
A bytecode set for adaptive optimizations

Clément Béra
RMOD - INRIA Lille Nord Europe

clement.bera@inria.fr

Eliot Miranda
Cadence Design Systems
eliot.miranda@gmail.com

Abstract
The Cog virtual machine features a bytecode interpreter
and a baseline Just-in-time compiler. To reach the perfor-
mance level of industrial quality virtual machines such as
Java HotSpot, it needs to employ an adaptive inlining com-
piler, a tool that on the fly aggressively optimizes frequently
executed portions of code. We decided to implement such a
tool as a bytecode to bytecode optimizer, implemented above
the virtual machine, where it can be written and developed
in Smalltalk. The optimizer we plan needs to extend the op-
erations encoded in the bytecode set and its quality heavily
depends on the bytecode set quality.

The current bytecode set understood by the virtual ma-
chine is old and lacks any room to add new operations. We
decided to implement a new bytecode set, which includes
additional bytecodes that allow the Just-in-time compiler to
generate less generic, and hence simpler and faster code se-
quences for frequently executed primitives. The new byte-
code set includes traps for validating speculative inlining de-
cisions and is extensible without compromising optimization
opportunities. In addition, we took advantage of this work to
solve limitations of the current bytecode set such as the max-
imum number of instance variable per class, or number of
literals per method. In this paper we describe this new byte-
code set. We plan to have it in production in the Cog virtual
machine and its Pharo, Squeak and Newspeak clients in the
coming year.

1. Introduction
The Cog virtual machine (VM) is quite efficient compared to
popular language such as Python or Ruby, but is still far be-
hind mainstream languages such as Java. This is because the
VM does not have an adaptive Just-in-time (JIT) compiler,
a tool that recompiles on the fly portion of code frequently
executed to portion of code faster to run.

[Copyright notice will appear here once ’preprint’ option is removed.]

As we implement the adaptive optimizer as a bytecode
to bytecode optimizer, we rely heavily on the bytecode set
design. We need to adapt it to be suitable for optimizations
and extend it with unsafe operations. The current bytecode
set needs revising because of the lack of available bytecodes
and the lack of unsafe operations (operations faster to run as
they do not check any constraints) as well as the implemen-
tation of primitives, forbidding respectively to efficiently ex-
tend the bytecode and to inline primitive methods. In addi-
tion, the current bytecode set has well-known issues such as
a maximum number of instructions a jump forward can en-
code and we took advantage of the bytecode set revamp to
fix these problems, ending up with important simplification
in the VM implementation.

We design a new bytecode set with the following im-
provements:

• It provides many available bytecodes to be easily and
efficiently extendable.

• It features a set of unsafe operations for the runtime
optimizer.

• It encodes the primitives in a way they can be inlined.
• It solves some well-known issues of the old bytecode set.

In this paper we describe the constraints we have to de-
sign a better bytecode set. We specify for each constraint if
it applies for all the bytecode set designs or only in our case
to design a bytecode set for adaptive optimizations.

After describing how the current bytecode is used in our
virtual machine and Smalltalk clients, we discuss the current
issues and missing features, then show how we solve the
current issues. We also discuss some aspects of the new
bytecode set and compare it to related work.

2. The Cog bytecode execution and memory
model

Smalltalk has a runtime very similar to the Java Virtual
Machine (JVM)[12], the Common Language Infrastructure
(CLR)[6] and other common platform-independent object-
oriented languages. To execute code, a high level compiler
translates the Smalltalk source code into bytecode, a low
level language. The bytecode is then executed by a virtual
machine, being either interpreted or compiled down to na-

1 2014/8/5

tive code through a just-in-time compiler. The virtual code
is platform-independent and is encoded in bytes for com-
pactness. Its byte encoding gives it the name bytecode.

A new memory manager, named Spur, has been recently
introduced in the Cog VM[11]. All the figures and examples
about memory representation we describe show the objects
in the new Memory Manager format.

Two main bytecode sets are now supported in the Cog
VM. One targets the Smalltalk clients, Squeak and Pharo,
whereas the other one targets a research language named
Newspeak. In this paper we focus on the bytecode set for
Smalltalk clients, as the new bytecode set is for now exclu-
sively for Smalltalk and would need to be adapted to be used
with Newspeak.

2.1 Vocabulary
After looking at several bytecode sets and working on ours,
we decided to describe bytecode operations by using three
forms. Here is the definition of the three forms proposed,
with examples from the new bytecode set:

• single bytecode: the instruction is encoded in a single
byte. For example, the byte B0 means that the execution
flow needs to jump forward by two instructions and the
bytecode 4D means that the interpreter should push the
boolean true on the stack.

• extended bytecode: the instruction is encoded in two
bytes. The first byte defines the instruction and the sec-
ond byte encodes an index relative to the execution of
the instruction. For example, the byte E5 means that the
interpreter should push a temporary variable on the stack,
the index of the temporary variable being encoded in the
next byte.

• double extended bytecode: the instruction is encoded in
three bytes. The first byte defines the instruction and the
second and third bytes encode an index relative to the
execution of the instruction. For example, the byte FC
means that the interpreter needs to push on the stack a
variable in a remote array, the index of the remote array
being encoded in the second byte and the index of the
variable in the remote array is encoded in the third byte.

We call extended bytecode and double extended bytecode
argument bytecodes, because they require extra byte(s) to
encode the expected virtual machine behavior.

We always use the name bytecode to refer to the virtual
code, i.e., the code understood by a virtual machine and not
native code understood by a processor.

2.2 The Cog compiled method format
The bytecode, executable by the virtual machine, is saved in
the heap - memory space reserved for object - in the form of
compiled method[1]. A compiled method is an object encap-
sulating executable bytecode. In addition to the bytecode, a
compiled method has, as shown in Figure 1:

• An object header (as every object in the system) to inform
the virtual machine about basic properties such as its size,
its class or its hash.

• A literal array that is used aside from the bytecode to
fetch specific objects by the virtual machine to execute
code.

• A compiled method header (specific to compiled method)
to inform the virtual machine about basic properties such
as its number of arguments or its number of temporaries.

• A source pointer to encode the way the IDE can get the
method source code.

The format in memory of a compiled method is very
specific. Common objects are word-aligned or byte-aligned
on all their length. However, a compiled method is a mixed
form of an array (its first fields in memory correspond to
the compiled method header, encoded as a small integer, and
its literals) and a byte array (its next fields correspond to its
bytecode and its source pointer).

Object header (8 bytes)

literals (4 bytes per literal)

compiled method header (4 bytes)

bytecodes (variable)

source pointer (variable, usually 4 bytes)

Memory representation of
Compiled Method in 32 bits

with the new Memory Manager Spur

Figure 1. Memory representation of a Compiled method

Changes in the bytecode set design impacts both the
memory zones for the compiled method header and for the
bytecodes, but does not affect the compiled method object’s
header, its literal frame nor its source pointer encoding.

3. Challenges for a good bytecode set
3.1 Generic challenges
Any one who has to design a bytecode set faces some chal-
lenges. We enumerate the major ones we noticed in this sub-
section.

Platform-independent. Applications running on top of
Cog are currently deployed on production on different oper-
ating systems: Linux, Mac OS X, Windows, iOS, Android
and RISC OS and on different processors: ARM 32bits, Intel

2 2014/8/5

x86 and Intel x86_64. Therefore, our bytecode set needs to
be platform-independent, more specifically processor inde-
pendent and operating system independent.

Compaction. To have the minimum memory footprint, a
bytecode set needs to be able to encode all the compiled
methods of system in the minimum number of bytes.

Easy decoding. The bytecode is mainly used by the inter-
preter to be executed, the JIT compiler to generate native
code and in-image to analyze the compiled methods. There-
fore, a good bytecode set needs to be easy to decode, decod-
ing being used for analysis, interpretation and compilation.

Conflicts. One cannot have a very compact and very easy
to decode bytecode set. Related work[9] has shown that a
bytecode set can be compressed by 40% to 60% by shar-
ing the bytecode in a Huffman table, but the bytecode be-
comes then harder to decode, which complicates the virtual
machine interpreter, the JIT compiler and bytecode analy-
sis. This extra difficulty also impacts performance (9% per-
formance loss in their work). Therefore, one has to choose
between easier decoding or extreme compaction. Our tar-
gets, such as the latest iPhone or the Raspberry pie have at
least 256Mb of RAM. The Pharo memory footprint is usu-
ally around 20 Mb on production application. Therefore, we
prefer to ease the decoding over compacting the bytecode.
We want the new bytecode encoding to be at worst the same
size as the old bytecode encoding but easier to decode.

Backward compatibility. Some frameworks and libraries
may rely on the bytecode format to work. It includes compil-
ers and virtual machines implementations that the designer
of the new bytecode set has obviously to consider, but it also
includes other frameworks such as serializers. A serializer
typically reuses the bytecode encoding to serialize a com-
piled method. Changing the code set implies either to be
backward compatible to have these tools working or fix all
the frameworks and libraries.

3.2 Challenges specific to our goals
The runtime bytecode to bytecode optimizer we plan will
perform classical dynamic language adaptive optimizations
such as inlining based on type feeback[7] and bounds check
elimination[2]. Here is a typical example:

MyDisplayClass>>example: anArray
anArray do: [:elem | self displayOnScreen: elem].

Array(SequenceableCollection)>>do: aBlock
1 to: self size do:

[:index | aBlock value: (self at: index)]

Firstly, based on type-feed back the runtime optimizer no-
tices that the argument of MyDisplayClass»example: is always
an Array, and then inlines the message send to the array as
well as the closure activation, adding a guard that triggers
deoptimization if the assumption that anArray is an Array

is not valid any more. We represented the guard in pseudo
Smalltalk code so the code is readable, but of course a guard
is typically implemented in a very efficient way in native
code.

MyDisplayClass>>OptimizedVersion1OfExample: anArray
Guard: [anArray class == Array

ifFalse: [DynamicDeoptimization]].
1 to: anArray size do: [:index |

self displayOnScreen: (anArray at: index)].

The optimizer wants then to inline additional messages
sent to anArray: size and at:. After inlining these two mes-
sages, it notices that index is always within the bounds of
anArray because the to:do: selector sent on an integer enforces
that the block argument is an integer between 1 and anAr-
ray size (This is typically inlined statically by the compiler).
Therefore the optimizer edit the at: instruction to fetch the
field of the objects at the index without checking that the in-
dex is within the bounds of anArray. In pseudo code, it would
mean:

MyDisplayClass>>OptimizedVersion1OfExample: anArray
Guard: [anArray class == Array

ifFalse: [DynamicDeoptimization]].
1 to: anArray inlinedSize do: [:index |

self displayOnScreen: (anArray
inlinedNoBoundsCheckAt: index)].

To be able to do this kind of optimizations, the bytecode
set needs specific requirements and instructions that we de-
tail in this subsection.

All methods should be inlinable. All methods and closure
activations should be able to be inlined by the optimizer, in-
cluding primitives. Inlining non primitive methods removes
the overhead of a CPU call and allows the optimizer to have
bigger portions of code to optimize. Inlining performance
critical primitives allows the optimizer to perform additional
critical optimizations such as bound check elimination. Due
to inlining, optimized methods are bigger than regular meth-
ods: they may have jumps of thousands of instructions or
thousands of literals. In addition, inlining a method may al-
low an object to access directly the instance variable of an-
other object. Therefore, the bytecode needs to be able to en-
code compiled methods with:

• Inlined primitives
• Very large jump
• Very large number of literals
• Access to non receiver instance variable

Unsafe operations. Smalltalk primitives are type safe,
which means that calling a primitive with inappropriate ar-
guments will trigger a primitive failure but will not crash
the execution. Therefore, each primitive needs to guarantee
that the receiver and arguments have one of the expected

3 2014/8/5

type before being performed. Guaranteeing the type of an
object means additional CPU instructions to run. The run-
time optimizer may want to encode unsafe operations, such
as unchecked array access, if it can guarantee that the given
primitives will not fail to avoid this type check overhead.
The bytecode set needs to be extended to support a set of
unsafe operations, which corresponds to inlined primitives
that are optimized.

Extendable. While implementing more and more opti-
mization passes in our optimizer, we may need to add ex-
tra unsafe operations or to encode new bytecode operations.
The bytecode set needs to be easily extendable without com-
promising optimization opportunities and complicating the
logic of the optimizer.

3.3 Current Bytecode issues
The current bytecode set could be improved compared to the
generic requirements and is definitely not good enough for
our requirements (specification available in Appendix A). In
this subsection we describe the issues we noticed.

Argument bytecodes limits. The current bytecode set has
limitations regarding the size of arguments. There is no pat-
tern to indefinitely expand an argument bytecode. One typ-
ical example is the jump bytecode. This bytecode supports
jump forward up to 1024 instructions, but no more. This is
already an issue because several Pharo users ended up hav-
ing a compilation error due to this problem. They had to fix it
by editing their code, whereas a user should not need to un-
derstand nor see these compiler details. These issues make
it impossible for some methods or closures to be inlined due
to the code creating a jump too big for the encoding.

Few available bytes. One of our main concerns was the
lack of available bytecodes. Only three bytecodes were
available (not associated with an operation). This clearly
limits the extensibility of the current bytecode set, which
is required by our optimizer to easily add new instructions.
We estimate that 10 available bytecodes are needed to be
extended and manipulated in the future.

Primitive index implementation forbid inlining. Another
issue is with the primitive index: by being encoded in the
compiled method header, inlining primitives is not possible.
However, the runtime optimizer needs to optimize critical
primitives such as array access.

DoubleExtendedDoAnything bytecode. The old bytecode
set had a bytecode named "double extended do anything"
bytecode. This bytecode is able, with the proper encoding,
to do almost any operation in the virtual machine. However,
This bytecode creates extra difficulties in the JIT compiler
to properly map the native code program counter to the byte-
code program counter because you always need extra checks
to know if it is a message send or something else. This byte-
code does not fit with our definition of easy decoding. To

be easy to decode, a bytecode set should not encode several
operations in the same byte, or if this is the case then en-
codes very similar operation, such as push new Array and
pop into array, but not operations such as a push, a store and
a message send in one bytecode.

Primitive index is split. The compiled method header
shown in Figure 2 has a strange primitive index field: this
field is split in 2 fields, the main part of the primitive num-
ber and the high bit. This is here for backward compatibility
with the 16bit Squeak version. However, as none of the Cog
users has been using a Smalltalk dialects in 16bit for over
multiple decades, and other recent changes have broken this
compatibility. This split is now useless whereas it compli-
cates the decoding.

s x P a a a a t t t t t t f l l l l l l l l p p p p p p p p p 1

s

x

P

a

t

f

l

p

1

(index 31) 1 bit: sign bit, unused (#signFlag)

(index 30) 1 bit: flag bit, ignored by the VM (#flag)

(index 18) 1 bit: whether a large frame size is needed (#frameSize)

(index 10) 8 bits: number of literals (#numLiterals)

(index 1) 9 bits: main part of primitive number (#primitive)

(index 0) 1 bit: small integer tag (#tag)

(index 29) 1 bit: high-bit of primitive number (#primitive)

(index 25) 4 bits: number of arguments to the method (#numArgs)

(index 19) 6 bits: number of temporary variables (#numTemps)

Old compiled method header

Figure 2. The old compiled method header

Immediate objects waste memory. The bytecode set misses
some compact bytecode for immediate objects. For example,
encoding the SmallInteger 5 requires at least 5 bytes, 4 bytes
to store 5 in the literal array and 1 to 3 bytes for the push
literal bytecode. It is very simple to encode and decode im-
mediate objects in the bytecode, as their virtual machine
representation is also encoded with bytes, and it greatly im-
proves the compactness of the bytecode.

Late addition of closure bytecodes. Real closures were
added in the supported Smalltalk dialects after the old byte-
code set design. There was not a lot of free space in the
bytecode set, so the bytecode for BlockClosure creation was
added in a way that the same bytecode is used to push nil
on the stack and to allocate temporary slots on stack for the
BlockClosure. This makes the decoding of a BlockClosure
complex for the JIT compiler and the in-image analysis due
to the difficulty to fetch the number of temporaries.

Outdated constraints. The current bytecode set has a
string property: most instructions are 16 bits aligned. For
example, instructions 0 to 15 are mapped to push receiver

4 2014/8/5

variable and instructions 16 to 31 are mapped to push tem-
porary. We asked the old bytecode set designer, Dan Ingalls,
who is also the implementor of the original Smalltalk-80.
It happens that Smalltalk-80 used to run on the Xerox D,
and that this 16 bits alignment was there to easily dispatch
the instructions on microcoded machines. As we do not run
Pharo any more on this kind of machines, we removed this
constraint for the bytecode set design.

4. New bytecode set features
In this section we describe the features of the new bytecode
set, starting by the ones we added for our runtime optimizer
to the other one that improved the bytecode set in general.
Then we explain how we convert a Smalltalk image from
the old bytecode set to the new one to validate the approach.

4.1 Adaptive optimization features
Extendable instructions. One of the most notable feature
of the bytecode set (specification available in Appendix B)
is the addition of an extension bytecode. This bytecode, as
a prefix, extends the following byte by an index encoded in
a byte. In the new bytecode set, each bytecode correspond
to a single instruction. It is not possible, as for the "double
extended do anything" bytecode of the old bytecode set, to
encode different operation in a single byte. By being a prefix,
the extension bytecode does not complicate the JIT compila-
tion, as each bytecode still represent a single instruction, and
an extension bytecode just requires to fetch the appropriate
instruction in a fixed distance (2 bytes further).

This feature allows for example the compiler to generate
jump forward bytecode to an infinite number of instructions.
The jump forward bytecode is a single extended bytecode,
therefore it can jump up to 255 instructions (255 being
encoded in the argument byte). By being prefixed by one
extension, it can encode a jump up to 65535 instructions. If
it is prefixed by two extensions, it can encode a jump up to
16777215 instructions. As one can add as many extensions
as one wants, each instruction accepting extensions can be
extended to the infinite.

Example: Extended conditional jump instruction
(Numbers in hexadecimal)

Byte number EF + next byte
Name jumpFalse:
Bit values 11101111 iiiiiiii
Explanation Pop value on stack and jump if the

value is false by a distance of
distance := iiiiiiii+(ExtensionB*256)

Byte number E1 + next byte
Name ExtensionB (ExtB)
Bit values 11100001 bbbbbbbb
Explanation ExtensionB

ExtB := ExtB*256+bbbbbbbb

bytecode Explanation
sequence
EF 12 jumpFalse: 18
E1 05 EF 12 jumpFalse: 50D

50D = (5*FF)+12
E1 AF E1 jumpFalse: ADA7BC
05 EF 12 ADA7BC = (AF*FF*FF)+(5*FF)+18

Inlined primitives and unsafe operations. The new byte-
code set moved the primitive index of a method from the
compiled method header to the beginning of the compiled
method’s bytecode (these two zones are shown in Figure 1).
The primitive call is now a double extended bytecode, with
the two argument bytes encoding the primitive number. The
first bit of the first byte argument determines if the primi-
tive is inlined or not. If the primitive is not marked as in-
lined, it automatically fails if it is not the first bytecode of
the method. This change does not slow down the virtual ma-
chine due to the different method caches. Inlined primitives
cannot fail, therefore one needs to be very careful while in-
lining a primitive to properly handle inlined primitive failure
and its fall back code with control flow operations (for ex-
ample, a flag on top of stack can force the execution flow to
jump on a specific branch that handles the fall back code of
the inlined primitive).

Byte number F9 + next byte (> 127) + next byte
Name callPrimitive
Bit values 11111001 0iiiiiii jjjjjjjj
Explanation call primitive at iiiiiii+(jjjjjjjj*FF)

fails if not the first method’s bytecode
On success: triggers a hard return
On failure: executes fallback code

Byte number F9 + next byte (<= 127) + next byte
Name callInlinedPrimitive
Bit values 11111001 1iiiiiii jjjjjjjj
Explanation call inlined primitive at iiiiiii+(jjjjjjjj*FF)

Inlined primitives cannot fail,
may be unsafe, never triggers a return,
may or may not push a value on stack

To encode the primitives, we noticed that we needed to
support at least 1000 primitives and 1000 inlined primitives
to support all the operations we might want to implement in
the next decade. We could have made CallPrimitive a single
extended bytecode taking an extension according to the ex-
tendable instruction model introduced in the last paragraph,
but that would complicate the VM’s determination of the
primitive number and the primitive error code store since the
extension, being optional, would make the sequence variable
length. So we decided to make it a double extended byte-
code. Therefore the new representation of primitive allows
32768 primitives and 32768 inlined primitives which is more
than enough.

5 2014/8/5

Some of the inlined primitives are unsafe, which means
that if you send them on incorrect objects you may corrupt
the memory or crash the virtual machine. However, the opti-
mizer can guarantee at compile-time that this cannot happen.
The first unsafe operations we want to support are direct ac-
cess to the field of an objects to optimize indexable objects
access by removing bounds checks.

Access to non receiver instance variable. Instance vari-
able access in Smalltalk does not require any specific checks,
because an object cannot access any instance variable of any
other objects than itself, and at compilation time the struc-
ture of the receiver is well-known. In 2008, for our efficient
BlockClosure implementation, we added an extra bytecode
to quickly allocate an Array on the heap and quickly access
to its fields to be able to efficiently share some variables be-
tween a closure and its enclosing environment. These op-
erations were also unchecked both for performance and be-
cause you know the size of the array at compilation time.
We reused these accessing bytecodes to access the instance
variables of non receiver objects.

Extendable. The new bytecode set has 15 available byte-
codes. This allows us to extend it easily and efficiently.

Maximum number of literals increased. The maximum
number of literal extension is quite specific. To overcome
the previous limitation, we needed two changes. Firstly, we
reused the free bits in the compiled method header from the
primitive index to encode more literals. Secondly, we al-
lowed the literal access bytecode to take an extension, al-
lowing the bytecode to encode access to literals at a position
over 255 in the literal frame of the compiled method.

4.2 Generic features
Overall bytecode size. In the Pharo 3.0 release (version
30848), we installed the new compiler back-end for the new
bytecode set support. The system reached then 75190 com-
piled methods (closures are included in compiled methods).
As explained in Section 2.2, the new bytecode set impacts
only the compiled method header and the bytecode zone of
a compiled method. However, the compiled method header
has a fixed size of a word (4 bytes in 32 bits, 8 bytes in
64bits). All the bytecode zones of the compiled methods in
the image used to be encoded in 2,285,892 bytes with the
old bytecode set, and are now encoded in 1,960,187 bytes.
The new bytecode set is therefore more compact than the
old one by 14.2%. However, the difference of around 325kb
is hardly noticeable on typical Pharo application that are
around 20Mb.

Immediate objects compaction. Immediate objects are
now encoded in the bytecode instead of in the literal ar-
ray. An object in the literal array always uses a word, which
corresponds to 4 bytes in 32bits. Most immediate objects can
be encoded in a single byte, such as integer from 0 to 255,
or the 255 most common Characters. We use that property

to reduce the encoding size of most immediate objects. We
added two single extended bytecode to support the encoding
of SmallInteger and Character, the argument byte encoding
the immediate object instead of a literal in the literal frame.
These bytecodes support extension if they require extra bytes
to be encoded. We have also reserved a double extended
bytecode for SmallFloat, but we have not implemented it as
our 64bits VM version is not stable enough. Depending on
its memory manager and on its 64 bits or 32 bits form, Cog
has from 1 to 3 immediate objects: SmallInteger, Character
and SmallFloat. On the long term, all three will be always
used, this variable number of immediate objects being due
to the migration to the new Memory Manager Spur and to
64 bits.

Platform-independent. We have not introduced any plat-
form dependent instruction, so the new bytecode set remains
platform-independent.

Easy decoding. A massive improvement is related to the
bytecode decoding. The bytecodes are now arranged with
two simple rules:

• The bytecode are sorted by the number of bytes they
need to encode their functionality: single byte bytecode
are encoded between 0 and 223, extended bytecode are
encoded between 224 and 248, double extended bytecode
are encoded from 249 to 255.

• Within a number of byte categories, bytecodes are sorted
by their functionalities: push bytecode are next to each
other, send bytecodes are next to each others, ...

Easier closure decoding. A new bytecode was introduced
to encode the number of temporaries in closures. We now do
not need any more to walk over part of the closure bytecode
to find out the number of temporaries.

About backward compatibility. Some mainstream lan-
guage can hardly change their bytecode set. For example,
when Java added the extra bytecode for invokeDynamic [15],
the process to get it included in all virtual machines exe-
cuting the Java bytecode was really tedious, and they didn’t
even have to edit all the bytecode compilers because this
extra bytecode is provided for other languages on top of the
JVM and not for Java itself. However, the Cog VM clients
have two different production compilers. In addition, the
most widely used serialization framework of our clients,
Fuel[5], serialize the sources of a compiled method instead
of its bytecode to support debugging and code edition of
materialized methods in environments without decompil-
ers. Therefore, by changing the virtual machine and the two
compilers, we fixed most backward-compatibility issues.

4.3 Switching between bytecode sets to validate our
approach

Difficulties with offline converters. One of the main con-
cern, in a Smalltalk runtime, when implementing a new byte-

6 2014/8/5

code set, is how to switch a snapshot from one bytecode
set to another one. One solution is to implement an offline
converter, that can translate the compiled method of an im-
age from a bytecode set to another one. This solution has a
big disadvantage: as long as the bytecode set implementa-
tion both image-side with the compiler back-end and VM-
side with the interpreter and JIT front-end are not stable,
the Smalltalk runtime crashes almost immediately at start-
up and it is very hard to debug.

Multiple bytecode set support. When the Newspeak sup-
port was added to the Cog VM, the virtual machine was
improved to support multiple bytecode set in the same run-
time. In some Smalltalk virtual machines, such as the one of
Smalltalk/X and Visual Age, the support of multiple byte-
code set was implemented a while ago to be able to execute
both the smalltalk bytecode and the Java bytecode. Claus
Gittinger has worked on the Visual Age implementation and
helped for this Cog VM improvement.

We decided to use the multiple bytecode set feature and
we did not implement an offline converter. This approach has
a big advantage, we can debug our bytecode compiler back
end in Smalltalk on top of a VM that supports the old and
the new bytecode set.

Encoding support for multiple bytecode sets. The support
of multiple bytecode set is implemented part in the VM and
part in the compiled method header format. The sign bit of
the SmallInteger encoding the compiled method header is
used to mark the method as using one or the other bytecode
set, as shown in Figure 3. However, we discourage from us-
ing multiple bytecode set on top of the Cog VM for anything
else than image conversion from a bytecode set to another or
experiments. This is because different bytecode set have dif-
ferent limitations, and it may be that a method can be com-
piled in a bytecode set and not in another one. For example,
the number of literals is limited to 255 in the old bytecode
set and 65535 in the new one by assuming a CallPrimitive
bytecode. This means that a method with 500 literals can be
compiled n the new bytecode set but not in the old one.

Validation. Our bytecode set was validated by the imple-
mentation of a compiler back-end to generate the new byte-
code out of the source code, the implementation of the inter-
preter front-end and the implementation of the JIT compile
front-end. The whole infrastructure is running with the new
bytecode set with similar performance, validating the design.
This was easy as the compiler, the interpreter and the JIT
compiler were designed with an abstraction layer over the
bytecode set to easily change it. Moving an image from one
bytecode set to another one was also not very difficult with
the multi-bytecode set support feature of the VM.

0 x P a a a a t t t t t t f l l l l l l l l p p p p p p p p p 1

1 x a a a a t t t t t t f p l l l l l l l l l l l l l l l l 1

0

x

P

a

t

f

l

p

1

(index 31) 1 bit: sign bit, 0 selects the old bytecode set (#signFlag)

(index 30) 1 bit: flag bit, ignored by the VM (#flag)

(index 18) 1 bit: whether a large frame size is needed (#frameSize)

(index 10) 8 bits: number of literals (#numLiterals)

(index 1) 9 bits: main part of primitive number (#primitive)

(index 0) 1 bit: small integer tag (#tag)

(index 29) 1 bit: high-bit of primitive number (#primitive)

(index 25) 4 bits: number of arguments to the method (#numArgs)

(index 19) 6 bits: number of temporary variables (#numTemps)

New hybrid compiled method header

1

x

a

t

f

l

p

1

(index 31) 1 bit: sign bit, 1 selects the new bytecode set(#signFlag)

(index 30) 1 bit: flag bit, ignored by the VM (#flag)

(index 18) 1 bit: whether a large frame size is needed (#frameSize)

(index 17) 1 bit: has primitive (#hasPrimitive)

(index 1) 16 bits: number of literals (#numLiterals)

(index 0) 1 bit: small integer tag (#tag)

(index 29) 1 bit: unused

(index 25) 4 bits: number of arguments to the method (#numArgs)

(index 19) 6 bits: number of temporary variables (#numTemps)

Depending on the first bit, the new compiled method header
is encoded in one of the two format described below.

Figure 3. The new hybrid compiled method header

5. Discussion
5.1 Compaction of message sends
To improve the compactness of the bytecode set, some
Smalltalk dialects as Visual Works have a specific byte-
code for common message send. This bytecode is a single
extended bytecode, the argument byte being the index of
the common selector in a common selector array. This way,
sends with common selectors are most of the time encoded
in 2 bytes instead of 5 bytes because the selector is not in the
literal frame, at the cost of an indirection array.

A similar feature is present in the old and new bytecode
set. A list of 16 arithmetic selectors and 16 common selec-
tor have a quick encoding form. Our representation could
have been extended to have this single extended bytecode,
so we would have many more selectors encoded in a com-
pact way. However, this approach has issues. For instance,
common selector are not always the same. Therefore, on a
regular basis, the team maintaining the programming lan-
guage needs to update this common selector array depend-

7 2014/8/5

ing on the new common selectors. This is problematic for
some tools, such as some serializer which needs to version
the serialized methods to know what common selector array
it needs to use for serialization and materialization. We kept
the exact same compact selectors from the old bytecode set
to the new one to avoid this kind of issue. In addition, we had
already reached our compaction goals, so we didn’t need to
add extra complexity for more compaction.

5.2 Register-based bytecode set
Our bytecode set is stack based. This design date from
the time where there were both register based and stack
based CPU. However, modern common CPU are now all
register-based, so one can wonder if a register-based byte-
code set may not be better. At Google, the Dalvik VM team
chose to rely on a register-based bytecode for their Android
applications[4].

We didn’t move to a register-based bytecode for differ-
ent reasons. The main reason is that to generate register-
based bytecodes, you need to give to the compiler the num-
ber of available registers. This generates extra complexity
when running the application on different platforms which
may have a different number of general purpose registers.
For example, on our targets, intel x86 has 8 general purpose
registers whereas intel x86_64 has 16 general purpose reg-
isters. Moving from one architecture to another one requires
to loose performance by using less registers than available,
to recompile all the code base with the new number of gen-
eral purpose registers or to have a non trivial mapping from
a limited number of register to an extended one in the JIT
compiler.

5.3 Threaded FFI
The Cog VM now starts to support a threaded foreign func-
tion interface (FFI) to be able to call C function without
blocking the virtual machine execution. The current process
implementation requires the user to fetch a global variable
and to execute a message send to access the current process.
This implementation was good enough but does not scale for
the new multithreaded FFI. Therefore, we are considering an
extra bytecode to have a direct access on the active process.

We are not sure exactly if this bytecode will be used
and how. The original idea was to extend the language with
an extra reserved keyword, thisProcess, which will push
on the stack the active process the same way the active
context is pushed with the reserved keyword thisContext.
But adding an extra reserved keyword adds extra constraints
to the language, so we need to study other solutions.

6. Related Works
6.1 Bytecode and primitive operations
The main difference between most bytecode sets and a
Smalltalk bytecode set is that we do not encode any prim-
itive operations in the bytecode. For example, addition is

implemented as the message send named "+", and can be
sent to any Object in the system. Integer addition will be
performed only if the receiver is a SmallInteger. However,
there are no integer addition encoded in the bytecode set that
requires the operands to be SmallIntegers. Classic bytecode
sets, such as the Java one[12], encodes primitive operations.
For example the operation iadd in Java expects both operands
to be Integers. All Smalltalk instructions expect objects of
any type.

With the new bytecode set, we added encoding for inlined
primitives at bytecode level, which includes typed opera-
tions. However, this encoding will only be used only by the
runtime optimizer or very specific low-level tool such as an
ABI compiler, and is not present by default in the Smalltalk
semantics.

6.2 Bytecode set with superoperators
Several teams designed a bytecode set with superoperators to
optimize the interpreter speed[3, 8, 13]. Superoperators are
virtual machine operations automatically synthesized from
smaller operations to avoid costly per-operation overheads.
This is typically done statically at compile-time. The com-
piler detects common bytecode patterns and then extends
the bytecode set with superoperators performing the com-
mon patterns. For an interpreter, this technique drastically
improves the performance by reducing the overhead of byte-
code fetching. However, in our case we would need to adapt
many in-image tools, as well as the interpreter and the JIT to
support it. In addition, this optimization speeds up only the
interpreter, which is in most case not performance critical
as our VM heavily relies on the JIT for performance. So we
concluded that this optimization would cost too much time
to implement compared to its benefits.

6.3 Bytecode extensions
To add infinite argument values to our argument bytecodes,
we added the extension prefix bytecodes in the new bytecode
set as explained in Section 4.1. We designed the extension
this way to be able to encode one instruction per bytecode
(only the argument is variable) and because we needed a
limited number of different instructions.

Other systems have needed many more instructions, typ-
ically more than 255 which is the maximum number of dif-
ferent instructions you can encode in a byte. An example is
the Z80 CPU bytecode[16] which needed many graphical in-
structions (the Z80 is the processor of the GameBoy and the
SuperNintendo). In this case, they decided to use bytecode
prefix to indicate to the processor to fetch the next bytecode
in another bytecode table encoding other instructions. This
is a convenient trick when you want an important number of
instructions, but as we have much less different instructions
that 255 in our virtual machine, we felt the extra complexity
of this encoding didn’t worth it.

8 2014/8/5

6.4 Visual Works bytecode set
The Cog virtual machine is very different from the Visual-
Works VM. However, they both run Smalltalk runtime, so
the comparison is interesting.

BlockClosure bytecodes. One difference is that Visual-
Works has another model to activate BlockClosure. When
a BlockClosure is activated, it is present in the receiver slot
of the context, because the BlockClosure received the block
activation message. We instead have two fields in a context,
one for the method activation’s receiver and one for the clo-
sure. VisualWorks’ model seems very pure and cleaner for
the user. However, in term of the bytecode set, it means that
accessing the receiver or the receiver fields in method has to
be encoded differently between a method and a BlockClo-
sure, because in one case it access the receiver of the active
context whereas in the other case it access a variable from
the lexically enclosed environment. In our implementation,
the receiver slot of a BlockClosure context has the receiver
of the homeContext, therefore accessing the receiver and the
receiver’s fields is the same whichever activation you are.
Both implementation has pros and cons. We considered the
other approach, but we preferred to simplify the virtual ma-
chine implementation at the cost of complicating a bit the
model for the end user.

Loop encoding. Another difference is the support in the
VisualWorks bytecode set to encode the beginning of a loop.
This is convenient to be able in the JIT to generate native
code in a single pass. However, loops are not very frequent
in Smalltalk dialects: 5% of the compiled methods have a
loop in the Pharo 3.0 release image and adding in our JIT
implementation some code to handle loops didn’t increase a
lot the JIT complexity, therefore we preferred no to introduce
this bytecode.

Common selector array. VisualWorks features a common
selector array as it is described in Section 5.1. We didn’t
choose to add that in the Cog VM as explained in this
subsection.

Non immediate entries in machine code. VisualWorks has
support for non-immediate entries in machine code methods.
This means that if you can guarantee that an object is not an
immediate object, i.e., not a Character, a SmallInteger nor a
SmallFloat, you can speed up monomorphic sends sites by
targeting the method after the immediate entry. This is en-
coded in the bytecode with a specific send targeting the non-
immediate entry in the machine code. This implementation
leads to lots of complication, such as if the user change a
temporary variable in the debugger leading to an immediate
object being sent a message send with a non immediate en-
try, as well as VM-side complication as we needed to add an
extra entry in the native methods, aside from the class check
entry and unchecked entry.

7. Future work and Conclusion
The reason why we needed a new bytecode set was to be able
to implement a runtime optimizer in the JIT compiler to op-
timize methods in a bytecode to bytecode fashion. This op-
timizer will therefore have some similarities with Soot[14],
the Java bytecode to bytecode optimizer, but will be used at
runtime and not statically. As the bytecode set is now ready,
one needs to design and implement the runtime optimizer.

Reportedly, it is very difficult to produce correct mar-
shaling code for FFI calls on some architectures, especially
on x86_64bits[10], which is now very common. Generating
marshaling code in the virtual machine is tedious, as debug-
ging the virtual machine has always been much more com-
plex than debugging high level languages, even with very
good dedicated tools. One could implement the marshaling
code of FFI calls by generating compiled methods encoding
low level instructions with the unsafe operations of the new
bytecode set in order to simplify this process.

In this paper, we showed how we designed a bytecode set
suitable for runtime bytecode to bytecode optimizations for
the Cog VM and its Smalltalk clients.

This new bytecode set encodes an extendable set of un-
safe operations to provide information to the JIT compiler
for producing better machine code, encodes primitives in a
way the optimizer can inline them, has many available byte-
codes to be easily extended and fixes the old bytecode set
issues we described.

Acknowledgements
We thank Stéphane Ducasse, Stefan Marr and Marcus Denker
for their reviews of early draft of this article. We thank Dan
Ingalls that shared his knowledge about the old bytecode set
design. We thank Claus Gittinger for helping the Cog VM to
support multiple bytecode sets.

This work was supported by Ministry of Higher Educa-
tion and Research, Nord-Pas de Calais Regional Council,
FEDER through the ’Contrat de Projets Etat Region (CPER)
2007-2013’ and the MEALS Marie Curie Actions program
FP7-PEOPLE-2011- IRSES MEALS.

References
[1] A. P. Black, S. Ducasse, O. Nierstrasz, D. Pollet, D. Cassou,

and M. Denker. Pharo by Example. Square Bracket Asso-
ciates, Kehrsatz, Switzerland, 2009.

[2] R. Bodík, R. Gupta, and V. Sarkar. Abcd: Eliminating array
bounds checks on demand. In Proceedings of the ACM SIG-
PLAN 2000 Conference on Programming Language Design
and Implementation, PLDI ’00, pages 321–333, New York,
NY, USA, 2000.

[3] P. Bonzini. Implementing a high-performance smalltalk inter-
preter with genbc and genvm.

[4] D. Bornstein. Dalvik virtual machine internal talk, google i/o,
2008.

9 2014/8/5

[5] M. Dias, M. Martinez Peck, S. Ducasse, and G. Arévalo. Fuel:
A fast general-purpose object graph serializer. Journal of
Software: Practice and Experience, 2012.

[6] ECMA. ECMA-334: C# Language Specification. ECMA (Eu-
ropean Association for Standardizing Information and Com-
munication Systems), Geneva, Switzerland, dec 2001.

[7] U. Hölzle and D. Ungar. Optimizing dynamically-dispatched
calls with run-time type feedback. In Proceedings of the
ACM SIGPLAN 1994 Conference on Programming Language
Design and Implementation, PLDI ’94, pages 326–336, New
York, NY, USA, 1994.

[8] A. E. Kevin Casey and D. Gregg. Optimizations for a java in-
terpreter using instruction set enhancement. Technical report,
Trinity College Dublin, sept 2005.

[9] M. Latendresse and M. Feeley. Generation of fast interpreters
for huffman compressed bytecode. In Proceedings of the 2003
Workshop on Interpreters, Virtual Machines and Emulators,
IVME ’03, pages 32–40, New York, NY, USA, 2003. ACM.

[10] A. J. Michael Matz, Jan Hubicka and M. Mitchell. System
v application binary interface amd64 architecture processor
supplement.

[11] E. Miranda. Cog blog. speeding up croquet and squeak with a
new open-source vm from qwaq, 2008.

[12] Oracle. The java virtual machine specification, java se 8
edition.

[13] Proebsting and T. A. Optimizing an ansi c interpreter with
superoperators. In Proceedings of the 22Nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, POPL 1995, pages 322–332, New York, NY, USA,
1995. ACM.

[14] P. L. Raja Vall’ee-Rai, P. P. Clark Verbrugge, and F. Qian.
Soot (poster session): a java bytecode optimization and an-
notation framework. In Proceedings of the Conference on
Object-Oriented Programming, Systems, Languages, and Ap-
plications (Addendum), OOPSLA 2000, page 113–114, New
York, NY, USA, 2000. ACM.

[15] J. R. Rose. Bytecodes meet combinators: Invokedynamic on
the jvm. In Proceedings of the Third Workshop on Virtual Ma-
chines and Intermediate Languages, VMIL ’09, pages 2:1–
2:11, New York, NY, USA, 2009.

[16] ZiLOG. Z80 cpu user’s manual.

10 2014/8/5

A
.

T
he

ol
d

by
te

co
de

se
t

O
ld

 B
yt

e
co

d
e

 s
e

t

0
1

2
3

4
5

6
7

8
9

1
0

11
1

2
1

3
1

4
1

5

0
1

2
3

4
5

6
7

8
9

1
0

11
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
2

6
2

7
2

8
2

9
3

0
3

1
P

u
sh

 T
e

m
p

P
u

sh
 T

e
m

p
P

u
sh

 T
e

m
p

P
u

sh
 T

e
m

p
P

u
sh

 T
e

m
p

P
u

sh
 T

e
m

p
P

u
sh

 T
e

m
p

P
u

sh
 T

e
m

p
P

u
sh

 T
e

m
p

P
u

sh
 T

e
m

p
P

u
sh

 T
e

m
p

P
u

sh
 T

e
m

p
P

u
sh

 T
e

m
p

P
u

sh
 T

e
m

p
P

u
sh

 T
e

m
p

P
u

sh
 T

e
m

p
0

1
2

3
4

5
6

7
8

9
1

0
11

1
2

1
3

1
4

1
5

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

0
1

2
3

4
5

6
7

8
9

1
0

11
1

2
1

3
1

4
1

5
4

8
4

9
5

0
5

1
5

2
5

3
5

4
5

5
5

6
5

7
5

8
5

9
6

0
6

1
6

2
6

3

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

0
1

2
3

4
5

6
7

8
9

1
0

11
1

2
1

3
1

4
1

5
8

0
8

1
8

2
8

3
8

4
8

5
8

6
8

7
8

8
8

9
9

0
9

1
9

2
9

3
9

4
9

5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

9
6

9
7

9
8

9
9

1
0

0
1

0
1

1
0

2
1

0
3

1
0

4
1

0
5

1
0

6
1

0
7

1
0

8
1

0
9

11
0

11
1

0
1

2
3

4
5

6
7

0
1

2
3

4
5

6
7

11
2

11
3

11
4

11
5

11
6

11
7

11
8

11
9

1
2

0
1

2
1

1
2

2
1

2
3

1
2

4
1

2
5

1
2

6
1

2
7

P
u

sh
 tr

u
e

P
u

sh
 fa

ls
e

P
u

sh
 n

il
P

u
sh

 -
1

P
u

sh
 0

P
u

sh
 1

P
u

sh
 2

R
e

tu
rn

 t
ru

e
R

e
tu

rn
 f

a
ls

e
R

e
tu

rn
 n

il
R

e
tu

rn
B

lo
ck

 R
e

tu
rn

1
2

8
1

2
9

1
3

0
1

3
1

1
3

2
1

3
3

1
3

4
1

3
5

1
3

6
1

3
7

1
3

8
1

3
9

1
4

0
1

4
1

1
4

2
1

4
3

1
4

4
1

4
5

1
4

6
1

4
7

1
4

8
1

4
9

1
5

0
1

5
1

1
5

2
1

5
3

1
5

4
1

5
5

1
5

6
1

5
7

1
5

8
1

5
9

Ju
m

p
Ju

m
p

Ju
m

p
Ju

m
p

Ju
m

p
Ju

m
p

Ju
m

p
Ju

m
p

Ju
m

p
F

a
ls

e
Ju

m
p

F
a

ls
e

Ju
m

p
F

a
ls

e
Ju

m
p

F
a

ls
e

Ju
m

p
F

a
ls

e
Ju

m
p

F
a

ls
e

Ju
m

p
F

a
ls

e
Ju

m
p

F
a

ls
e

1
2

3
4

5
6

7
8

1
2

3
4

5
6

7
8

1
6

0
1

6
1

1
6

2
1

6
3

1
6

4
1

6
5

1
6

6
1

6
7

1
6

8
1

6
9

1
7

0
1

7
1

1
7

2
1

7
3

1
7

4
1

7
5

L
o

n
g

 J
u

m
p

L
o

n
g

 J
u

m
p

L
o

n
g

 J
u

m
p

L
o

n
g

 J
u

m
p

L
o

n
g

 J
u

m
p

L
o

n
g

 J
u

m
p

L
o

n
g

 J
u

m
p

L
o

n
g

 J
u

m
p

-1
0

2
4

 to
 -

7
6

9
-7

6
8

 to
 -

5
1

3
-5

1
2

 to
 -

2
5

7
-2

5
6

 to
 -

1
0

 to
 2

5
5

2
5

6
 to

 5
1

2
5

1
3

 to
 7

6
8

7
6

8
 to

 1
0

2
4

0
 t

o
 2

5
5

2
5

6
 t

o
 5

11
5

1
2

 t
o

 7
6

8
7

6
9

 t
o

 1
0

2
4

0
 t

o
 2

5
5

2
5

6
 t

o
 5

11
5

1
2

 t
o

 7
6

8
7

6
9

 t
o

 1
0

2
4

1
7

6
1

7
7

1
7

8
1

7
9

1
8

0
1

8
1

1
8

2
1

8
3

1
8

4
1

8
5

1
8

6
1

8
7

1
8

8
1

8
9

1
9

0
1

9
1

+
-

<
>

<
=

>
=

=
~

=
*

/
\\

@
b

itS
h

ift
:

//
b

itA
n

d
:

b
itO

r:
1

9
2

1
9

3
1

9
4

1
9

5
1

9
6

1
9

7
1

9
8

1
9

9
2

0
0

2
0

1
2

0
2

2
0

3
2

0
4

2
0

5
2

0
6

2
0

7
a

t:
a

t:
p

u
t:

si
ze

n
e

xt
n

e
xt

P
u

t:
a

tE
n

d
=

=
cl

a
ss

B
lo

ck
 C

o
p

y:
va

lu
e

va
lu

e:
d

o
:

n
e

w
n

e
w

:
(P

o
in

t)
 x

(P
o

in
t)

 y
2

0
8

2
0

9
2

1
0

2
11

2
1

2
2

1
3

2
1

4
2

1
5

2
1

6
2

1
7

2
1

8
2

1
9

2
2

0
2

2
1

2
2

2
2

2
3

0
1

2
3

4
5

6
7

8
9

1
0

11
1

2
1

3
1

4
1

5
2

2
4

2
2

5
2

2
6

2
2

7
2

2
8

2
2

9
2

3
0

2
3

1
2

3
2

2
3

3
2

3
4

2
3

5
2

3
6

2
3

7
2

3
8

2
3

9

0
1

2
3

4
5

6
7

8
9

1
0

11
1

2
1

3
1

4
1

5
2

4
0

2
4

1
2

4
2

2
4

3
2

4
4

2
4

5
2

4
6

2
4

7
2

4
8

2
4

9
2

5
0

2
5

1
2

5
2

2
5

3
2

5
4

2
5

5

0
1

2
3

4
5

6
7

8
9

1
0

11
1

2
1

3
1

4
1

5

(1
)

3
2

 fi
rs

t l
it

a
s

se
le

ct
o

r
a

n
d

 u
p

 to
 7

 a
rg

s
(2

)
6

4
 fi

rs
t l

it
a

s
se

le
ct

o
r

a
n

d
 u

p
 to

 3
 a

rg
s

P
us

h

R
e

ce
iv

er

V
a

ria
b

le

P
us

h

R
e

ce
iv

er

V
a

ria
b

le

P
us

h

R
e

ce
iv

e
r

V
a

ria
b

le

P
us

h

R
e

ce
iv

er

V
a

ria
b

le

P
us

h

R
e

ce
iv

er

V
a

ria
b

le

P
us

h

R
e

ce
iv

er

V
a

ria
b

le

P
us

h
R

e
ce

iv
er

V

a
ria

b
le

P
us

h

R
e

ce
iv

er

V
a

ria
b

le

P
us

h

R
e

ce
iv

er

V
a

ria
b

le

P
us

h

R
e

ce
iv

e
r

V
a

ria
b

le

P
us

h

R
e

ce
iv

e
r

V
a

ria
b

le

P
us

h

R
e

ce
iv

er

V
a

ria
b

le

P
us

h

R
e

ce
iv

er

V
a

ria
b

le

P
us

h
R

e
ce

iv
er

V

a
ria

b
le

P
us

h

R
e

ce
iv

er

V
a

ria
b

le

P
us

h

R
e

ce
iv

er

V
a

ria
b

le

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
V

a
ria

b
le

P
us

h
 L

ite
ra

l
V

a
ria

b
le

P
us

h
 L

ite
ra

l
V

a
ria

b
le

P
us

h
 L

ite
ra

l
V

a
ria

b
le

P
us

h
 L

ite
ra

l
V

a
ria

b
le

P
us

h
 L

ite
ra

l
V

a
ria

b
le

P
us

h
 L

ite
ra

l
V

a
ria

b
le

P
us

h
 L

ite
ra

l
V

a
ria

b
le

P
us

h
 L

ite
ra

l
V

a
ria

b
le

P
us

h
 L

ite
ra

l
V

a
ria

b
le

P
us

h
 L

ite
ra

l
V

a
ria

b
le

P
us

h
 L

ite
ra

l
V

a
ria

b
le

P
us

h
 L

ite
ra

l
V

a
ria

b
le

P
us

h
 L

ite
ra

l
V

a
ria

b
le

P
us

h
 L

ite
ra

l
V

a
ria

b
le

P
us

h
 L

ite
ra

l
V

a
ria

b
le

P
us

h
 L

ite
ra

l
V

a
ria

b
le

P
us

h
 L

ite
ra

l
V

a
ria

b
le

P
us

h
 L

ite
ra

l
V

a
ria

b
le

P
us

h
 L

ite
ra

l
V

a
ria

b
le

P
us

h
 L

ite
ra

l
V

a
ria

b
le

P
us

h
 L

ite
ra

l
V

a
ria

b
le

P
us

h
 L

ite
ra

l
V

a
ria

b
le

P
us

h
 L

ite
ra

l
V

a
ria

b
le

P
us

h
 L

ite
ra

l
V

a
ria

b
le

P
us

h
 L

ite
ra

l
V

a
ria

b
le

P
us

h
 L

ite
ra

l
V

a
ria

b
le

P
us

h
 L

ite
ra

l
V

a
ria

b
le

P
us

h
 L

ite
ra

l
V

a
ria

b
le

P
us

h
 L

ite
ra

l
V

a
ria

b
le

P
us

h
 L

ite
ra

l
V

a
ria

b
le

P
us

h
 L

ite
ra

l
V

a
ria

b
le

P
op

In
to

R

e
ce

iv
er

V

a
ria

b
le

P
op

In
to

R

e
ce

iv
er

V

a
ria

b
le

P
op

In
to

R

e
ce

iv
e

r
V

a
ria

b
le

P
op

In
to

R

e
ce

iv
er

V

a
ria

b
le

P
op

In
to

R

e
ce

iv
er

V

a
ria

b
le

P
op

In
to

R

e
ce

iv
er

V

a
ria

b
le

P
op

In
to

R

e
ce

iv
er

V

a
ria

b
le

P
op

In
to

R

e
ce

iv
er

V

a
ria

b
le

P
op

In
to

Te

m
p

P
o

p
In

to

Te
m

p
P

op
In

to

Te
m

p
P

op
In

to

Te
m

p
P

op
In

to

Te
m

p
P

op
In

to

Te
m

p
P

op
In

to

Te
m

p
P

op
In

to

Te
m

p

P
us

h

R
e

ce
iv

e
r

R
e

tu
rn

re

ce
iv

e
r

(0
)

P
us

h

L
o

n
g

F
o

rm
(0

)
S

to
re

L

o
n

g
F

o
rm

(0
)

P
o

pI
n

to

L
o

n
g

F
o

rm

(1
)

S
in

gl
e

E

xt
en

d
ed

se

n
d

(3
)

D
o

u
bl

e

e
xt

e
n

d
e

d

S
up

e
r

se
n

d
lit

e
ra

l
se

le
ct

o
r

(2
)

S
ec

o
n

d
e

xt
en

d
ed

se

n
d

P
op

 S
ta

ck

to
p

D
u

pl
ic

a
te

S

ta
ck

 t
o

p
P

us
h

 th
is

C

o
n

te
xt

(4
)

P
u

sh
 o

r
P

o
p

In
to

 A
rr

a
y

(5
)

P
us

h

Te
m

p
 in

te

m
p

 V
e

ct
o

r

(5
)

S
to

re

Te
m

p
 in

te

m
p

 V
e

ct
o

r

(5
)

P
o

p
in

to

Te
m

p
 in

te

m
p

 V
e

ct
o

r

(6
)

P
us

h

C
lo

su
re

L
o

ng

Ju
m

p
T

ru
e

L
o

ng

Ju
m

p
T

ru
e

L
o

ng

Ju
m

p
T

ru
e

L
o

ng

Ju
m

p
T

ru
e

L
o

ng

Ju
m

p
F

a
ls

e
L

o
ng

Ju

m
p

F
a

ls
e

L
o

ng

Ju
m

p
F

a
ls

e
L

o
ng

Ju

m
p

F
a

ls
e

S
en

d
0

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
0

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
 0

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
0

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
0

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
0

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
0

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
0

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
0

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
 0

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
 0

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
0

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
0

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
0

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
0

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
0

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
1

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
1

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
 1

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
1

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
1

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
1

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
1

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
1

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
1

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
 1

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
 1

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
1

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
1

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
1

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
1

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
1

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
2

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
2

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
 2

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
2

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
2

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
2

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
2

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
2

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
2

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
 2

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
 2

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
2

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
2

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
2

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
2

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
2

 a
rg

s
se

le
ct

o
r

a
t

(0
)

jjk
kk

kk
k,

 jj
 =

 R
e

ce
iv

e
r

V
a

ria
b

le
, T

e
m

p
o

ra
ry

 L
o

ca
tio

n
, L

ite
ra

l C
o

n
st

a
n

t /
 Il

le
g

a
l,

L
ite

ra
l V

a
ria

b
le

, k
kk

kk
k

th
e

 in
d

e
x

(3
)

iii
jjj

jj
kk

kk
kk

kk
, i

ii
=

 S
e

n
d

, S
e

n
d

 S
u

p
e

r,
 P

u
sh

 R
e

ce
iv

e
r

V
a

ria
b

le
, P

u
sh

 L
ite

ra
l C

o
n

st
a

n
t,

P
u

sh
 L

ite
ra

l V
a

ria
b

le
,

S
to

re
 R

e
ce

iv
e

r
V

a
ria

b
le

, S
to

re
-P

o
p

 R
e

ce
iv

e
r

V
a

ria
b

le
, S

to
re

 L
ite

ra
l V

a
ria

b
le

, i
n

d
e

x
=

 k
kk

kk
kk

k,
 fo

r
se

n
d

s
jjj

jj
=

 n
u

m
A

rg
s

(4
)

jk
kk

kk
kk

, P
u

sh
 (

A
rr

a
y

n
e

w
: k

kk
kk

kk
)

(j
=

 0
)

o
r

P
o

p
 k

kk
kk

kk
 e

le
m

e
n

ts
 in

to
: (

A
rr

a
y

n
e

w
: k

kk
kk

kk
)

(j
=

 1
)

(5
)

kk
kk

kk
kk

 jj
jjj

jjj
, t

e
m

p
 A

t k
kk

kk
kk

k
In

 te
m

p
V

e
ct

 A
t j

jjj
jjj

j
(6

)
lll

lk
kk

k
jjj

jjj
jj

iii
iii

ii,
 P

u
sh

 C
lo

su
re

 N
u

m
 C

o
p

ie
d

 ll
ll

N
u

m
 A

rg
s

kk
kk

 B
lo

ck
S

iz
e

 jj
jjj

jjj
iii

iii
ii

Fi
gu

re
4.

T
he

ol
d

by
te

co
de

se
t

11 2014/8/5

B
.

T
he

ne
w

by
te

co
de

se
t

N
e

w
 B

yt
e

co
d

e
 s

e
t

0
1

2
3

4
5

6
7

8
9

1
0

11
1

2
1

3
1

4
1

5

0
1

2
3

4
5

6
7

8
9

1
0

11
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
2

6
2

7
2

8
2

9
3

0
3

1

0
1

2
3

4
5

6
7

8
9

1
0

11
1

2
1

3
1

4
1

5
3

2
3

3
3

4
3

5
3

6
3

7
3

8
3

9
4

0
4

1
4

2
4

3
4

4
4

5
4

6
4

7

0
1

2
3

4
5

6
7

8
9

1
0

11
1

2
1

3
1

4
1

5
4

8
4

9
5

0
5

1
5

2
5

3
5

4
5

5
5

6
5

7
5

8
5

9
6

0
6

1
6

2
6

3

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

P
u

sh
 T

e
m

p
P

u
sh

 T
e

m
p

P
u

sh
 T

e
m

p
P

u
sh

 T
e

m
p

P
u

sh
 T

e
m

p
P

u
sh

 T
e

m
p

P
u

sh
 T

e
m

p
P

u
sh

 T
e

m
p

P
u

sh
 T

e
m

p
P

u
sh

 T
e

m
p

P
u

sh
 T

e
m

p
P

u
sh

 T
e

m
p

P
u

sh
 t

ru
e

P
u

sh
 f

a
ls

e
P

u
sh

 n
il

0
1

2
3

4
5

6
7

8
9

1
0

11
8

0
8

1
8

2
8

3
8

4
8

5
8

6
8

7
8

8
8

9
9

0
9

1
9

2
9

3
9

4
9

5

P
u

sh
 0

P
u

sh
 1

R
e

tu
rn

 t
ru

e
R

e
tu

rn
 f

a
ls

e
R

e
tu

rn
 n

il
R

e
tu

rn
 T

o
p

9
6

9
7

9
8

9
9

1
0

0
1

0
1

1
0

2
1

0
3

1
0

4
1

0
5

1
0

6
1

0
7

1
0

8
1

0
9

11
0

11
1

+
-

<
>

<
=

>
=

=
~

=
*

/
\\

@
b

itS
h

ift
:

//
b

itA
n

d
:

b
itO

r:
11

2
11

3
11

4
11

5
11

6
11

7
11

8
11

9
1

2
0

1
2

1
1

2
2

1
2

3
1

2
4

1
2

5
1

2
6

1
2

7
a

t:
a

t:
p

u
t:

si
ze

n
e

xt
n

e
xt

P
u

t:
a

tE
n

d
=

=
cl

a
ss

va
lu

e
va

lu
e:

d
o

:
n

e
w

n
e

w
:

(P
o

in
t)

 x
(P

o
in

t)
 y

1
2

8
1

2
9

1
3

0
1

3
1

1
3

2
1

3
3

1
3

4
1

3
5

1
3

6
1

3
7

1
3

8
1

3
9

1
4

0
1

4
1

1
4

2
1

4
3

0
1

2
3

4
5

6
7

8
9

1
0

11
1

2
1

3
1

4
1

5
1

4
4

1
4

5
1

4
6

1
4

7
1

4
8

1
4

9
1

5
0

1
5

1
1

5
2

1
5

3
1

5
4

1
5

5
1

5
6

1
5

7
1

5
8

1
5

9

0
1

2
3

4
5

6
7

8
9

1
0

11
1

2
1

3
1

4
1

5
1

6
0

1
6

1
1

6
2

1
6

3
1

6
4

1
6

5
1

6
6

1
6

7
1

6
8

1
6

9
1

7
0

1
7

1
1

7
2

1
7

3
1

7
4

1
7

5

0
1

2
3

4
5

6
7

8
9

1
0

11
1

2
1

3
1

4
1

5
1

7
6

1
7

7
1

7
8

1
7

9
1

8
0

1
8

1
1

8
2

1
8

3
1

8
4

1
8

5
1

8
6

1
8

7
1

8
8

1
8

9
1

9
0

1
9

1
Ju

m
p

Ju
m

p
Ju

m
p

Ju
m

p
Ju

m
p

Ju
m

p
Ju

m
p

Ju
m

p
Ju

m
p

T
ru

e
Ju

m
p

T
ru

e
Ju

m
p

T
ru

e
Ju

m
p

T
ru

e
Ju

m
p

T
ru

e
Ju

m
p

T
ru

e
Ju

m
p

T
ru

e
Ju

m
p

T
ru

e
1

2
3

4
5

6
7

8
1

2
3

4
5

6
7

8
1

9
2

1
9

3
1

9
4

1
9

5
1

9
6

1
9

7
1

9
8

1
9

9
2

0
0

2
0

1
2

0
2

2
0

3
2

0
4

2
0

5
2

0
6

2
0

7

Ju
m

p
F

a
ls

e
Ju

m
p

F
a

ls
e

Ju
m

p
F

a
ls

e
Ju

m
p

F
a

ls
e

Ju
m

p
F

a
ls

e
Ju

m
p

F
a

ls
e

Ju
m

p
F

a
ls

e
Ju

m
p

F
a

ls
e

1
2

3
4

5
6

7
8

0
1

2
3

4
5

6
7

2
0

8
2

0
9

2
1

0
2

11
2

1
2

2
1

3
2

1
4

2
1

5
2

1
6

2
1

7
2

1
8

2
1

9
2

2
0

2
2

1
2

2
2

2
2

3

P
o

p
In

to
 T

e
m

p
P

o
p

In
to

 T
e

m
p

P
o

p
In

to
 T

e
m

p
P

o
p

In
to

 T
e

m
p

P
o

p
In

to
 T

e
m

p
P

o
p

In
to

 T
e

m
p

P
o

p
In

to
 T

e
m

p
P

o
p

In
to

 T
e

m
p

0
1

2
3

4
5

6
7

2
2

4
2

2
5

2
2

6
2

2
7

2
2

8
2

2
9

2
3

0
2

3
1

2
3

2
2

3
3

2
3

4
2

3
5

2
3

6
2

3
7

2
3

8
2

3
9

E
xt

e
n

si
o

n
 A

E
xt

e
n

si
o

n
 B

P
u

sh
 I

n
te

g
e

r

2
4

0
2

4
1

2
4

2
2

4
3

2
4

4
2

4
5

2
4

6
2

4
7

2
4

8
2

4
9

2
5

0
2

5
1

2
5

2
2

5
3

2
5

4
2

5
5

P
us

h

R
e

ce
iv

e
r

V
a

ria
b

le

P
us

h

R
e

ce
iv

er

V
a

ria
b

le
P

us
h

 R
ec

e
iv

e
r

V
a

ria
b

le

P
us

h

R
e

ce
iv

e
r

V
a

ria
b

le

P
us

h

R
e

ce
iv

e
r

V
a

ria
b

le

P
us

h

R
e

ce
iv

er

V
a

ria
b

le

P
us

h

R
e

ce
iv

er

V
a

ria
b

le

P
us

h

R
e

ce
iv

e
r

V
a

ria
b

le

P
us

h

R
e

ce
iv

e
r

V
a

ria
b

le

P
us

h

R
e

ce
iv

er

V
a

ria
b

le

P
us

h

R
e

ce
iv

er

V
a

ria
b

le

P
us

h

R
e

ce
iv

e
r

V
a

ria
b

le

P
us

h

R
e

ce
iv

er

V
a

ria
b

le

P
us

h

R
e

ce
iv

er

V
a

ria
b

le

P
us

h

R
e

ce
iv

e
r

V
a

ria
b

le

P
us

h

R
e

ce
iv

e
r

V
a

ria
b

le

P
us

h
 L

ite
ra

l
V

a
ria

b
le

P
us

h
 L

ite
ra

l
V

a
ria

b
le

P
us

h
 L

ite
ra

l
V

a
ria

b
le

P
us

h
 L

ite
ra

l
V

a
ria

b
le

P
us

h
 L

ite
ra

l
V

a
ria

b
le

P
us

h
 L

ite
ra

l
V

a
ria

b
le

P
us

h
 L

ite
ra

l
V

a
ria

b
le

P
us

h
 L

ite
ra

l
V

a
ria

b
le

P
us

h
 L

ite
ra

l
V

a
ria

b
le

P
us

h
 L

ite
ra

l
V

a
ria

b
le

P
us

h
 L

ite
ra

l
V

a
ria

b
le

P
us

h
 L

ite
ra

l
V

a
ria

b
le

P
us

h
 L

ite
ra

l
V

a
ria

b
le

P
us

h
 L

ite
ra

l
V

a
ria

b
le

P
us

h
 L

ite
ra

l
V

a
ria

b
le

P
us

h
 L

ite
ra

l
V

a
ria

b
le

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h
 L

ite
ra

l
C

o
n

st
a

n
t

P
us

h

R
e

ce
iv

e
r

P
us

h
 c

o
nt

ex
t

P
u

sh
 p

ro
ce

ss
D

u
pl

ic
at

e
S

ta
ck

 T
o

p
R

e
tu

rn

R
e

ce
iv

e
r

B
lo

ck
R

e
tu

rn

N
il

B
lo

ck
R

e
tu

rn

To
p

N
o

p

S
en

d
 0

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
 0

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
0

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
 0

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
 0

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
 0

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
0

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
 0

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
 0

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
 0

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
 0

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
 0

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
 0

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
0

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
 0

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
 0

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
 1

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
 1

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
1

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
 1

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
 1

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
 1

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
1

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
 1

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
 1

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
 1

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
 1

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
 1

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
 1

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
1

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
 1

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
 1

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
 2

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
 2

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
2

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
 2

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
 2

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
 2

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
2

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
 2

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
 2

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
 2

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
 2

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
 2

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
 2

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
2

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
 2

 a
rg

s
se

le
ct

o
r

a
t

S
en

d
 2

 a
rg

s
se

le
ct

o
r

a
t

P
o

p
In

to

R
e

ce
iv

e
r

V
a

ria
b

le

P
o

p
In

to

R
e

ce
iv

er

V
a

ria
b

le

P
op

In
to

R

e
ce

iv
er

V

a
ria

b
le

P
op

In
to

R

e
ce

iv
e

r
V

a
ria

b
le

P
op

In
to

R

e
ce

iv
er

V

a
ria

b
le

P
op

In
to

R

e
ce

iv
er

V

a
ria

b
le

P
op

In
to

R

e
ce

iv
e

r
V

a
ria

b
le

P
o

p
In

to

R
e

ce
iv

e
r

V
a

ria
b

le

P
op

 S
ta

ck

To
p

E
xt

e
nd

e
d

P
us

h
 R

ec
e

iv
e

r
V

a
ria

b
le

E
xt

en
d

ed

P
us

h
 L

ite
ra

l
V

a
ria

b
le

E
xt

en
d

ed

P
u

sh
 L

ite
ra

l

E
xt

en
d

ed

P
us

h

Te
m

po
ra

ry

V
a

ria
b

le

P
us

h
 N

C

lo
su

re

Te
m

p
s

P
us

h

C
h

a
ra

ct
e

r
P

us
h

 o
r

P
o

p
In

to
 A

rr
a

y

E
xt

en
d

ed

S
en

d
L

ite
ra

l
se

le
ct

o
r

S
en

d
 T

o
su

pe
rc

la
ss

L

ite
ra

l
se

le
ct

o
r

T
ra

p
 o

n

B
eh

a
vi

or
/

A
rr

a
y

of

B
e

h
a

vi
o

r

E
xt

en
d

ed

Ju
m

p

E
xt

en
d

ed

P
op

 A
nd

Ju

m
p

 T
ru

e

E
xt

en
d

ed

P
op

 A
n

d

Ju
m

p
 F

a
ls

e

E
xt

en
d

ed

P
o

p
In

to

R
e

ce
iv

e
r

V
a

ria
b

le

E
xt

en
d

ed

P
op

In
to

L

ite
ra

l
V

a
ria

b
le

E
xt

en
d

ed

P
op

In
to

Te

m
po

ra
ry

V

a
ria

b
le

E
xt

en
d

ed

S
to

re

R
e

ce
iv

e
r

V
a

ria
b

le

E
xt

en
d

ed

S
to

re
 L

ite
ra

l
V

a
ria

b
le

E
xt

en
d

ed

S
to

re

Te
m

po
ra

ry

V
a

ria
b

le

C
a

ll
P

rim
iti

ve

C
a

ll
in

lin
ed

P

rim
iti

ve

R
e

se
rv

e
d

 fo
r

P
u

sh
 F

lo
a

t
P

u
sh

C
lo

su
re

C
o

p
y

P
us

h
 T

em
p

in

te
m

p
 V

e
ct

o
r

S
to

re
 T

e
m

p
 in

te

m
p

 V
e

ct
o

r

P
op

 in
to

Te

m
p

in
 te

m
p

V
e

ct
o

r

Fi
gu

re
5.

T
he

ne
w

by
te

co
de

se
t

12 2014/8/5

	Introduction
	The Cog bytecode execution and memory model
	Vocabulary
	The Cog compiled method format

	Challenges for a good bytecode set
	Generic challenges
	Challenges specific to our goals
	Current Bytecode issues

	New bytecode set features
	Adaptive optimization features
	Generic features
	Switching between bytecode sets to validate our approach

	Discussion
	Compaction of message sends
	Register-based bytecode set
	Threaded FFI

	Related Works
	Bytecode and primitive operations
	Bytecode set with superoperators
	Bytecode extensions
	Visual Works bytecode set

	Future work and Conclusion
	The old bytecode set
	The new bytecode set

