveler replaceCurrentReferenceWith: 5]].



ObjectTravel
• Useful methods: 

traveler := ObjectTravel on: (1@2 corner: 3@4). 

• traveler countReferences “=> 6” 

• traveler collectReferences “=> {1@2. 3@4. 1. 2. 3. 4}”  

• traveler copyObject “=> deep copy of rectangle” 

• traveler findAllPathTo: 2 “=> { {1@2} }”



ObjectStatistics
• Tool to analyze set of objects  

• computes different kind of metrics from 
different perspective (dimensions) 

• simplistic OLAP Cube in objects space. 

• Implements suitable GT extension 

• Metrics and dimensions shown in tree way 
inside GTInspector



SeamlessStatistics
 stat := ObjectStatistics new. 
 stat  
  countAllAs: 'requests'; 
  countDifferent: [ :r | r receiver ] as: 'instances' for: (Kind of: SeamlessMessageSendRequest); 
  countAllSuch: #isOutgoing as: 'outgoing'; 
  countAllSuch: #isIncoming as: 'incoming'. 
 stat  
  dimension: [ :r | r class ] named: 'requests'; 
  for: (Kind of: SeamlessMessageSendRequest) with: [  
   stat  
    dimension: [ :r | r receiver nameForSeamlessStatistics ] named: 'classes'; 
    with: [ 
     stat dimension: [ :r | r selector ] named: 'msgs']. 
   stat 
    dimension: [ :r | r selector ] named: 'msgs'; 
    with: [   
     stat dimension: [ :r | r receiver nameForSeamlessStatistics ] named: 'classes']].
  
 stat accumulateAll: requests.



Future work
• Remote browser 

• More optimizations 

• Better presentation of remote contexts 

• Support for stepInto for remote call 

• distributed stack in debugger 

• Distributed garbage collection 

• now it is absent 

• “debugger disconnect” cleans everything



The end

• follow me on https://dionisiydk.blogspot.com 

• questions?


