Software metrics to Predict the health of a project?

Vincent Blondeau

15 – July – 15

Context

- Industrial PhD in a major international IT company
 - 7 300 employees
 - 17 countries
 - Problems from the field

Context

Overview

Data mining

Literature survey

Meeting with team managers

Data mining

Project data mining

Extracted from Excel files

- Bugs: qualification / acceptance / prod
- Budgets: projects and intermediate releases

Exploitable data

20 projects (out of 43)

- 300 bugs / project on average
- 1400 Men*Days / project on average
- ► 60 intermediate releases (out of 725)
 - 600 Men*Days / release on average
 - 92 bugs / release on average

Project data mining

► Bugs

- Critical, major, minor,
- Qualification, acceptance, production
- Budget
 - Predicted, Realized
 - Delta Predicted / Realized
- ► Slippage
 - Yes / No
 - Number of months

Project data mining

► Bugs

- Critical, major, minor,
- Qualification, acceptance, production
- Budget
 - Predicted, Realized
 - Delta Predicted / Realized
- ► Slippage
 - Yes / No
 - Number of months

Projects metrics correlation

Projects metrics correlation

Projects metrics correlation

Data mining results

- ► Bugs \Rightarrow Bugs
- ► Slippage ⇒ Bugs
- ► Bugs ⇒ Slippage
- ► Production Bugs ⇒ Slippage
- \blacktriangleright Name length \Rightarrow Less bugs

Overview

Data mining

Literature survey

Meeting with team managers

Literature survey

Mining Metrics to Predict Component Failures

Nachiappan Nagappan, Thomas Ball, Andreas Zeller 2006, ICSE

- ► Goal: Predict after release bugs
- ► 5 C++ Microsoft projects
- ▶ 18 source code metrics
- Correlations, PCA, regression models
 - \exists some metrics correlated to bugs
 - \nexists metrics for all the projects
 - The prediction seems accurate on the same kind of project

A model to predict anti-regressive effort in Open Source Software *Andrea Capiluppi, Juan Fernández-Ramil* 2007, ICSM

- ► Goal: Find metrics to identify regressions
- ► 8 C/C++ Open Source Systems (OSS)
- ► 4 source code metrics

- ∄ factor which alone makes a best predictor
- Each system needs to determine individually which measurement is best

Exploring the relationship between cumulative change and complexity in an Open Source system

Andrea Capiluppi, Alvaro E. Faria, Juan F. Ramil - 2005, CSMR

- Goal: Find classes to refactor
- ► 62 releases of ARLA (AFS file system)
- ► 4 code source metrics

 50% of classes with frequent changes are the more complex and have the higher number of methods

Cross-project defect prediction

A Large Scale Experiment on Data vs. Domain vs. Process Thomas Zimmermann, Nachiappan Nagappan – 2009, ESEC/FSE

- ► Goal: predict defects
- 28 releases of open and closed source software
- ► 40 project and source code metrics
 - OSS \Rightarrow closed source (CS)
 - − OSS, CS ⇒ OSS
 - $CS_1 \Rightarrow CS_2 \text{ or } CS_1 \Rightarrow CS_2$

21 out of 622 (3,4%) cross-project predictions worked "There was no single factor that led to success"

Literature review results

► Individually, ∃ metrics to make predictions

► No unique metric for all the projects

Predictions at posteriori

Overview

Data mining

Literature survey

Meeting with team managers

Meeting with team managers

- ► 3 in Retail team
- ▶ 1 in Telecoms team

- What are their problems?
- How they detect them?
- How they resolve them?

Roots Causes of bad health of a project

- **Delay** at the start of the project
- Collaboration between the team and the client
- Lack of team cohesion
- Bad understanding of the **specifications**
- Bad knowledge of the functional concepts
- Change of the framework during the development
- **Experience** with the used frameworks
- Bypass the qualification tests
 High number of bugs listed by the client

Conclusion

- Literature survey
 - No correlation
- Data mining
 - No correlation
- Wrong metrics studied at first

Conclusion

- Literature survey
 - No correlation
- Data mining
 - No correlation
- Wrong metrics studied at first

Next step: Survey to validate these root causes Help to test software

