
ESUG 2015

Write everything only once.
Smalltalk in government.

The subject om my talk is to illustrate the
power of chosing “Write everything only
once” as the guiding thought for
development. This means always look out
for duplicate code and eliminating it.
My discovery came while over a period of
five years I spent on and off probably two
years in the (re)development of an
application for the RJV. The RJV is a
Belgian government agency that pays the
vacation allowance for the workers.
In fact I threw away much moreaway
than what was finaly left.

Overview

● RJV application highlights

● Smalltalk implementation

● Metrics of different implementations

● How to be successfull

RJV application

● Input
– Days and associated salary
– Certificates
– Addresses
– Bank accounts

● Verification

● Output
– Vacation allowance payment

Salary and days are reported each
trimester.
Certificates (for example illness, technical
unemployment, …) confirm validity of
salary or days reported.
Addresses and bank accounts are needed
to execute payments.

Smalltalk implementation: Two container hierarchies

● Unique identifier of basic entries
– Year
– Occupation
– Trimester
– Attest number
– Version

● Container structure built on the fly with bi-directional pointers
– Navigation to find info
– Making totals
– Verification

– Two container hierarchies:
– Salary and days
– Certificates

– Navigation is mainly to retrieve
information from higher in the container
hierarchy. Some info is available at the
trimester, occupation, year or worker
level.
– Totals are required at all container
levels, worker, year, occupation, trimester.
– Verification uses both hierarchies.

Show container structure

● Entity
– BasicEntry
– Container

● Identifier
– LatgIdentifier

● VersionedEntry with history
– AttestEntry
– CarreerEntry

● Navigation

Verification – Delegation pattern squared

 LatgEntity implements:
exceptions

^ RJVExceptionFinder new returnExceptionsOn: self.

Every real LatgEntity subclass implements:

possibleExceptions
^ #(RJVExceptionB005 RJVExceptionB006 RJVExceptionB010)

returnExceptionsOn: anRJVLatgSubset
self target: anRJVLatgSubset.
^self possibleExceptions select: [:exception | exception isValid] .

possibleExceptions
^ self target possibleExceptions collect:
 [:exception | exception asClass new target: self target; yourself].

RJVExceptionFinder implements:

Show implementation

● Show code Exceptions B0036, B0038, B0039, B0048, B0049

Show implementation

● Show code Exceptions B0036, B0038, B0039, B0048, B0049

Making totals: CarreerTotal

● CarreerTotal collects required totals over container structure
● Both container and each subclass of basicEntry implement

carreerTotal method:

carreerTotal
^self entries inject: RJVCarreerTotal new into: [:a :b | a + b carreerTotal]

carreerTotal
RJVCarreerTotal new

daysWorked: self days;
daysVacation: self days;
daysVacationLengthCalculation: self daysVacationLengthCalculation;
daysCalculationFictif: self days;
daysFictifSalaryPaid: self days;
salaryCalculationBrut: self salary;
salaryCalculationFictif: self salary;
yourself

Each real subclass of basicEntry
implements its own version of
carreerTotal which is a reduced copy of
the one shown.

ErrorFreeCarreerTotal

Making total of error free entries

errorFreeCarreerTotal
|errorFreeEntries |
errorFreeCarreerTotal isNil ifTrue:
[
errorFreeEntries := self entries select: [:entry | entry isErrorFree].
self errorFreeCarreerTotal: (errorFreeEntries inject:
RJVCarreerTotal new into: [:a :b | a + b errorFreeCarreerTotal])
].
^errorFreeCarreerTotal

This message is sent repeatedly in the
vacation allowance calculation.
For performance reasons
errorFreeCarreerTotal uses lazy
initialization.
Adding an entry to one of the container
structures resets this total.

Advantages of implementation

● Duplicate code eliminated

● Simple navigation

● Yearly change limited
– New days
– New exceptions

 Command pattern – Access control

● Command pattern supports undo-redo

● Commands used for access control

● Commands used in DB support

Access control

● UserProfile

● ServiceProfile

● Special users
– System
– Finder

– A user profile is a collection of service
profiles
– A service profile is a collection of
commands
– A user can execute a command if it is
included in one of its service profiles
– User System, User Profile System and
Service Profile System. Service Profile
System contains all commands.
– User Finder, User Profile Finder and
Service Profile Finder. Service Profile
System contains all Find commands.

Database support

● Object Extender

● Glorp

Metrics

● Cobol generator
● 20 man-year
● Maintenance team of 10 people

● Smalltalk
● 352 classes
● 4133 methods
● 2 man-year over 5 year period
● More functionality

● Java
● Started 2008 – Not yet finished
● Budget of 8 million euro

– Started with punched cards
– Cobol Generator Implementation was
done under time pressure with sliced
salami approach. Cut application into
small pieces each with their own
developer. Big maintencance problem.
– Smalltalk implementation was done by
one developer.
– The JAVA implementation is done on a
fixed price contract. A conservative
extimate sets the effort at 40 man year.

How to be successfull

● I was not successfull
● Positive technical review
● Negative “Economic” review

● Code can be reused for many government applications
● Reporting
● Verification

● Governments work with bids. With Smalltalk we can offer for
fraction of cost

● Solution
● Maintenance by educated own staff

– I was not. IBM consultant reviewed
implementation and called it an example
of what could be done with good OO
design.
– An economy professor told management
that the application should be written in a
mainstream language – Java. It would
only take two years

