TOWARD A METHODOLOGY TO TURN SMALLTALK CODE INTO FPGA

LE Xuan Sang^{1,2} Loïc LAGADEC¹, <u>Luc FABRESSE</u>², Jannik LAVAL² and Noury BOURAQADI²

> ¹ Lab-STICC, ENSTA Bretagne ² Institut Mines-Telecom, Mines Douai

- Robotics applications demand :
 - Real-time + amount of data : Processing power
 Example in vision : 20 images of 320x240/s ~ 37Mbps.
 - Flexibility to evolution and unforeseen change of hardware (adding more device/sensor/actuators, improvement of circuit etc.)

Smalltalk in Robotic Software Development

- Simplicity & rich semantic
- High-level abstraction
- Smalltalk is also an IDE:
 - Support Agile methodology
 - Valuable ability of debugging & testing application
- **BUT**: Time-consuming for mass data processing

Field Programmable Gate Array (FPGA)

- Configurable hardware/chip
- Parallel processing

- FPGA circuits are designed using Hardware Description Language (HDLs).
- **BUT:** HDL-based design is unsuitable for hardware/software co-design

FPGA HDL-BASED DESIGN

I. Hardware Design (HDL)

2. Write tech-bench and perform Register Transfer Level simulation (RTL)

3. Synthesis and code generation

4. Deployment on FPGA

FPGA HDL-BASED DESIGN

- HDLs support specification up to Register Transfer Level (RTL). But :
 - Lack abstractions to implement high-level algorithms
 - Debugging is really hard (waveforms)
 - Not adequate for high-level modelling/programming
 - Hardware dependency → limit reusability

OBJECTIVE

Using Smalltalk in hardware/ software co-design

- **Hardware** : Smalltalk as a highlevel description and verification language
- **Software** : Smalltalk robotic application that interact with FPGA

SMALLTALK FOR HARDWARE DESIGN

Smalltalk-based design

- Hardware design abstraction layer
- RTL simulation
 - Waveform tracing
 - Unit Test
- Smalltalk-VHDL conversion
- Reusability & extensibility
- Vendor's tool interaction

SMALLTALK FOR SOFTWARE PROGRAMMING ON FPGA (1)

Standalone FPGA

- Operate independently with the host system
- Communicate with the host system via interfaces of communication : USB, RS232, etc.
- Smalltalk application talk to FPGA via Foreign Function Interfaces (such as Native Boost)
- **Problem :** bandwidth bottleneck

SMALLTALK FOR SOFTWARE PROGRAMMING ON FPGA (2)

FPGA-ARM SoC/SoM

- FPGA System on Chip/Module : all in one system
- Accelerate FPGA ARM communication → reduced bottleneck.
- Direct access to FPGA registers via system library
- Smalltalk application talk to FPGA registers via Register interaction abstraction layer which uses FFI

EXPERIMENT

- •Build a Pharo robotic application
- Identify critical parts
- Project the critical parts on FPGA
- Evaluation of performance gain/loss

VIDEO

http://car.mines-douai.fr/2014/04/pharos-based-tracker-robot/

EXPERIMENT

Smalltalk application

EXPERIMENT

PERFORMANCE COMPARISON

92x	128,	32	bit	
-----	------	----	-----	--

73 ms	L 5ms	2 5ms
751115	1.51115	2.31115

PERFORMANCE COMPARISON

92x	28,	32	bit
-----	-----	----	-----

		Bottleneck pro	blem
73 ms	I.5ms	2.5ms	
Pharo Smalltalk	C(OpenCV)	FPGA circuits	

CONCLUSION

- Future works :
 - Modelling methodology of hardware design using Smalltalk.
 - Pharo and FPGA interaction.
 - Software/hardware codesign integration.

TOWARD A METHODOLOGY TO TURN SMALLTALK CODE INTO FPGA

LE Xuan Sang^{1,2} Loïc LAGADEC¹, <u>Luc FABRESSE²</u>, Jannik LAVAL² and Noury BOURAQADI²

> ¹ Lab-STICC, ENSTA Bretagne ² Institut Mines-Telecom, Mines Douai