
Voyage ∞
(I don’t know what to put here :))

Esteban Lorenzano
(The Pharo fireman)

Self-promotion

Pharo core developer, payed by the Pharo Consortium
and INRIA (Thanks!)

Also author of some frameworks, between them
Voyage

So, let’s talk about Voyage

Ouch!

The Voyage goal

To be the GLORP for NOSQL databases

We are doing fine :)

Voyage-Mongo update

Replica set support (next week)

Version generators

Conflict handling support

Better serialisation support

Better error handling support

Voyage-Tugrik

GemStone backend for big databases (and all the
power of a GemStone/S)

See previous talk ;)

But what happens when your your needs are
not so big? Not even big for MongoDB?
(After all, it requires a server installed).

What happens when you do not need more
than an embedded database?

Voyage-UnQLite

Embeddable database in the “Voyage” style.

Yet easy to migrate to higher needs.

Uses PunQLite driver

UnQLite features
Serverless

Transactional

Single database file

Key/Value and document

Jx9

Cross-platform

Thread safe and full reentrant

Support terabyte sized databases

BSD License

PunQLite driver

First developed by Masashi Umezawa (@mumez), as
a key-value database.

Extended (by me) to support collections and JSON
structures.

As MongoTalk, is an standalone driver you can use
without Voyage (but using Voyage is cool ;)

Voyage-UnQLite vocabulary
Object>>save

Object>>remove

Object class>>selectOne:

Object class>>selectMany: (and family)

Object class>>selectAll

Object class>>removeAll

Voyage-UnQLite query
language

UnQLite uses an UFFI callback to decide if a document
matches, then is just block evaluation.

Very powerful

Very dangerous

No equivalent of MongoQueries for the moment, but
you can access the raw dictionary.

Idiom extensions

<voyageDescription>

<voyageDescriptionPlatforms: #()>

<voyageContainerPlatforms: #()>

<mongoDescription> and <mongoContainer> are now
deprecated (but they are still there for backward
compatibility)

The heroic DEMO

 (VOUnQLiteRepository on: 'demo.db') enableSingleton.

 (Hero named: 'Spiderman')
 level: 20;
 addPower: (Power named: 'Super strenght');
 addPower: (Power named: 'Wall climbing');
 addPower: (Power named: 'Spider instinct');
 save.

 (Hero named: ‘Iron-man')
 level: 20;
 addEquipment: (Armor new
 addItem: Pistol new;
 yourself);
 save.

 Hero selectAll.

 Hero selectOne: [:each | (each at: 'level') > 5].

 regex := '.*woman.*' asRegexIgnoringCase.
 Hero selectMany: [:each |

regex matches: (each at: 'name')].

Voyage-UnQLite vs. Voyage-
MongoDB

JSON, not BSON and certainly not STON

String, Number, Object (another dictionary), Array,
true, false and null.

More use of Magritte-Voyage

Callback query gives you access to image when
filtering so you can do very complex things…

Future

UnQLiteQueries (style MongoQueries)

Implement VOUnQLiteRepository>>commit:

Last but not least

Collaboration over competition.

Last but not least
PharoPro

Migration support

Custom development (frameworks, etc.)

everything you need, even coffee :)

You are not alone, nor by yourself… we are here to
help

Summary

With Voyage-UnQLite we are now capable to work with
embedded databases.

Voyage-UnQLite provides an easy and customisable
way, yet easy to scale to bigger solutions if needed.

Thanks!
Smalltalk quitSession.

