
Tracking dependencies between code changes:
An incremental approach

Lucas A. Godoy
INRIA Lille-Nord Europe UBA

lucas.ariel.godoy@inria.fr

Damien Cassou Stephane Ducasse
INRIA Lille-Nord Europe

damien.cassou@inria.fr stephane.ducasse@inria.fr

Abstract
Merging a change often leads to the question of knowing what
are the dependencies to other changes that should be merged too
to obtain a working system. This question also arises with code
history trackers – Code history trackers are tools that react to what
the developer do by creating first-class objects that represent the
change made to the system. In this paper, we evaluate the capacity
of different code history trackers to represent, also as first-class
objects, the dependencies between those changes. We also present
a representation for dependencies that works with the event model
of Epicea, a fine-grained and incremental code history tracker.

Keywords change propagation, IDE, history, dependency analy-
sis, software evolution

1. Introduction
Software systems evolve in response to change in their functional
requirements. These changes made through time to the source code
of software systems is what we call their code history. We can keep
track of this evolution process through the usage of Version Control
Systems (VCSs) such as Git1.

Since software engineering is part of software evolution [RL07],
a development environment that represents changes as first-class
entities that can be referenced, queried and passed along in a pro-
gram [EVC+07] is fundamental for a change-oriented engineer-
ing approach. This cannot be accomplished using the mainstream
VCSs in use today for the following reasons:

• The semantic information of the changes made to the system is
scattered in a large amount of text, so tracking entities involves
parsing several versions of the entire system.

• Several independent fixes and features can be introduced in one
single commit, making it hard to differentiate them.

• The time information of each change is reduced to the time
when each commit is performed, so all information about the
exact sequence of changes which led to these differences is lost.

To minimize the effort for sharing and merging code through a
VCS, some best practices have been established:

• Commit small, related, self-contained change sets. This is what
is usually known as an atomic commit2.

• Usage of a descriptive commit message.
• Commit regularly.

Following these best practices requires a lot of discipline. As a
result, committing unrelated changes happens regularly in software

1 http://git-scm.com/
2 http://en.wikipedia.org/wiki/Atomic_commit

development. This means that either the tools are used do not allow
to follow the best practices or the effort to follow the aforemen-
tioned best practices is too high for developers.

To reduce this effort, a new generation of tools (that we call
code history trackers) was born. These tools are conceptually event-
based: they react to what the developers do by creating first-class
objects that represent the changes made to the system. Remark-
ably Smalltalk change tracking systems (ChangeSorter) is one the
elder code history trackers and it predates mainstream versioning
systems.

However, we consider that none of the current code history
trackers has a minimal set of desired features to reduce the effort
required to do an atomic commit. The most important of these
features is the ability to detect dependencies between changes made
to the system, or what we call dependency tracking.

In general, the re-assembly of changes has been historically sup-
ported through a feature called cherry-picking. The support for
cherry picking enables programmers to extract incremental im-
provements that are spread over a set of many changes. Consider for
example that a task has involved a refactoring that the programmer
must manage and share as a separate improvement. Programmers
can first have a look at the list of all versions to identify both the
individual changes that constitute the refactoring and the version
from which the main task started.

Over time, it becomes increasingly difficult and tedious for
a developer to determine whether a change from another branch
or fork can benefit the system, which makes it difficult and time
consuming. This difficulty is emphasized by the lack of support for
the analysis of dependency between changes. Indeed it is rare that
a change happens in isolation.

There is a need for tools that can detect dependencies automat-
ically, so the programmer doesn’t need to remember these depen-
dencies or to identify and select them manually.

The contributions of this paper are:

• An evaluation of current history tracking tools for Smalltalk
and how they facilitate the dependency tracking to reduce the
human effort needed to follow the described best practices.

• The definition of one model and the building of a dependency
tracking mechanism on top of it, focusing on simplicity, to
assist the programmer in the process of re-assembling changes.
Given the dynamic nature of Smalltalk, the approach is not
completely accurate for message sends. And it is not fully
automatic, since the developer has always the chance to edit
the suggestions of the tool.

Table 1. Evaluation summary
System First-class objects Incremental Dependencies Refactors Exploration

ChangeSet Partial 3 7 7 ChangeSorter
Ring 3 7 3 7 Jet

Epicea 3 3 7 3 Log Browser
CoExist 3 3 7 7 Version Bar

2. Related work
In this section we describe three existing tools for code history
tracking and we evaluate how they assist the developer to facilitate
the best practices listed earlier.

2.1 Evaluation criteria
To evaluate the existing tools we consider the following questions:

• Are changes modelled as first-class objects?
• Is it incremental? Is it possible to analyze a single change or

does it need to create a full history log? Incrementality makes
the semantic representation of the model easier to mantain.

• Are dependencies between changes modelled?
• Are high-level refactorings modelled?
• Does the solution provides a flexible way to explore the list of

changes?

2.2 The Smalltalk ChangeSorter/ChangeSet
The traditional Smalltalk ChangeSet log is a reliable mechanism to
log the source modifications immediately after any editing opera-
tion happens on an image [Gol84]. It may be used as a recovery
tool by backtracing to the most recent non/erroneous state of the
image and reapplying changes listed by the ChangeList tool.

However, the changes are written to a log file as executable
statements and only classes and methods are modelled as first-class
objects. Additions and removals of attributes can only be detected
by comparing different versions of the program. These records have
no information about high-level changes as refactorings and mix
source management with the events that make the system evolve
from one state to another. As a result, not all events can be recorded,
the granularity of the events is too coarse and the exploration of the
change list made with the ChangeSorter is cumbersome and error-
prone.

Considering these limited the representation of changes, is no
surprise that the model does not include a representation for depen-
dencies between changes.

2.3 Ring
Ring [UGDD12] is a unified source code meta-model that:

• Has a common API with the Runtime and Structural Smalltalk
model.

• Represents every program entity as a first-class object. Unlike
the standard Smalltalk model, it can represent variables as ob-
jects instead of strings.

• Serves as the underlying meta-model for the history and change
meta-models.

The history meta-model, called RingH, models source code en-
tities such as packages, classes, methods and atributes as well as
the relationships between such entities such as class inheritance,
method call, class reference and attribute access. The history mod-
els are extracted from the source code history contained within ver-
sioning repositories.

RingC is the change and dependency meta-model, which uses
the information contained within the RingH model and creates sets
of changes (instances of class RGChange) for each snapshot re-
trieved from the repository. These sets are called deltas. When
there is a dependency between two RGChange objects, the RingC
model creates a RGChangeDependency that represents it. This
dependency can happen within changes in the same delta or be-
tween changes belonging to different deltas. If a reference to a
non-existing object is introduced in a change, that change has an
external dependency that is modelled with a stub class.

Even when the object model improves the granularity of the
events recorded, the Ring approach is still unable to detect the most
high-level events (i.e: refactorings).

Jet [UG12] is a semi-automated tool built on top of RingC that
offers a characterization of the changes and dependencies within
a stream of changes. It is not incremental, since it creates a full
history log by extracting information from repositories instead of
reacting in real-time to the changes made by the developer. Because
of this, the process of importing the repository data to generate the
history and then extract the changes and their dependencies can be
time consuming for big projects.

2.4 CoExist
CoExist [STCH12] is a tool for Squeak/Smalltalk that relies on
the idea of continuous versioning: any change made to the system
triggers the creation of a new version storing the change as well as a
complete snapshot of the current system. Unlike a traditional VCS
that store the source code changes in separate files, these snapshots
are internal data structures that store the state of the system in a
particular point in time.

The user can go back and forth between versions using the
Version Bar and create additional working environments to inspect,
modify and debug versions of interest. The system also allows to
run tests continuously, to collect results for every individual version
and to run a potentially new test on previously created program
versions.

Despite these features not found in the other tools, CoExist
is not free of limitations. Some classes cannot be versioned and
switching between versions requires a restart of the application
under development. It also lacks support for direct references to
class objects and its model does not include dependencies between
changes.

2.5 Epicea
Epicea [DCD13]3 is a code history tracker built on top of the Ring
core that represents the changes in entities with events. Each one
of these events contains two snapshots representing how the entity
was before and after the change. This capacity of reacting to the
events as they happen provides the exact sequence of changes that
led to the differences between each pair of snapshots. It is also
easier to maintain a semantic representation of the model, requiring
code parsing only at the method level.

The event model has some trade-offs between accuracy and
simplicity. For example every time Epicea detects a change in a

3 http://smalltalkhub.com/#!/~MartinDias/Epicea

Figure 1. Object model

class, it is unable to distinguish between an addition or removal
of an instance variable and the addition or removal of a class
variable. This is not a major drawback for its current features, but
it is something that will have to be considered if we want to add
dependency tracking to its feature set.

Epicea writes each event immediately to disk using one Ombu
file per session instead of a single ChangeSet file, making easier
the recovery of the exact sequence of changes that originated the
differences between the snapshots of the affected entity. It also can
export the log entries to a ChangeSet file (only for events supported
by the ChangeSet format).

Unlike the standard ChangeSet model and the complete Ring
model, Epicea events can represent high-level refactorings. This
simple event-based model replaces the RingH layer of the Ring
ecosystem but there is no model to represent dependencies between
the changes triggered by those events.

Also the Log Browser makes easy to go back and forward
in time using the events logged, leading to an easier exploratory
development.

3. Additions to the Epicea object model
Our objective is to create an object model to represent dependencies
between the existing change model of Epicea. In this section we
define what a dependency is, how to represent a dependency with
an object and how to extract the dependencies from each changed
entity in the system.

Figure 2. Dependency in a method creation

A change is always applied to a subject. Creational changes are
changes which have as subject a new entity that they produce. In
this case, a change c1 is said to depend on a change c2 if that is
the creational change of the subject of c1 [Figure 2]. For example,
methods can only be added to existing classes.

Also, the source code of m can contain references to other
entities and messages sent [Figure 3]. The entities referenced in
the source code of m must exist to ensure its compilation and
proper execution. Because of this, we need to parse the source code
associated to every change.

Therefore, our dependency object [Figure 1] will be composed
of three references to entities:

1. The subject of change or entity to be modified.

2. Optionally, a class holder. This is the class that holds the subject
of change. It will be nil for classes, since they don’t need a
holder.

3. Optionally, a set of dependencies extracted from the source
code. If the event is a class addition or any entity removal, it
will be empty.

This set of dependencies is generated from the source code of
methods. In the next subsections we explore the different depen-
dencies that we can find.

Figure 3. Dependencies extracted from a method

3.1 Types of dependencies
We have three types of dependencies between entity changes. In all
cases, parsing the code associated to the entity is needed.

• Class hierarchy dependencies: for each change in a class, which
can be a change in a method or in the class definition, the
superclass must exist. The same happens when self is called
from the code of the method that is the subject of change.

Figure 4. Dependencies of a class addition

• Reference dependencies: they are references to temporary, in-
stance and class variables in the source code of any method.
Also references to classes.

• Message sends: messages sent in the source code of any method
or expression evaluation. Since Smalltalk is dynamically-typed,
in absence of type information and presence of polymorphism,
there is a need to provide very fine-grained information about
messages sent to find dependencies in an accurate way.

It may happen that a dependency for a change is located in
a different package. We call this an external dependency. And if
the dependency doesn’t exist in the system, we call it a missing
dependency. Both cases will have their first-class object in our
model.

1 Object subclass: #AbstractTimeZone
2 instanceVariableNames: ’’
3 classVariableNames: ’’
4 poolDictionaries: ’ChronologyConstants’
5 category: ’Kernel-Chronology’

Listing 1. Class definition example

Listing 1 shows the code of the class AbstractTimeZone. This
class inherits from Object, uses the pool dictionary Chronology-
Constants and is located in the category Kernel-Chronology. So
we can extract 3 dependencies from this definition [Figure 4]:

1. The class Object must be defined.

2. The shared pool ChronologyConstants must be defined. This
also means that the class SharedPool must be defined.

3. The package Kernel-Chronology must be defined.

1 Trait named: #TClass
2 uses: TBehaviorCategorization
3 category: ’Traits-Kernel-Traits’

Listing 2. Trait definition example

Trait definitions are similar. The dependencies in Listing 2 are
the Trait class, the TBehaviorCategorization trait and the cate-
gory.

3.1.1 Message sends
If a message is sent inside the code of a method, we can look
for the methods that potentially will receive the call (i.e., dynamic
dispatch). This is what we know as a candidate set [DAB+11].

Since candidate sets can contain false positives, we categorize
message sends as follows:

• Messages sent to self: all candidates for the call need to be in the
hierarchy tree of the class in which the method is defined. This
case can lead to false positives when the method is declared in
many classes that belong to same hierarchy.

• Messages sent to super: this corresponds to the super calls
within a method, which is bound statically. So it must be defined
in a direct or indirect superclass in which the method is defined.

• Messages sent to classes: The receiver of this message is a class
reference.

• Unknown sends: the call of the receiver is unknown, so the
candidate set consists of all methods with the given selector.
This case can lead to false positives.

1 AbstractTimeZone >> printOn: aStream
2 super printOn: aStream.
3 aStream
4 nextPut: $(;
5 nextPutAll: self abbreviation;
6 nextPut: $).

Listing 3. Method definition example

Listing 3 shows the code of method printOn: from the class
AbstractTimeZone. We can extract many dependencies from this
change [Figure 5]:

1. First of all, we need the class AbstractTimeZone to add the
method.

2. At line 2, we have the message printOn: sent to super, so this
depends on Object � printOn: or ProtoObject � printOn:
according to the class hierarchy of AbstractTimeZone.

3. At line 5, we have a message send to self. So this depends on a
method called abbreviation that can be on any member of the
current class hierarchy.

4. Starting at line 3, we have many messages sents to a parameter.
Since we don’t know to which class the parameter belongs, this
is an unknown invocation. It’s candidate set are all the methods
called nextPut: and nextPutAll:.

Listing 4 shows the code of AnnouncementSpy � buildList.
Since we are sending the message new to the class PluggableList-
Morph, we are sure that this class and its method must be defined.
We could assume the result of this message is an instance of Plug-
gableListMorph, but since we cannot be sure that new returns an

Figure 5. Dependencies of a method addition

instance of the class, we’re forced to look for all the implementors
of the message.

1 buildList
2 ^ (PluggableListMorph new)
3 on: self
4 list: #announcements
5 selected: #index
6 changeSelected: #index:
7 menu: #buildMenu:
8 keystroke: nil.

Listing 4. Example of a message sent to a class

3.2 Unknown message sends with self
Let’s suppose we added the method addAll: to the class Collection
[Listing 5]:

1 addAll: aCollection
2 aCollection do: [:each | self add: each].
3 ^ aCollection

Listing 5. Unknown message sends with self

Among others, we have a dependency with add:. It’s code is
shown on Listing 6.

1 add: newObject
2 self subclassResponsibility

Listing 6. Role of subclassResponsibility

This one has a dependency with subclassResponsibility. But
this is not enough to make addAll: work. We should include all the
add: messages in the Collection hierarchy. This is a case where
a dependency found in a message send to self can have false
positives.

3.2.1 Reference dependencies
Let’s illustrate how to handle variable references by looking at
the code of this method in the class OrderedIdentityDictionary
[Listing 7].

We have messages sent to self and super, that we already cov-
ered. We have an unknown send for the message key, that has more
13 implementors in a standard Pharo 3.0 4 image. We also have an
unknown sned for ifFlase:, but in this case there are only 3 imple-
mentors restricted in the Boolean class hierarchy.

1 add: anAssociation
2 (self includesKey: anAssociation key)
3 ifFalse: [keys add: anAssociation key].
4 ^ super add: anAssociation

Listing 7. Reference dependency example

We also had a reference to a variable called keys. There is no
temporary variable declared in the source code of the method, so
it must be an instance or class variable. We said in Section 2.3
that Epicea cannot distinguish between diferent kinds of variable
changes in a class definition. This means that we’ll have a RGClass-
Definition entity that contains a class or instance variable as a de-
pendency. Now a question is raised: which class definition is the
one that contains this variable?

1 atRandom: aGenerator
2 | rand index |
3

4 self emptyCheck.
5 rand := aGenerator nextInt: self size.
6 index := 1.
7 self do: [:each |
8 index = rand ifTrue: [^each].
9 index := index + 1].

10 ^ self errorEmptyCollection

Listing 8. Local variable reference

The answer is that this variable should be defined in the last
event containing a class definition for A, otherwise the code would
not compile (unless the compiler decides to skip compiling for
some reason). The worst case would be when the class was created
before the installation of Epicea. if this happens, it will scan the full
log only to find that the dependency is missing.

4 http://pharo.org/

In listing 8 we have an example of temporary references, ex-
tracted from the method atRandom: of the class Collection.

Since rand and index are defined in the same method, there is
no dependency. We could think that there is a dependency with the
method itself, but compilation is not possible without the declara-
tion of these two variables.

3.3 Modification and removal of entities
Modification of entities work in a similar way to what we already
explained. The only difference is that modification events have two
Ring entities (the subject of change and the result of the change)
instead of only the subject. The process of dependency extraction
is the same, but in this case is the code of the result of the change
that will be parsed.

For deletions, the only events we consider as dependencies are
deletions of entities held by a deleted holder. For example, if a
method m from class C was deleted and then class C was also
deleted. The deletion of m will be added to the candidate set of
the deletion of C.

4. Implementation details
4.1 Anatomy of an Ombu entry
An entry in an Ombu file has a content, which can be any object,
and a dictionary of tags. In the specific case of Epicea, the content
is a change event [Figure 6]. The tag dictionary is used to store
metadata like the author and the time of the change.

Another thing that is stored in the tag dictionary is the prior
reference. Each entry has a reference to the prior change and this is
the way the changes are linked as a list. We can use this mechanism
to persist the dependency information for each entry.

As a second step, it is also desirable to be able to get the entries
that contain the subject of change for each one of the dependencies.

Figure 6. Anatomy of an Ombu entry

4.2 Retrieval of class holders
Epicea events can contain one or two RGObjects. Addition and re-
moval of entries contain the new entity, while modifications contain
the subject and the result. We defined the class holder in our model
but it doesn’t exist as a first-class object in the event. In these cases,
the event only knows the name of the holding class. Therefore, we
have to look in the log for the event of the creation of the holding
class.

4.3 Retrieval of entries containing subjects of change
Dependencies are defined between affected entities: classes, meth-
ods and so on. Once the dependencies for an affected entity have

been established, we have to find the events that affected those en-
tities.

For example, let’s suppose that we modified the definition of a
class A. A new EpClassModification event object will be created
and it will contain two instances of RGClassDefinition: one that
represents the old class definition and another to represent the new
one [Figure 1]. We have to find an entry that contains the event with
the RGClassDefinition that represents the creation of the class A.

Almost all Epicea events are created with an RGObject as an
internal collaborator 5. Therefore, to have access to those entities,
we can keep them in a multimap indexed by selector. The mainte-
nance of the multimap (addition, changing and removal of entries)
will be made at the moment of the event creation. And it won’t be
necessary to scan the complete log to find the related entries.

Since the events and entities are already present in the current
Epicea implementation, the only additional objects that will be
added are the dependencies.

5. Future work
In this section we describe some improvements to our initial solu-
tion.

5.1 Events vs. entries
In the current Epicea implementation, the Ombu entries are the
ones that are linked through the prior reference. One of the limi-
tations of this approach is that overlapping entries repeat the code
through the related entries. For example, if we have an entry A with
a class definition and an entry B with a modification to that class
definition, B will contain all the code defined in A instead of having
just a reference to it.

Another option would be to move the references to the event
level. The model would be more sound from a semantic point of
view and we can replace the duplicated code for a reference to the
underlying event.

5.2 Visualization of dependencies
Once the extensions for the Epicea model are in place, we can
modify the Log Browser to display the relationship between the
entries in a graphical way.

One option is to draw lines between the entries in the Log
Browser, as the GitK tool does. Another one, possibly more com-
plex, is to add a tab in the lower panel that shows a dependency
tree. This approach can be found in m2eclipse 6.

5.3 Performance test and optimization
It is desirable to test the performance in terms of execution time
and memory consumption of this new features when they are used
with a Log that contains several entries.

One alternative to reduce the memory footprint is to implement
the multimap using a Trie. The keys will be the entity names, but all
entities with a common prefix in their selectors will share that part
of the key. The worst-case access time for a given selector would
be the length of the longest selector defined in the system.

6. Conclusion
Detection of dependencies between changes modelled as first-class
objects are a very important feature of code-history trackers, since
it reduces the effort of the developer to perform tasks like atomic
commits.

5 The exception are expression evaluations, which are only strings evaluated
by the compiler and don’t have an associated Ring object.
6 https://www.eclipse.org/m2e/

In this paper we defined a simple criteria to evaluate four differ-
ent code-history trackers. We also present a solution to model de-
pendencies between changes that makes Epicea feature-complete
from the point of view of the aforementioned criteria.

References
[DAB+11] Stéphane Ducasse, Nicolas Anquetil, Usman Bhatti, Andre

Cavalcante Hora, Jannik Laval, and Tudor Girba. MSE and
FAMIX 3.0: an interexchange format and source code model
family. Technical report, RMod – INRIA Lille-Nord Europe,
2011.

[DCD13] Martı́n Dias, Damien Cassou, and Stéphane Ducasse. Repre-
senting code history with development environment events. In
IWST’13: International Workshop on Smalltalk Technologies
2013, 2013.

[EVC+07] Peter Ebraert, Jorge Vallejos, Pascal Costanza, Ellen Van
Paesschen, and Theo D’Hondt. Change-oriented software en-
gineering. In Proceedings of the 2007 international confer-
ence on Dynamic languages: in conjunction with the 15th In-
ternational Smalltalk Joint Conference, ICDL ’07, pages 3–24.
ACM, 2007.

[Gol84] Adele Goldberg. Smalltalk 80: the Interactive Programming
Environment. Addison Wesley, Reading, Mass., 1984.

[RL07] Romain Robbes and Michele Lanza. A change-based approach
to software evolution. Electronic Notes in Theoretical Com-
puter Science, 166:93–109, January 2007.

[STCH12] Bastian Steinert, Marcel Taeumel, Damien Cassou, and Robert
Hirschfeld. Adopting design practices for programming. In
Design Thinking Research. Springer, 2012.

[UG12] Verónica Uquillas Gómez. Supporting Integration Activities in
Object-Oriented Applications. PhD thesis, Vrije Universiteit
Brussel - Belgium & Université Lille 1 - France, October 2012.

[UGDD12] Verónica Uquillas Gómez, Stéphane Ducasse, and Theo
D’Hondt. Ring: a unifying meta-model and infrastructure for
Smalltalk source code analysis tools. Journal of Computer
Languages, Systems and Structures, 38(1):44–60, April 2012.

