
Copyright © 2015 Instantiations, Inc.

23rd ESUG Conference
Brescia, Italy

July 13-19, 2015

Dino2
 The Evolution of the

VA Smalltalk Virtual Machine

John O’Keefe

Chief Technical Officer

Instantiations, Inc.

Copyright © 2015 Instantiations, Inc.

Dino2

• Why am I giving the presentation instead of a
real VM guy?

Copyright © 2014 Instantiations, Inc.

Dino2

• Because the real
VM guy is busy!!
• Seth and Kate’s

daughter Adelyn, born
June 19

Copyright © 2015 Instantiations, Inc.

Dino2
Agenda

• Driving forces

• VAST VM history

• Do we need a new VM?

• Challenges

• How we did it

• Results

• Demo

• Still to do

• Q&A

Copyright © 2015 Instantiations, Inc.

Dino2
Driving Forces

• 64-bit support required

• Dramatically expands available memory space

• Interface with 64-bit DLLs/SOs

• Simplify maintenance and enhancement of the
VAST VM

• Enables use of modern tool chains

• Replaces current proprietary modeling language with C

Copyright © 2015 Instantiations, Inc.

Dino2
VAST VM History

• Extremely stable - basically unchanged in 25+
years

• Developed using proprietary Smalltalk VM
Modeling Language

• Maximize efficiency on constrained hardware

• Cross-platform model

• No dependency on C compiler

Smalltalk

Model Code

x86

Power
PC

SPARC

Portable
Assembler

Copyright © 2015 Instantiations, Inc.

Dino2
Do We Need a NEW VM?

• Smalltalk Modeling Language

• Obscure – hard to learn/extend

• Obfuscates the algorithms

• Portable Assembler

• Does not take advantage of new machine architectures

• Generated machine code

• Non-standard calling conventions

• Standard debuggers don’t work

• Hard to map performance tools result back to model

• JIT

• Must be hand-built to match machine architecture

Copyright © 2015 Instantiations, Inc.

Dino2
Sample Smalltalk Model code

VMprCharacterTestBit

 self

 systemPrimitive: 'VMprCharacterTestBit'

 receiverClass: Character

 body: [| receiver byteArray bit addr |

 receiver := registerModel allocateDataRegister.

 byteArray := registerModel allocateAddressRegister.

 bit := registerModel allocateDataRegister.

 byteArray gets: (self parm: 1 of: 1).

 ([self isImmediate: byteArray] || [(self isBytes: byteArray) not]) do: [

 self failAsmPrimitiveViaCache: PrimErrInvalidClass arg: 1].

 receiver gets: (self receiverForParms: 1).

 self convertToCharacter: receiver.

 bit gets: receiver.

 bit &= 7.

 receiver shiftRightLogical: 3.

 (receiver greaterThanOrEqualUnsigned: (byteArray at: (constant field: 'size' of: K8ObjectHeader))) do: [

 self failAsmPrimitiveViaCache: PrimErrInvalidSize arg: 1].

 registerModel region: [

 addr := registerModel allocateAddressRegister asBytePointer.

 addr gets: (constant addressOfLabel: (label global data named: 'K8SetBits')).

 bit loadUnsigned: (addr indexedBy: bit)].

 receiver loadUnsigned: ((byteArray asBytePointer at: constant objectHeaderSize) index: receiver).

 and setFlags source: bit dest: receiver.

 condition zero do: [receiver gets: false] else: [receiver gets: true].

 self return: receiver parms: 1]

Copyright © 2015 Instantiations, Inc.

Dino2
Sample C code

EsPrimitive(VMprCharacterTestBit)

{

 U_16 value;

 EsObject byteArray;

 U_8 bit;

 byteArray = EsPrimitiveArgument(1, 1);

 if (!EsIsBytes(byteArray))

 EsPrimitiveFailed(EsPrimErrInvalidClass, 1);

 value = EsCharacterToU16(EsPrimitiveReceiver(1));

 bit = (U_8)(value & 7); /* 0 to 7 bit number within byte */

 value = (value >> 3) + 1; /* 1 to (MAX_CHARACTER_VALUE/8)+1 byte number within table */

 if (value > (byteArray->size))

 EsPrimitiveFailed(EsPrimErrInvalidSize, 1);

 EsPrimitiveSucceed((((EsByteAt(byteArray, value)) & (1<<bit)) ? EsTrue : EsFalse), 1);

}

Copyright © 2015 Instantiations, Inc.

Dino2
Challenges

• Minimal existing test cases

• If the basic image tests run, the VM is OK

• ‘VM in C’ performance

• 32-bit x86 VM loses an available register (-)

• C compilers produce far superior code; example:
instruction reordering (+)

• Many benchmarks (both micro and macro) ported and
developed

• Tool chain convergence

• Image conversion

• Impedance mis-match

• “Jump where ever I want to”, stack and register mgmt

Copyright © 2015 Instantiations, Inc.

Dino2
How We Did It

• Moved to cmake and gcc based tool chain

• Use ‘register intrinsics’ for performance

• Nightly build and test

• Minimal assembler

• Low-level arithmetic, exception handling, OLE support

• Incremental changes

• Shim code developed to cross old/new boundary
• VM always works

• 64-bit ‘clean’ changes as we go

• Detour from plan: Interpreter was done all in one piece

Copyright © 2015 Instantiations, Inc.

Dino2
How We Did It

• Example: Garbage Collector

• 3 major components: Scavenger, Mark-Compact,
Allocator

• Components converted one-at-a-time

• Millions of lines of trace output produced to verify
everything worked the same

• Incremental changes means we always had a working
VM to test the changes

Copyright © 2015 Instantiations, Inc.

Dino2
How We Did It

• Just in time image conversion (64-bit VM)

• 32-bit images and image components (ICs) converted
on first use

• Image can be saved in 64-bit format

• 32-bit ICs loadable from 64-bit image

Copyright © 2015 Instantiations, Inc.

Dino2
How We Did It

There’s no magic in software, just hard work with a result that
may appear to be magic!

• The image has to change -- because 64-bitness
shows through

• Foreign Function Interfaces (FFI) aka PlatformFunctions

• Memory mapping objects (OSObjects)

• Goal is to minimize changes in user code

• So most of the changes are in VAST framework code

Copyright © 2015 Instantiations, Inc.

Dino2
How We Did It

• Elastic PlatformFunctions

• Holds template for making FFI call

• Parameter sizes and offsets were fixed

• Changed parameter sizes and offsets from fixed to
relative

Copyright © 2015 Instantiations, Inc.

Dino2
How We Did It

• Elastic OSStructures

• Accessors were based on fixed size and structure offsets

• Changed accessors from absolute to relative offset

• Compute fixed offsets on image startup

Copyright © 2015 Instantiations, Inc.

Dino2
How We Did It

• Elastic OSStructure Example (C)
#ifdef _WIN32
#include <pshpack1.h>
#endif

 typedef struct NMHDR

 {
 HWND hwndFrom;
 UINT_PTR idFrom;
 UINT code; // NM_ code
};
typedef struct TVKEYDOWN {
 NMHDR hdr;
 WORD wVKey;
 UINT flags;
};
#ifdef _WIN32
#include <poppack.h>
#endif

Copyright © 2015 Instantiations, Inc.

Dino2
How We Did It

• Elastic OSStructure Example (Smalltalk)

"Define NMHDR Struct“
OSNmhdr members: #(#hwndFrom #idFrom #code) types: #(pointer pointer
uint32).

"Define TVKEYDOWN Struct - Pack1 if 32-bit“
OSTvKeydown members: #(hdr wVKey flags) types: #(OSNmhdr uint16 uint32).
System is64BitVM ifFalse: [OSTvKeydown updateAlignmentType: AlignNone]. "Pack
on byte boundary“

OSTvKeydown>>#flags
"Answer the member: UINT flags.
 32/64-bit compatible“
^ self uint32At: #flags

Copyright © 2015 Instantiations, Inc.

Dino2
How We Did It

• Additional Benefits of Elastic OSStructures

• Custom Packing for data structures
• OSStructure members: #(a b) types: #(int8 int8) alignment:

Align2 "pack2"

• Custom Padding
• OSStructure members: #(a b) types: #(int8 pad[3] int32)

alignment: AlignNone "pack1/manual pad“

• Embedded OSStructures
• OSStructureA members #(a) types: #(int8)

• OSStructureB members #(a b) types: #(int8 OSStructureA)

• Nested Anonymous Structures/Unions
• OSStructure members: #(a (b c)) types: #(int32 ((int32 int32)))

• struct { int a; struct { int b; int c; } }

• OSStructure members: #(a (b c)) types: #(int32 (int32 double))

• struct { int a; union { int b; double c; } }

• -

Copyright © 2015 Instantiations, Inc.

Dino2
How We Did It

• Additional Benefits of Elastic OSStructures

• Pointer Types
• OSStructure members #(a b) types: #(pointer int32) "4 bytes on

32-bit, 8 bytes on 64-bit"

• OSStructure members #(a b) types: #('uint8*' int32) "Also a
pointer with additional type info"

• Arrays
• OSStructure members #(a b) types: #('int8[10]' int32) "Array

types are supported

• OSVariableStructure members: #(a b) types: #(int8 pointer[])
"Flexible array types supported

Copyright © 2015 Instantiations, Inc.

Dino2
How We Did It

• Additional Benefits of Elastic OSStructures

• Dependency Analyzer
• Don't need to define OSStructures in order of their dependencies

• Invalid Circular dependencies will be detected

• Extensible Base Types
• You can add your own types, either globally or method override

• We do a method override for TCHAR for future Unicode support

• Currently a char8, but may later be a char32. Existing definitions using
TCHAR are now future proofed for this change

Copyright © 2015 Instantiations, Inc.

Dino2
Results

• 64-bit VM is just a recompile

• No separate 32-to-64 bit image converter

• Interpreter benchmarks are > 80% of current VM

• Before algorithm tuning

• Before C tuning

• User code is largely unaware of change

Copyright © 2015 Instantiations, Inc.

Dino2

Demo

Copyright © 2015 Instantiations, Inc.

Dino2
Still To Do

• 80% done means more work to do

• Performance tuning (algorithms and C)

• JIT

• 64-bit Packager

• Improved garbage collector

• Installation and setup

• UNIX

Copyright © 2015 Instantiations, Inc.

Dino2
When can we have it?

• Windows - 3 delivery dates

• Alpha
• 1Q2016

• Early customer involvement program; entry by invitation

• Beta
• 2Q2016

• Open registration

• Production
• V9.0 on normal product delivery schedule

• UNIX later

Copyright © 2015 Instantiations, Inc.

Contact us

• General information

• info@instantiations.com

• Sales

• sales@instantiations.com

• Support

• support@instantiations.com

• Me

• john_okeefe@instantiations.com

Copyright © 2015 Instantiations, Inc.

Thank you for your attention

Questions?

