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Context	  &	  MoCvaCon	  

•  Parallel	  plaGorms	  available	  (mulC-‐core,	  GPU,	  www)	  
•  More	  and	  more	  Parallel	  &	  Distributed	  apps	  

•  General-‐purpose	  languages	  have	  constructs	  for	  
expressing	  concurrency	  and	  exploi+ng	  parallelism	  

	  
•  DifficulCes	  for	  reasoning	  about	  concurrency:	  	  
–  Low-‐level,	  implementaCon	  specific	  
–  Lack	  of	  formal	  semanCcs	  



Logical	  Time	  and	  Synchronous	  
languages	  

•  Logical	  Time	  (Leslie	  Lamport	  ‘78)	  
– Abstracts	  “physical”	  Cme	  as	  a	  par1al	  order	  of	  events	  
– Mul1-‐form,	  the	  event	  need	  not	  be	  Cme	  related	  

•  Enables	  to	  describe,	  manipulate	  and	  analyze	  
interacCons,	  communicaCons,	  synchronizaCons	  
between	  processes.	  

•  Used	  in	  hardware,	  embedded	  and	  distributed	  
systems	  
–  Signal,	  Lustre,	  Esterel,	  CCSL	  



Clock	  Constraint	  SpecificaCon	  
Language	  (CCSL)	  

•  Part	  of	  the	  OMG	  Marte	  UML2	  profile	  
•  Formally	  expresses	  Cmed	  behaviors	  
– RelaCons:	  precedence,	  coincidence,	  exclusion	  …	  
– Expressions:	  intersec+on,	  union,	  filtering	  …	  

•  Usages:	  
– specifying	  concurrency	  semanCcs	  
– expressing	  Cming	  requirements	  



CCSL	  primiCves:	  Examples	  

filtering	  :=	  always	  ▼	  001(0110)ω	  	  

A	  =	  B	  



ClockSystem	  

•  Logical	  Time	  embedded	  in	  Smalltalk	  
•  Automata	  interpretaCon	  of	  CCSL	  primiCves	  
	  

this case, a program can be viewed as a high-level test spec-
ification, which encodes not only one valid execution path
but a set of paths. Integrating such approach into unit test-
ing frameworks such as SUnit does not pose any challenges,
however it can help detect subtle concurrency bugs in con-
current Smalltalk applications. In production, these specifi-
cations could be embedded into the deployed images to help
monitoring the application. Moreover, a counterexample, re-
sembling the traces in Fig. 2, can be generated to help un-
derstanding the cause of the malfunction.

5. The CLOCKSystem Toolkit
The CLOCKSystem language is an extension of the CCSL
domain-specific language (DSL). The implementation is
deeply embedded in Pharo Smalltalk environment. As an
embedded DSL, CLOCKSystem programs are encoded as
syntactically correct Smalltalk code, moreover its abstract-
syntax tree (AST) is exposed as plain smalltalk objects.
While benefiting from the CCSL simple but powerful ap-
proach for time reasoning, CLOCKSystem exploits the flexi-
bility of the Smalltalk language to provide a readable syntax
for the CCSL language, that can replace the current library
specification language integrated in TimeSquare.

The key ideas behind our approach are: a) provide a
minimal kernel for experimenting with logical time for-
malisms in Smalltalk; b) offer a flexible and simple lan-
guage for extending the kernel with user-defined event re-
lations; c) enable the development of new analysis tools
for CLOCKSystem specification, like exhaustive reachabil-
ity analysis.

This section starts by describing the kernel of our envi-
ronment, emphasising the possibility to extend the language
primitives introduced by CCSL with user-defined clock-
relations. Then a minimal core-syntax in presented, which
can be used interchange format between different environ-
ments, before briefly discussing the execution semantics and
some of the existing analysis tools.

5.1 Meta-described Clock Constraints
The CCSL language, was designed to represent time rela-
tions through the logical time formalism following a high-
level domain-agnostic approach. Hence, since it is concep-
tually simple, and free of technical-space artefacts, it is
an ideal candidate for introducing notions of time into a
general-purpose programming language.

The Need For New Primitives. Nevertheless, we have
found that relying only on the primitive operators provided
by CCSL was sometimes inefficient, cumbersome and ren-
dered the expression of state-based relations difficult.

To illustrate these difficulties, consider the SDF example
introduced in the Sec. 3.1. In this case, an equally valid SDF
execution semantics (as in Listing 4) can also be encoded us-
ing an automaton like the one presented in Fig. 3, in which
case the output, token, and input constraints (used in List-

Figure 3: Automaton encoding the SDF execution policy

Figure 4: CLOCKSystem model (abstract syntax)

ing 4) are encoded in a simple controller automaton govern-
ing the access to the FIFO channels connecting the actors.
The intuition behind this automaton is as follows: a) read-
ing and writing to the channel are exclusive – no reading
and writing at the same time; b) the process writing data
(represented by the w clock) simply writes outRate tokens
to the channel; c) the process reading data (represented by
the r clock) is enabled only if there are enough tokens in the
channel size >= inRate, otherwise it is blocked. In this case
a specification for the SDF application in Fig. 1 only needs
to create only 3 clocks and to instantiate 3 relations, one for
each edge in the SDF application, instead of 18 clocks and
18 relations needed in the case of the specification presented
in Listing 6. This renders the specification easier to under-
stand, and speeds up the model simulation and analysis since
it does not introduce intermediate clocks nor relations.

To address this expressivity problem, in CLOCKSystem
we have decided to implement the CCSL operational seman-
tics by specifying its mapping to a state-machine based en-
coding, such the one presented in [23], rather than directly
implementing it in a traditional interpreter (as is the case in
TimeSquare). This approach proved very useful since it en-
abled from the beginning the possibility of using automata-
theoretic analysis techniques, such as reachability analysis
and model-checking, directly on our model without recur-
ring to complex model-transformation approaches (such the
ones presented in [26]). Moreover, it helped reducing the
number of language concepts to a minimum (all primitives
operators are meta-described by automata), and opened the
conceptual framework for seamlessly integrating state-based
relations into the CLOCKSystem language.



Figure 5: The infinite automaton of the a � b relation

ClockSystem Metamodel. At its core, the CLOCKSystem
toolkit relies on the Smalltalk implementation of the meta-
model presented in Fig. 4. In this meta-model, the two cen-
tral concepts are the Clocks and the ClockRelations. The
Clocks are instantiated and linked to problem-space ob-
jects representing the different events of interests. Each
ClockRelations contains an automaton specification en-
coding its operational semantics. Conceptually, this automa-
ton is just a set of transitions between discrete states. Each
transition is just an association, between one source state
and one target state, labelled by a vector of Clocks that tick
when the transition is executed and an actionBlock that is
executed when the transition is fired. The purpose of this
action block is to update either the state-variables of the
automaton or the global variables in the system. Semanti-
cally, the execution of each transition is considered atomic.
Note that, in our setting, the CCSL expressions are nothing
more than simple ClockRelation instances with an ”inter-
nal clock” representing the clock produced by the expres-
sion. The ClockSystem class, in Fig. 4 simply composes
the set of Clocks and ClockRelations defined in a given
model.

A DSL for Primitive Relations. Traditionally, in automata-
based approaches for ensuring theoretical properties (such
as decidability, termination, etc.) the state-machine are con-
strained to be finite. However, this is not the case in CCSL,
which has some infinite clock relations, such as the prece-
dence. To cope with this difficulty, in CLOCKSystem, infi-
nite automata are encoded symbolically through a relation-
definition DSL (relDSL) using Smalltalk blocks2. In this
case, the Automaton of given relation does not explicitly
contain a set of transitions but a block that returning the out-
going transitions from a given state.

To better illustrate this aspect consider, for example, the
infinite automaton for the strict-precedence relation shown
in Fig. 53. In CLOCKSystem this relation is defined by the
Smalltalk block presented in Listing 8. The infinite num-
ber of states in the automaton is encoded through the state-

2 Note that relDSL can be seen as a meta-level DSL for specifying
ClockSystem primitive relations and should not be confused with the
ClockSystem DSL which only instantiate these relations
3 All CLOCKSystem automatons are synchronous, and complete in terms of
the clock vocabulary. To simplify the presentation we do not include in Fig.
5 the transitions that loop in a state while not enabling any clock nor the
negation of all clocks not enabled by the transition

variable s which is a Smalltalk integer. Once this encoding
is in place, the block responsibility is to return the possible
transitions from a given state. For example, if the state vari-
able is 0, executing the block such as strictPrecedence
value: 0 value: clock1 value: clock2 will return
a set with only one transition, namely {s->(s+1) when:

{a}} saying that the automaton can go to the state s+1 (0+1
in this case) and if it does the clock1 should tick and clock2
should not. Note that in this case another transition is pos-
sible, namely s->s when: {¬clock1.¬clock2} stating that
the system can stay in the same state s for an indefinite
period of time. However, if it does so, neither clock1 nor
clock2 can tick. The CLOCKSystem execution engine au-
tomatically adds the negation off all clocks not present in
a transition vector, and the transitions that block all clocks
while staying in the same state of the system to ensure the
correct semantics.

Note that, due to the unbounded representation of integers
in Smalltalk, (through SmallInteger, BigInteger instances)
limited only by the amount of available memory, we did not
need to use a symbolic integer encoding, which might be
more adapted in certain situation.

A side-product of this simple block-based representa-
tion is support for manipulating variables in the automa-
tons that comes at no cost. The variables are nothing more
than state-variables (such as s). Instead of interpreting them
as the source/target of transitions they are used for build-
ing predicates to guard the transitions, and are updated in
the actionBlocks using plain Smalltalk code. Constants are
also supported in the same manner. For constants, to ensure
that they are not updated in the action-blocks they are simply
not passed as arguments when these blocks are evaluated.
They can, however, be used in a read-only manner since
they will be free variables in the action block and capture
their value from the enclosing scope, the automaton block –
where they are block arguments which are not assignable in
Smalltalk.

Listing 8: The CLOCKSystem definition of the infinite a � b
relation

1 K e r n e l L i b r a r y>># s t r i c t P r e c e d e n c e
ˆ [ : s : a : b |
” unbounded s t r i c t p r e c e d e n c e ”
s = 0

i f T r u e : [ {
6 s -> ( s + 1) when: {a} } ]

i f F a l s e : [ {
s -> s when: {a . b } .
s -> ( s + 1) when: {a } .
s -> ( s - 1) when: {b} } ] ]

A Primitive for SDF. To illustrate the generality of our ap-
proach, consider once more the SDF example introduced
in Sec. 3.1 and the possible automata-based relation spec-
ification introduced in Fig. 3. To encode this relation in
CLOCKSystem, firstly we add a block argument s repre-
senting the mapping of the discrete automaton states to in-

Figure 5: The infinite automaton of the a � b relation
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transitions from a given state. For example, if the state vari-
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sible, namely s->s when: {¬clock1.¬clock2} stating that
the system can stay in the same state s for an indefinite
period of time. However, if it does so, neither clock1 nor
clock2 can tick. The CLOCKSystem execution engine au-
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while staying in the same state of the system to ensure the
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Note that, due to the unbounded representation of integers
in Smalltalk, (through SmallInteger, BigInteger instances)
limited only by the amount of available memory, we did not
need to use a symbolic integer encoding, which might be
more adapted in certain situation.

A side-product of this simple block-based representa-
tion is support for manipulating variables in the automa-
tons that comes at no cost. The variables are nothing more
than state-variables (such as s). Instead of interpreting them
as the source/target of transitions they are used for build-
ing predicates to guard the transitions, and are updated in
the actionBlocks using plain Smalltalk code. Constants are
also supported in the same manner. For constants, to ensure
that they are not updated in the action-blocks they are simply
not passed as arguments when these blocks are evaluated.
They can, however, be used in a read-only manner since
they will be free variables in the action block and capture
their value from the enclosing scope, the automaton block –
where they are block arguments which are not assignable in
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Listing 8: The CLOCKSystem definition of the infinite a � b
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A Primitive for SDF. To illustrate the generality of our ap-
proach, consider once more the SDF example introduced
in Sec. 3.1 and the possible automata-based relation spec-
ification introduced in Fig. 3. To encode this relation in
CLOCKSystem, firstly we add a block argument s repre-
senting the mapping of the discrete automaton states to in-

relDSL	  for	  primiCves:	  
StrictPrecedence	  (<)	  



Constraints	  instanCaCon	  

c l o c k L i s t : : = ” # ( ” clockName+ ” ) ”
20 c o n s t a n t L i s t : : = ” # ( ” va lue + ” ) ”

v a r L i s t : : = ” # ( ” va lue + ” ) ”

xName : : = ” # ” c h a r a c t e r + / / S m a l l t a l k symbol
va lue : : = O b j e c t / / any S m a l l t a l k o b j e c t

Listing 10 show the BNF specification of the concrete
syntax used in CLOCKSystem for the instantiation of the
Clocks and ClockRelations introduced in the last sec-
tion. The principal characteristic of this syntax is that it
is used indiscriminately to instantiate standard CCSL re-
lations (defined in a Kernel library) or to instantiate the
user-specific extensions. All these specifications starts by
creating a ClockSystem object sending the #named: mes-
sage to the ClockSystem class with a String or Symbol as
argument, then this object acts as a builder for instantiat-
ing Clock objects and ClockRelation objects. The build-
ing of the specification relies on Smalltalk message cas-
cading operator ”;”. The clocks are instantiated either one
by one, or in batch by sending the #clock: or #clocks:
message to the builder (the internalClock(s): mes-
sages are used for creating intermediate clocks needed
by the CCSL expressions). Once the clock declared, the
#library:relation:clocks:constants:variables:

or #library:expression:clocks:constants:variables:
message is used to instantiate a relation (expression) defined
in a given library. To simplify the specification for relation-
s/expressions, that do not need constants and/or variables,
for both these messages we define variants rendering the
specification of the constant and/or variable lists optional.

In Listing 11 we show the specification of the example
introduced in Fig. 1 using this syntax. While still quite read-
able, this syntax obfuscates somehow the model by: a) en-
coding the clocks, constants and variables as lists; b) inlin-
ing all constants and variables needed; c) making mandatory
the specification of the library and relation clauses.

Listing 11: Example of the core syntax encoding the SDF
example in Fig. 1 using the relation in Fig. 9

1 ( ClockSystem named: #SDF ex1 )
c l o c k s : # (A B C ) ;
l i b r a r y : #SDF r e l a t i o n : # c h a n n e l

c l o c k s : # (A B)
c o n s t a n t s : # (2 1 - 1)

6 v a r i a b l e s : # ( 0 ) ;
l i b r a r y : #SDf r e l a t i o n : # c h a n n e l

c l o c k s : # (B C)
c o n s t a n t s : # (1 2 - 1)
v a r i a b l e s : # ( 0 ) ;

11 l i b r a r y : #SDF r e l a t i o n : # c h a n n e l
c l o c k s : # (C B)
c o n s t a n t s : # (2 1 - 1)
v a r i a b l e s : # ( 2 ) ;

Keyword Synonyms. The syntax defined in Listing 10 is
simple and generic, however it fails to deliver a short and
readable syntax for CLOCKSystem specifications, see List-
ing 11, nevertheless it is the basis used in our system. To

achieve the results presented in Sec. 3 we rely on the defini-
tion of ”synonym” messages for instantiating the relations or
expressions needed. Listing 12 shows the definition of 4 such
synonyms for the strict precedence relation. The first one
uses the keyword notation used by TimeSquare, the second
one uses the standard abstract notation <, while the third in-
novates by defining the inverse of the < relation (its antonym
actually), which can also be interpreted as clock a follows
the clock b, which corresponds to our forth synonym mes-
sage.

Listing 12: Declaring syntactic synonyms for a � b relation
1 Clock>>#precedes: a n o t h e r C l o c k

s e l f sys tem
r e l a t i o n : # s t r i c t P r e c e d e n c e

4 c l o c k s : { s e l f . a n o t h e r C l o c k }

Clock >>#< a n o t h e r C l o c k
7 s e l f precedes: a n o t h e r C l o c k

Clock >>#> a n o t h e r C l o c k
a n o t h e r C l o c k precedes: s e l f

10 Clock >>#follows: a n o t h e r C l o c k
s e l f > a n o t h e r C l o c k

With these mechanisms in place we consider that the em-
bedding has rather succeeded. However, one detail has been
overlooked. When offering the support for user-defined syn-
tax one risk is that instead of facilitating communication,
the use of syntactic synonyms can hinder it. For example,
imagine a specification written with the keywords in an-
other language (it can be pretty difficult to understand). To
solve this problem, one solution would be to de-sugar the
CLOCKSystem specifications to a standard format, for ex-
ample the language used by TimeSquare. However, in the
case of user-defined ”primitive” relations this approach fails.
Nevertheless, in CLOCKSystem we do de-sugar the specifi-
cations to the rather verbose but generic language presented
in Listing 10. In the future, we consider building an ontology
of synonyms representing the relations between the mes-
sage symbols and the CLOCKSystem concepts represented
by them, and then de-sugar any specification to a user de-
fined unambiguous set of concepts from this ontology, de-
faulting to the ”core” syntax only for the missing names.

5.3 Execution Semantics and Verification
The execution of logical time specifications, such as ClockSys-
tem, produces series of event occurrences (ticks, instants)
that satisfy the constraints imposed by the specified clock
relations. These series of events can be seen as a partial or-
der of firings of the clocks involved in the specification. The
ticks can be interpreted as the logical activation of some
behavior, eg. a processor cycle, activating the computation
of the next instruction, or the occurrence of a particular
message-send. Thereof, the notion of time captured is de-
coupled from the physical time and represents essentially
notions of coincidence (an event arrives at the same time as
another one) and precedence (an event occurs before another



Synchronous	  Data	  Flow	  (SDF)	  
Example	  



SDF	  Constraints:	  CCSL	  

•
initialTokens is a statically defined property of edges
defining the number of tokens available at the beginning
of the execution;

• The execution of any actor is not dependent on the token
values, meaning that the control is data-independent.

In [18] the authors describe one possible CCSL encod-
ing of these execution rules using three clock constraints
describing the allowed actor firings. This encoding asso-
ciates to each actor a CCSL clock representing the execu-
tion of the actor. The FIFO channel (edge) between two ac-
tors are managed with another two clocks: read and write.
The read/write clock ticks whenever one input/output is
added/removed to the FIFO. Then for each channel three
constraints on these clocks are added: 1) input constraint,
governing the relation between the actor execution and the
inputRate tokens available at the input; 2) output con-
straint, governing the relation between the actor execution
and the outputRate tokens produced; 3) token constraint,
encoding the number of available tokens in an arc as the dif-
ference between the number of read and write operations.

3.2 Constraint Definition Syntax: Comparative Study
The CCSL encoding of the input constraint is specified in
[18] as a precedence relation using one precedence relation
and one filteredBy expression. Listing 1 shows the encod-
ing of this constraint using the abstract notation. The intu-
ition behind this constraint is that the actor execution should
be preceded by the addition of at least inputRate tokens in
the channel.

Listing 1: CCSL specification for the SDF input constraint
1 d e f i n p u t ( c l o c k a c t o r , c l o c k read , i n t i n p u t R a t e )�(read▼.(0inputRate−1

.1)!) � actor
In CLOCKSystem the input constraint (from Listing 1) is

expressed by defining a message input:read:inputRate:
implemented like in Listing 2, where actor and read are
clocks and inputRate is a number. The message period:

can be seen as syntactic sugar defined to create a filterBy

expression without an offset. The binary word required by
the expression is created by using classical Smalltalk Array
concatenation (the for: message send to a number X cre-
ates an array with n identical elements equal to X). The <

message represents exactly the precedence relation as the �
abstract notation.

Listing 2: CLOCKSystem specification of the SDF input
constraint
i n p u t : a c t o r r e a d : r e a d i n p u t R a t e : i n p u t R a t e

( r e a d p e r i o d : (0 f o r : ( i n p u t R a t e - 1 ) ) ,{1} ) < a c t o r

The reader should notice that the principal reason for
the syntactic overhead in Listing 2 comes from the repre-
sentation of special characters and notations, such as ▼,
and power notation x

y as ASCII encoded message sends

(period:, for: ). Besides that, there are two Smalltalk-
specific artefacts, namely the colon separating parts of the
message symbol, and the comma that replaces the dot char-
acter in the abstract notation. These represent a small syn-
tactic overhead that will probably not be present in a CCSL-
specific keyword-based language grammar. Notice also that
the 0 for: (inputRate-1) does not use the common ˆ
symbol used for power notation in some general purpose
programming languages since it is a Smalltalk reserved char-
acter. Nevertheless, we consider that in this case our notation
follows rather closely the abstract one, especially when com-
pared to the rather verbose language used in TimeSquare for
the same purposes, see Listing 3. We will leave to the reader
the exercise of understanding the meaning of that Listing.

Listing 3: TimeSquare specification of the SDF input con-
straint
R e l a t i o n D e c l a r a t i o n I n p u t (

a c t o r : c lock ,
3 r e a d : c lock ,

i n p u t R a t e : i n t )
R e l a t i o n D e f i n i t i o n I n p u t D e f [ I n p u t ]{

Sequence ByInpu tRa t e =
( I n t e g e r V a r i a b l e R e f [ i n p u t R a t e ] )

8 E x p r e s s i o n r e a d B y I n p u t R a t e = F i l t e r B y (
F i l t e r B y C l o c k −>read ,
F i l t e r B y S e q −>ByInpu tRa t e )

R e l a t i o n inp u tRa t eTokenExec [ Causes ] (
Le f tC lock−>r e a d B y I n p u t R a t e ,

13 R igh tClock−>a c t o r )
}

Listing 4 shows the composition of the CCSL relations
needed for representing the SDF semantics. We will not
describe the meaning of this listing since it is very well
explained in [18]. However, for comparison we show the
CLOCKSystem equivalent in Listing 5, and note the small
syntactic overhead, again compared to the TimeSquare spec-
ification which amounts for almost 100 lines of code and was
not included for obvious reasons.

Listing 4: CCSL specification of the SDF semantics
1 d e f edge ( c l o c k sou rce , c l o c k t a r g e t ,

i n t out , i n t i n i t i a l T o k e n s , i n t i n ) �
c l o c k r e a d
c l o c k w r i t e
source = (write▼.(1.0out−1)!)

6 ∧ write � read $ initialTokens∧ (read▼.(0in−1.1)!) � target
Listing 5: CLOCKSystem specification of the SDF semantics
edgeFrom: s o u r c e t o : t a r g e t

o u t R a t e : o u t i n i t i a l : i n i t i a l T o k e n s i n R a t e : i n
3 | r w |

r : = s e l f l o c a l C l o c k : # r e a d .
w : = s e l f l o c a l C l o c k : # w r i t e .

s o u r c e=== (w p e r i o d : ({1} , ( 0 f o r : ( o u t - 1 ) ) ) ) .
8 w < ( r w a i t F o r : i n i t i a l T o k e n s ) .

( r p e r i o d : (0 f o r : ( i n - 1 ) ) , {1} ) < t a r g e t



SDF	  Constraints:	  ClockSystem	  

•
initialTokens is a statically defined property of edges
defining the number of tokens available at the beginning
of the execution;

• The execution of any actor is not dependent on the token
values, meaning that the control is data-independent.

In [18] the authors describe one possible CCSL encod-
ing of these execution rules using three clock constraints
describing the allowed actor firings. This encoding asso-
ciates to each actor a CCSL clock representing the execu-
tion of the actor. The FIFO channel (edge) between two ac-
tors are managed with another two clocks: read and write.
The read/write clock ticks whenever one input/output is
added/removed to the FIFO. Then for each channel three
constraints on these clocks are added: 1) input constraint,
governing the relation between the actor execution and the
inputRate tokens available at the input; 2) output con-
straint, governing the relation between the actor execution
and the outputRate tokens produced; 3) token constraint,
encoding the number of available tokens in an arc as the dif-
ference between the number of read and write operations.

3.2 Constraint Definition Syntax: Comparative Study
The CCSL encoding of the input constraint is specified in
[18] as a precedence relation using one precedence relation
and one filteredBy expression. Listing 1 shows the encod-
ing of this constraint using the abstract notation. The intu-
ition behind this constraint is that the actor execution should
be preceded by the addition of at least inputRate tokens in
the channel.

Listing 1: CCSL specification for the SDF input constraint
1 d e f i n p u t ( c l o c k a c t o r , c l o c k read , i n t i n p u t R a t e )�(read▼.(0inputRate−1

.1)!) � actor
In CLOCKSystem the input constraint (from Listing 1) is

expressed by defining a message input:read:inputRate:
implemented like in Listing 2, where actor and read are
clocks and inputRate is a number. The message period:

can be seen as syntactic sugar defined to create a filterBy

expression without an offset. The binary word required by
the expression is created by using classical Smalltalk Array
concatenation (the for: message send to a number X cre-
ates an array with n identical elements equal to X). The <

message represents exactly the precedence relation as the �
abstract notation.

Listing 2: CLOCKSystem specification of the SDF input
constraint
i n p u t : a c t o r r e a d : r e a d i n p u t R a t e : i n p u t R a t e

( r e a d p e r i o d : (0 f o r : ( i n p u t R a t e - 1 ) ) ,{1} ) < a c t o r

The reader should notice that the principal reason for
the syntactic overhead in Listing 2 comes from the repre-
sentation of special characters and notations, such as ▼,
and power notation x

y as ASCII encoded message sends

(period:, for: ). Besides that, there are two Smalltalk-
specific artefacts, namely the colon separating parts of the
message symbol, and the comma that replaces the dot char-
acter in the abstract notation. These represent a small syn-
tactic overhead that will probably not be present in a CCSL-
specific keyword-based language grammar. Notice also that
the 0 for: (inputRate-1) does not use the common ˆ
symbol used for power notation in some general purpose
programming languages since it is a Smalltalk reserved char-
acter. Nevertheless, we consider that in this case our notation
follows rather closely the abstract one, especially when com-
pared to the rather verbose language used in TimeSquare for
the same purposes, see Listing 3. We will leave to the reader
the exercise of understanding the meaning of that Listing.

Listing 3: TimeSquare specification of the SDF input con-
straint
R e l a t i o n D e c l a r a t i o n I n p u t (

a c t o r : c lock ,
3 r e a d : c lock ,

i n p u t R a t e : i n t )
R e l a t i o n D e f i n i t i o n I n p u t D e f [ I n p u t ]{

Sequence ByInpu tRa t e =
( I n t e g e r V a r i a b l e R e f [ i n p u t R a t e ] )

8 E x p r e s s i o n r e a d B y I n p u t R a t e = F i l t e r B y (
F i l t e r B y C l o c k −>read ,
F i l t e r B y S e q −>ByInpu tRa t e )

R e l a t i o n inpu tRa t eTokenExec [ Causes ] (
Le f tC lock−>r e a d B y I n p u t R a t e ,

13 R igh tClock−>a c t o r )
}

Listing 4 shows the composition of the CCSL relations
needed for representing the SDF semantics. We will not
describe the meaning of this listing since it is very well
explained in [18]. However, for comparison we show the
CLOCKSystem equivalent in Listing 5, and note the small
syntactic overhead, again compared to the TimeSquare spec-
ification which amounts for almost 100 lines of code and was
not included for obvious reasons.

Listing 4: CCSL specification of the SDF semantics
1 d e f edge ( c l o c k sou rce , c l o c k t a r g e t ,

i n t out , i n t i n i t i a l T o k e n s , i n t i n ) �
c l o c k r e a d
c l o c k w r i t e
source = (write▼.(1.0out−1)!)

6 ∧ write � read $ initialTokens∧ (read▼.(0in−1.1)!) � target
Listing 5: CLOCKSystem specification of the SDF semantics
edgeFrom: s o u r c e t o : t a r g e t

o u t R a t e : o u t i n i t i a l : i n i t i a l T o k e n s i n R a t e : i n
3 | r w |

r : = s e l f l o c a l C l o c k : # r e a d .
w : = s e l f l o c a l C l o c k : # w r i t e .

s o u r c e=== (w p e r i o d : ({1} , ( 0 f o r : ( o u t - 1 ) ) ) ) .
8 w < ( r w a i t F o r : i n i t i a l T o k e n s ) .

( r p e r i o d : (0 f o r : ( i n - 1 ) ) , {1} ) < t a r g e t



(a) Periodic Trace Automaton
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B
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(b) Periodic Waveform
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B

C

(c) Trace interpretation (21 steps)

Figure 2: Cyclic simulation trace and different visualisations
with CLOCKSystem for the SDF example in Fig 1

4. Beyond Standard Simulation
While different use-cases for CCSL were proposed in the
literature [17, 26], currently the main functionality imple-
mented in TimeSquare is the simulation of specifications,
with the possibility to animate different model elements by
associating clock ticks with the execution of particular func-
tions. In this section, we overview some extensions and new
usages that are enabled by our embedding in the Smalltalk
environment.

Cyclic Trace Interpretation. The CLOCKSystem simula-
tor implements a trace-based simulator. While executing a
given specification, it constantly verifies the existence of
loops back to an already seen system state, in which case it
can either stop the simulation reporting an infinite trace (in-
finite due to the possibility to loop-back an arbitrary number
of times) or it can continue, maybe choosing a different path.
Fig 2 presents the results obtained for the SDF example, in-
troduced in Fig. 1. The first visual representation of the ex-
ecutions trace, in Fig. 2a, offers an automaton view of the
simulation trace, while the second one in Fig. 2b) shows a
different waveform-like visualisation which uses the square
brackets to represent the unbounded repetition of the last 3
steps. Traditionally, the TimeSquare simulator is producing
a waveform trace similar to the one we present in Fig. 2c.
However, in our case this finite simulation trace was ob-
tained by the interpretation of the automaton presented in
Fig. 2a for exactly 21 steps, and not directly from the CCSL
specification.

Exhaustive Reachability Analysis and Model-Checking.

Besides the simulator, the CLOCKSystem toolkit provides
the possibility to perform exhaustive reachability analysis of
the CCSL specifications thus paving the way towards formal
verification of properties agains these specifications.

To better understand the importance of providing such fa-
cilities, consider for example the approaches taken in [26]
and [19] for model-checking UML Marte application re-
stricted by CCSL constraints. In these two cases, the au-
thors invested a lot of effort to encode (more or less man-
ually) the correct semantics of each CCSL operator in a for-
mal language, such as Fiacre [10], moreover the complex
constraint composition mechanism had to be implemented
in those languages. We believe that this process is cumber-
some, and prone to errors especially since these two formal-
ism are more adapted for asynchronous system modeling
and verification. As such, another degree of difficulty was
added by the interpretation of the coincident clock firings as
the interleaving of all events. Moreover the property specifi-
cation, and the result interpretation in these cases is difficult
since the resulting semantic encoding was polluted by the
semantics of the constraints and constraint composition en-
coding.

Relying on the exhaustive reachability results, we have
developed an interface with the OBP model-checking toolkit
[8] that enables the verification of UML models. To achieve
this, an UML model is transformed to a formal language (as
in the previous cases) and the resulting program is com-
posed with the reachability analysis results produced by
CLOCKSystem. To ensure the correct semantics for the com-
position, the results obtained with CLOCKSystem were post-
processed only for expanding the coincident relations (by
generating the correct interleaving)1. This approach enables
the verification of safety and bounded liveness property on
a subset of UML Marte constrained using CLOCKSystem
specifications.

Design-space Exploration. An important aspect during
system design is creating a feedback-loop between a given
system model and the analysis results. Conceptually sim-
ple, this process, known also as design-space exploration,
states that the analysis results should be taken into account
to improve the model. The automation of this process is hin-
dered, in the case of declarative languages, by the lack of an
adapted programming layer around the modeling language
and associated tools (solvers, simulators, etc.), which drives
the designers towards the use of complex and low-level
script-based solutions, which are hard to create and main-
tain. Embedded DSLs rely on host-language facilities for the
automation of such task, and, in the case of CLOCKSystem ,
the full power of the Smalltalk language and environment is
at user disposal.

Testing and Monitoring. In a concurrent software context,
the clocks could be seen as types of events which are pro-
duced during execution, then a CLOCKSystem specification
describes the set of valid relations between these events. In

1 We call coincident firings (relations) all cases where two clocks tick at the
same time. Visually these cases are represented by tuples like {A. C} in
Fig. 2a
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Conclusion	  
•  Embedding	  of	  Logical	  Time	  in	  Pharo	  Smalltalk	  
•  Extensible	  automaton-‐based	  formal	  kernel	  

•  Flexible	  DSL	  through	  message-‐synonyms	  

•  Usage	  Scenarios	  
–  Trace	  interpretaCon	  
– model-‐checking	  
– DSE	  
–  tesCng	  &	  monitoring	  



Future	  Work	  

•  Support	  for	  dense-‐Cme	  representaCon	  
•  Mechanisms	  for	  dynamically	  evolving	  systems	  
•  Study	  the	  connecCon	  between	  ClockSystem	  
constraints	  and	  state-‐space	  decomposiCon	  in	  
model-‐checking	  context	  

tesCng	  &	  monitoring	  concurrent	  Smalltalk	  apps	  	  
by	  intercepCng	  reflecCvely	  generated	  events	  	  
(like	  var	  access,	  method	  ac+va+ons,	  etc)	  


