
Object and Class Versions
In GemStone/S

James Foster
Director of Operations

ESUG
22 August 2016



Agenda

• Introduction
• Architecture
• Objects

– Lookup (Object Table)
– Versions (Commit Records)

• Classes
– Lookup (Namespaces)
– Versions

• Questions

2



Limitations of traditional Smalltalks
• Object space (image) must fit in (virtual) RAM
• Object space visible to only one VM
• Sharing objects between VMs is difficult

– Convert to non-object format (binary, XML, SQL)
– No built-in object identity for multiple exports

• Object state is lost when VM exits

3



Welcome to the magical 
world of GemStone

• Object space limited by 
disk, not RAM

• Object space shared 
across multiple VMs on 
multiple hosts

• Transactional 
persistence

• Image from 
http://www.flickr.com/photos/laffy4k/182219003/

• Creative Commons License 
http://creativecommons.org/licenses/by-sa/2.0/ 4



Agenda

• Introduction
• Architecture
• Objects

– Lookup (Object Table)
– Versions (Commit Records)

• Classes
– Lookup (Namespaces)
– Versions

• Questions

5



GemStone/S Architecture
• Repository

– Disk-based “image” holds objects and other data
– Made up of extents (files or raw partitions)
– Objects are on 16k pages

• Gem Process(s)
– Single Smalltalk virtual machine

• Stone Process
– Manages concurrency

• Shared Page Cache
– Fast cache of pages from repository
– Managed by SPC Monitor process

• Other Processes
– GC Gems, Symbol Gem, AIO Page Server, Free Frame Server, …

22 August 2016 6

Repository

Gem Stone

SPC

SPC
Monitor



Detailed Component List with Logs

22 August 2016 7



Repository and Extent(s)
• Holds persistent GemStone objects (i.e., the “image”)
• Made up of 1 to 255 extents of up to 32 terabytes each

– On-demand grow
– Pre-grow to maximum size

• Each extent is composed of 16 KB pages
– Root Pages
– Object Table Pages
– Data Pages
– Commit Record Pages
– Free OID List
– Free Page List

• Page ID designates extent and offset

22 August 2016 8

Repository



Shared Page Cache
• Typical database challenge: disk is slow

– In-RAM cache of pages from repository
• Cache is divided into page-sized 'Frames'

– Frame may be free, clean, or dirty
• Free Frame List

– Processes take frame(s) from free list
– Might scan for clean frame (very rare)

• Async IO Page Server(s) write to repository
– State changes from dirty to clean (but not free)
– Max 1 per extent

• Free Frame Server(s) scan for clean frames
– Add to Free Frame List
– Complex algorithm to identify least recently used

22 August 2016 9

Repository

SPC

16 KB
Frame 

Frame #5

Frame #7

Frame #8

Free Frame List



Gem
• Represents a single logged-in database session
• Configurable fixed-size memory allocation 
• Executes Smalltalk code

– Serves most functions of 'Virtual Machine' in other Smalltalks
• Reads objects from Repository

– Reads pages into SPC, then copies objects to persistent object 
memory

• Creates and modifies objects
– New values in temporary object memory
– Objects are copied to pages in SPC
– Commit process coordinated with Stone
– Transaction written to transaction log
– Pages are written to repository by Stone's AIO Page Servers

22 August 2016 10



Agenda

• Introduction
• Architecture
• Objects

– Lookup (Object Table)
– Versions (Commit Records)

• Classes
– Lookup (Namespaces)
– Versions

• Questions

11



Object Identifier

• Objects are (generally) referenced by an identifier, not a 
location
– Object can move (edits, GC compaction)
– Different versions based on changes in a transaction

• old values still visible
– Allows two-way #’become:’ without object-space scan
– OID (wrongly) called OOP (object-oriented pointer)
– Exception is possible within a VM

22 August 2016 12



Object Table

• Object Table maps object identifier (OID or OOP) to page 
identifier
– Page identifies an extent (file) and offset of 16 KB page

• Each page has its own object index of offset within page

– Each new/modified object is on a fresh page
– Each transaction creates a new OT to point to current 

version of an object

22 August 2016 13



Object Table (OT) - 2

• A new (virtual) Object Table is created by each 
transaction
– A database "view" includes a unique OT
– Optimizations are used to reduce duplication

• Object Table takes space
– In Repository
– In Shared Page Cache

22 August 2016 14



Object Lookup

• Reference from an in-Gem-memory object instvar
– Pointer if already mapped to an in-memory object
– Otherwise an OID

• Lookup process
– Check for already-loaded objects (OID to address)
– Use object-table to determine page
– Look for page in Shared Page Cache
– If not present, find a free frame and read from disk
– Copy from SPC to local Gem memory

15



Agenda

• Introduction
• Architecture
• Objects

– Lookup (Object Table)
– Versions (Commit Records)

• Classes
– Lookup (Namespaces)
– Versions

• Questions

16



Database View and Commit Record

• On login, Gem has a database view
• Object Table

– Object ID (OID) == Object Oriented Pointer (OOP)
– Map to Page (offset in an Extent)
– Each view is based on a single Object Table

• Each commit creates a Commit Record
– Reference to unique Object Table
– List of modified objects (Write Set)
– List of Shadowed Pages

22 August 2016 17

Object Table Reference

Write Sets

Shadowed Pages



Commit Records
• There is always at least one database view, or Commit Record (CR)
• On login, a Gem is given the most recently created Commit Record
• Other Gems can share the same Commit Record (login or abort)
• Each (non-empty) commit creates a new Commit Record
• An abort moves a Gem to the latest Commit Record
• Oldest CR may be disposed of if it is not referenced
• Another commit creates another Commit Record

22 August 2016 18

Gem1

CR1 CR2 CR3

Gem2

login logincommitabort commit



Commit Record Backlog
• Here we have two Gems and two Commit Records
• Additional commits create more Commit Records (maybe many!)
• Intermediate CRs cannot be disposed of if older CR is referenced

– This can be a major performance issue
• Problems with excess Commit Records 

– They take space in SharedPageCache and/or Repository
– They slow down new commit processing
– They delay garbage collection

22 August 2016 19

Gem1

CR2 CR3

Gem2

CRn

commit

…….



Agenda

• Introduction
• Architecture
• Objects

– Lookup (Object Table)
– Versions (Commit Records)

• Classes
– Lookup (Namespaces)
– Versions

• Questions

20



Typical Smalltalk Name Lookup

• Root: a single Dictionary (subclass) instance
• Lookup at method compile time

– Compiled method binds to an Association 
• Global name -> object (typically a class name)

• Lookup at runtime
– (Smalltalk at: #’Array’) new

• Replacing Association value substitutes new object (class)
– Recompile class’s methods when schema changes
– References to Association get new value at runtime

21



GemStone/S Name Lookup: Root

• Root: an instance of UserProfileSet (AllUsers)
– UserProfile (name, privileges, groups, symbolList)
– SymbolList: Array of SymbolDictionary instances
– SymbolDictionary: keys constrained to Symbols

• Each user has a unique SymbolList (namespace)
– SymbolLists may share SymbolDictionaries

• Globals and Published are typically shared
• UserGlobals are typically unique

22



Name Lookup: Compile Time

• Compiler accepts an instance of SymbolList
– Search SymbolDictionary instances in order
– Bind to first discovered Association

• Default is user session’s current symbolList
– Set at login to symbolList referenced by UserProfile

• Tools (IDE) may provide another SymbolList
– Effectively a unique Dictionary
– Opportunity for exploration of tools (packages?)

23



SymbolLists

• System myUserProfile ==
GsSession currentSession userProfile

• System myUserProfile symbolList ~~
GsSession currentSession symbolList

• System myUserProfile symbolList first ==
GsSession currentSession symbolList first “at login”

24



Name Lookup: Runtime

• (System myUserProfile symbolList objectNamed: 
#’Array’) new.

• (Globals at: #’Array’) new.
• (UserGlobals at: #’Array’) new.

– Could be same or different from one in Globals!

25



Agenda

• Introduction
• Architecture
• Objects

– Lookup (Object Table)
– Versions (Commit Records)

• Classes
– Lookup (Namespaces)
– Versions

• Questions

26



Changing a Class Schema

• Traditional Smalltalks do an atomic operation
– Edit class definition
– Find and migrate all instances
– No control over migration process (drop inst vars)

• GemStone does not (usually) migrate instances
– Repository may be large and finding would be slow
– Other sessions may have view or edit of instances
– Modifying session might not have security

• GS Tools may offer immediate migrate instances

27



Class History (Versions)

• Editing a class schema creates a new class
– Prior class’s methods are compiled into new class
– New class is added to ClassHistory
– New class replaces old class in SymbolDictionary
– Existing instances of old class are unchanged

• Execute methods in old class!

• ClassHistory
– Each class references a ClassHistory
– Each class is referenced by a ClassHistory
– Provides guidance for migration

28



Object Migration

• Requires explicit operation
– Object>>#’migrate’
– Object>>#’migrateFrom:’
– Object>>#’migrateFrom:instVarMap:’
– Class>>#’migrateInstances:to:’
– Class>>#’migrateInstancesTo:’

• Migration creates new instance and swaps identity
– Old instance version remain visible from old views
– Old instance GCed when no longer visible

29



Agenda

• Introduction
• Architecture
• Objects

– Lookup (Object Table)
– Versions (Commit Records)

• Classes
– Lookup (Namespaces)
– Versions

• Questions

30



Questions?

31

GemTalk Systems LLC

15220 NW Greenbrier Pkwy., Suite 240
Beaverton, Oregon, 97006

Voice & Fax: +1 503 766 4714

james.foster@gemtalksystems.com

James G. Foster
Director	of	Operations

www.gemtalksystems.com

®


