
Page 1

1 1

My name is Niall Ross. My name is not Alan Knight. I started working with
Glorp in 2004. I started doing weird stuff with Glorp in 2005. About a year
ago, Alan gave me the Glorp OS project passwords, and Cincom put me in
change of Glorp in VisualWorks.

In 90 minutes, I hope to show you some of what I know about Glorp, cover all
my material, and even, with luck, get far enough to expose brutally the limits
of my own knowledge and the fact that I am not Alan Knight.

DEMOS: to keep it simple and accessible, the demo code reuses existing
GlorpTests for the most part. To join in those demos you can share, or just see
the code on your machine, load GlorpTests. We’ll be mainly using
GlorpDemoDescriptorSystem and GlorpVideoDescriptorSystem. – and where
we don’t, you’ll just have to watch my machine.

SHOW DefaultLogin.

Page 2

2

GLORP is the brainchild of Alan Knight, longtime head of our engineering
team (now trying to make DART benefit from Smalltalk’s insights).

Before he came to Cincom, Alan worked on TopLink. That taught him a great
deal about object-relational mapping. GLORP was Alan getting TopLink
right. As the saying goes, first make it run, then make it right. (And last make
it fast , which I will talk about, but see also my colleague Tom Robinson’s talk
later today.)

GLORP has no ActiveRecord-like style restrictions, but more importantly,
Glorp remains flexible all through the lifecycle. Too many frameworks are
like Ruby on Rails; high speed in a greenfields situation and until you reach
the end of the line, then suddenly abandoning you in untamed jungle. GLORP,
as the product of a‘make it right’ phase, deals better with the real world.

Page 3

Why did I think there was need for a talk on Glorp. Well, Glorp is amazing.
Glorp’s documentation is less amazing, but we’re making it better. Let’s look
at some existing resources.

- Nevin Pratt’s guide, though old, shows well how the back-end works, but is
unfinished.

- Roger Witney’s tutorial is a good get-started guide. Roger, like me, doesn’t
know everything about Glorp and has the honesty to say so.

- Our GlorpGuide.pdf will give you a clear start on the basics.

- Our ObjectStudio Mapping Tool guide will show you how to use that UI as a
front-end to Glorp.

I decided to give this talk precisely to kick myself into documenting the vast
amount of stuff that was not documented and not obvious.

3

Page 4

We’ll look at the architecture of of Glorp to try and give a context for what
follows. Then we’ll walk through the process. You need to represent your
application’s persistence schema in Glorp. An initial step of generating or
writing will give me a brief opportunity for some boasting about recent
developments and cool tools, but then we’ll revert to the by-hand way and step
through refining schemas. Next, how to read and write – that’s what it’s all
about. Lastly we’ll look at concurrency: how does Glorp address transactions.

Part of the purpose of this talk was to make me set down what I’ve had to
work out over the years, things Alan has told me, etc. - and to discover what I
did not yet know, or not well enough to explain it clearly. You can all read,
and you can all master the basics of Glorp’s #read: command in trivial ‘one
class=one table’ scenarios. (Use Roger’s course to help you on that.) I’ll try to
look at stuff that to Alan is doubtless also basic, but was not immediately
obvious, at least to me.

Of course we’re going to cover a lot of basics in order to highlight those
points.

4

Page 5

In VisualWorks, the Store menu lets you open the store workbook on any
Store login.

5

Page 6

DATABASE LAYER: outside image (all other layers are within the image)

Supported databases include: Oracle, Oracle ODBC, PostgreSQL, Microsoft
SQL Server, DB2, SQLite, Firebird/InterBase, and MySQL, also Microsoft
Access, Ocelot, Adabas.

EXDI LAYER: any Glorp-using image will already have an ‘external
database interface’ layer which knows how to communicate with relational
databases. This EXDI layer must reify the database’ commit/rollback state, at
least in the form of commands it can pass on but more often as an actual object
caching the state (the ExternalDatabaseTransaction object of the diagram).

Subclasses of Glorp’s DatabaseAccessor class provide the dialect indirection
for communicating with the dialect-specific EXDI layers. (Glorp also
provides the class Dialect for some specific method calls, the number of which
are being reduced as ANSI and other dialect compatibilities spread).

DOMAIN LAYER: the domain classes you wish to persist.

GLORP LAYER: Glorp models two aspects of the database:

• the transactional state of the RDB, which is usually already maintained by
the external database interface layer, so Glorp can model that.

• the relational database’ schema

Glorp also models the domain layer: which Classes, which instVars persist.

Above all, Glorp models the relationship between its model of (the relevant
part of) the schema and its model of (the persistant part of) the domain.

6

Page 7

This slide is the opportunity for a brief bit of boasting as regards the getting
started step.

•If you’re modelling your domain in a greenfields app, and then making a
schema for it, you’d like some tools that would seamlessly move you from that
modelling to that database mapping. Those of you who have seen Dirk’s talks
at prior ESUGs know there are cool tools in ObjectStudio that give you a UI
and front-end to Glorp to let you do exactly that.

•If you have an existing schema for part of all of your application, and you saw
my ESUG talk, you know that ObjectStudio’s mapping tool can also do the
reverse – turn the database’ schema into Glorp.

However you get started, you will sooner or later be crafting / refining Glorp
models by writing code in Glorp methods. That’s what we’ll look at in the rest
of this talk. But first, the brief boastful demo.

•The latest VisualWorks can load ObjectStudio-developed models and refine
them in VisualWorks while preserving their tool annotations, so now enterprise
modelling in ObjectStudio while using, refining and deploying in VisualWorks
is now a viable whole-lifecycle model.

•A minor addition is that some of the OS code to generate from legacy
automatically is in VW (in preview - for good reason) but we expect it to
provide service in the next release: for example, a VW image should be able
automatically to verify that an installed Store database has run its updates
successfully to have the latest configuration.

7

Page 8

The standard process, which need not be the only process, is to subclass
DescriptorSystem, or one of our specialist abstract subclasses
AtlasDescriptorSystem or ActiveRecordDescriptorSystem or
MetadataDescriptorSystem, and then give it methods that embed data in their
titles. This was not great for refactoring but (another boast alert – last one) I
have done something about that.

DEMO renaming a domain class.

8

Page 9

[DEMO] GlorpDemoDescriptorSystem>>classModelForGlorpBankAccount:

The class model’s attributes must be annotated with the type information, since
part of the impedance mismatch problem is that relational database schemas
are typed. When an attribute is mapped directly to a single column, GLORP
can often deduce the simple types - you will see models where Alan has not
bothered to add them but just used newAttributeNamed:. Complex types must
be stated.

Access is either direct (default) or by performing the getters and setters.
Because the accessors are performed, you’d rather be direct unless you need
the accessors called for some reason, but if you want them always called for
your whole application, you can set that.

If a complex DescriptorSystem is instantiated a lot and changed little, or only
changed in a distinct epoch, consider caching it. Every session will call all
those ...For<Name>: methods as it creates . Be aware, this will cache the
instVar indexes; if you shape-change any of the <Name> classes (e.g. add
initial instVar that is not persisted), you’ll need to recompute the descriptor
system.

9

Page 10

[DEMO] GlorpDemoDescriptorSystem>>tableForBANK_ACCT:

A field of type serial will automatically be made a primary key.

PERFORMANCE – Indexes

Writing these methods, use Extract-to-temp, Extract-to-method.

DatabasePlatform>>type protocol contains some fairly specific types

 versionFieldFor:

 generateOverExistingValues – if there already is a 1.0, do we allow publish
of another 1.0.

You can create types too.

10

Page 11

Not everything GLORP models is in the database, or vice versa. A key can be
held in memory to help data integrity or ordering even though you know it’s
not in the legacy database you are working with, or you even choose not to
create it in the new database you are generating (maybe it applies in this
descriptor system, but not in another that can also address the database).

So why would you want to grab fields from multiple tables.

Example of less than one row: GlorpBankAccountNumber reifies some
columns in BANK_ACCT table. GlorpBankAccount embeds this object and
relates it to account holders, using the remaining columns.

Example of more than one row: GlorpVideoDescriptorSystem has tables for
stores which rent and also sell videos, doing the latter both physically in stores
and online. It has tables for these cases and for the credit histories of its
customers, but no table just for customers. Glorp can synthesize a customer
table by identifying same name, delivery address, etc.

The real tables for video purchase, rental and credit history all have a store id
field, FK-linked to the store table's id field, and fields for the customer name
and birthdate, which, with the store id field, are FK-linked to the imaginary
table.

DEFAULT VALUES: At this point, we’re below where all the clever mapping
is occurring – we’re setting up the machinery for clever mapping. So
occasionally, more cluncky mapping occurs. In some database we represent a
boolean directly, but in others it will need to be converted to an integer.

Page 12

DEMO/SHOW descriptorForGlorpBookstoreCustomer:

Enough descriptors have a single or main table that the first table is somewhat
distinguished, but there can be many.

multipleTableJoin: suppose you map your object to multiple tables and some
of your joins are outer joins. The GlorpDemoDescriptorSystem airline
example includes an airline passenger where some are frequent flyers and
others have never even joined a programme. You don’t want an inner join -
that would mean anyone not in a frequent flyer programme was a non-person.
So you use an outer join and then (only) you need to tell the descriptor. This is
occasionally needed functionally when deleting if you’ve not mapped the
primaryKeys of the secondary table but mainly for heuristics. Glorp can work
out that you can ignore the outer join in many writing cases; it's not there so
don't compute it. If the multiple table join is an outer join, and the row doesn't
exist yet, then assume we won't need it and don't do the join. It means none of
our mappings wrote to it.

Mostly you don't need this; the tables emerge obviously from the joins.

[The outer joins emerge from the joins - a join knows if it is outer; could we in
fact make this a computed or cached value and spare the user thinking about
it?]

Cache policy for a descriptor, i.e. for storing instances of its class in a
UnitOfWork’s cache, can differ from the system’s default policy (though that
is rare). (We may not have time to discuss cache policies.)

12

Page 13

The trivial case of one class to one table we all easily understand. For
examples of both kinds of inheritance, see the descriptor system presented
STIC 2012 legacy talk, which is a development of the ESUG 2011 talk.)

DEMO LabDescriptorSystem and its subclasses.

 typeResolverForConsultants

 descriptorForDiagnosing/ReferringConsultants

 register abstract and concrete

Then demo GeneticsDescriptorSystem>>descriptorForRassites:

 polymorphicJoinTo:onFieldNamed:fromField:

This joins Rassites to Consultants conceptually, in fact to the two concrete
subtables as Consultants is an abstract class and there is no Consultants table.

General

DEMO imaginary tables example with breakpoint to show RowMap.

 GlorpObjectMappedToImaginaryTableTest>>testWrite

 break UnitOfWork>>preCommit at end

AdHocMapping: when I said Glorp never landed you in the jungle …

13

Page 14

Mapping Options include whether to proxy, the collection type, whether to
provide separate link table and target table joins, and whether to give hints for
the link table fields.

While SQL types such as String, Number, etc. can be mapped to corresponding
Smalltalk classes, care must be exercised when mapping to types that do not
possess identical dimensions.

ToManyMapping collectionType: Smalltalk provides a rich set of collection
classes such as Dictionary, Bag, and SortedCollection, RDBMS provide a
more limited repertoire of tables and blobs.

PseudoVariables: why send beForPseudoVariable? (1) When writing a where
clause or other query aspect, you want to use this data because you know it is
trivially there on the DB side, but you don’tt want to store it in that class on
the Smalltalk side, e.g.

 DatabaseField>>primaryKeyConstraints

DatabaseField does not have that instvar (it may participate, with others, in the
primaryKeyConstraints – which should be singular primaryKeyConstraint and
will be next cycle), but of course on the DB side, that is known and the where
clause can use it. (So can use method to get DB column value inside query,
but you do not want to store said value when retrieving whole object.)

(2) As an alias. (3) For ordering, using the same table or a value in a related
table.

shouldProxy: controls whether you retrieve proxies or actual objects in your
instvars. This affects performance.

14

Page 15

Implied Joins: often, the join can be computed from the foreign key
relationship between the tables. We know Source class (from our descriptor),
the Source table (from our descriptor), the Target class (from the
classDescription) and the Table(s) for the target class from its descriptor. We
also have the Foreign key relationship between source and target tables (from
databaseTables). Some relationships, particularly many-to-many, may use a
link table, specified as "useLinkTable“. GLORP will deduce the name of the
link table if it follows standard patterns.

At other times, joins must be explicit and botb directions may need to be
given. DEMO descriptorForGlorpVideoCustomer:

The method initializeJoin is a place to breakpoint if you suspect your
descriptor system is not getting the join you expect.

The no-longer-used method mappingCriteria: (still visible in commented-out
lines in some GlorpTest tests - see e.g. descriptorForGlorpMessage:), shows
what early GLORP could not figure out.

Read-only mappings: in order to commit all of the changes in a unit of work,
the entire graph of reachable objects must be searched. Read-only mappings
truncate walking this graph.

15

Page 16

DEMO MessageArchiver with displayString (a very recently added method
that can show a MessageArchiver instance, which is not otherwise easy to
inspect).

If you put a breakpoint in a where-clause block, the debugger halts in the
MessageArchiver’s eating of the block, not, of course, in the resulting running
of the SQL.

Use displayString (newly added, not yet in public domain Glorp version) to
understand eaten blocks.

Special selectors assist in writing iterators in blocks in standard Smalltalk
style. They also provide special handling for Glorp-used methods (e.g.
getTable:, fieldNamed:, etc.) that must not be eaten.

zeroArgumentSpecialSelectors - #isEmpty #notEmpty #asDate

oneArgumentSpecialSelectors - #getTable: #getField: #fieldNamed:
#parameter: #noneSatisfy: #getConstant: #count: #sum: #min: #max:
#average: #sqlSelect: #includes:

twoArgumentSpecialSelectors - #aggregate:as:

16

Page 17

A DualRoleFunction is used when a database platform demands differently-
phrased SQL in a where clause and in a select list.

DEMO functions in DB2Platform>>initializeFunctions.

17

Page 18

If the information is there, then you can specify #orderBy: on your mapping. This isn't
a sortblock, but rather defines the field(s) you want to order by.

 e.g. orderBy: #name

 orderBy: [:each | each address streetNumber descending]

specify the order in which objects are read from the database. This can be done either
by sending orderBy: messages to a Query object before executing it, or by using the
orderBy: message when defining the domain mapping (the latter tells the database
server to sort the results, which may be faster).

Sending orderBy: repeatedly adds criteria.

If the information to determine the sort order isn't there, but you really want to
preserve the order, you can add a field and make Glorp store the information:

 orderBy: (myTable fieldNamed: 'COLLECTIONORDER');

 writeTheOrderField.

Finally, if you really want to do the sorting in Smalltalk (and be aware that this will
defeat features like maintaining open cursors on large results sets) then it's slightly
non-obvious, but in the places where you can specify collection types as classes, you
can also use an instance. So

 query collectionType: (SortedCollection sortBlock: [:a :b | a < b]).

works.

Similarly you can set the collectionType on a mapping.

18

Page 19

DEMO run query with breakpoint.

Like Seaside, GLORP uses cascades rather than huge repetitive API to create
its model-defining methods. There is a good deal of utility API but where it
runs out just use cascades. The point where the utility API runs out is slightly
idiosyncratic – for example #read:where:orderBy: is not there (maybe I’ll add
it).

19

Page 20

groupBy: is now like orderBy: in that move than one can be sent to a query
(recent change: previously, a Query could only have only one groupBy:
criterion).

If you use groupBy: to aggregate rows based on certain columns, you must
either aggregate any other columns (i.e. sum: them or min: or max: or
whatever) or be confident that any such columns do not have divergent values
in the rows where the grouped columns have the same values. (If there are and
such divergences, the query returns an error.) So be aware multiple groupBy’s
will error if your data is not groupable.

Trivial API changes make this more similar to ordering (hasOrdering and
hasGrouping, no longer hasGroupBy), and better distinguish between grouping
and group-writing (a quite different concept relating to sending many SQL
commands in a single trip to the database if the DB system allows it).

20

Page 21

Reads can be very time-consuming. Proxies fault one by one. Queries can be
expensive. Various optimizations are available:

•Complex where conditions

•Reading subset of data/non-object data (retrieve:)

•Reading additional data (alsoFetch:)

•Database Functions

•Cursors (not PostgreSQL)

•Combine queries with union: unionAll: and except:

•Write your own SQL

•Queries can return a stream of results rather than a collection

 query collectionType: GlorpCursoredStream

Also GlorpVirtualCollection (wraps a stream internally, size requires separate
query)

21

Page 22

By-hand SQL is sometimes useful.

22

Page 23

Where clauses and similar can be just symbols (i.e. the selectors of methods)
or blocks or entire subqueries.

The example looks for pundleClass instances (earlier than cutOffTimestamp)
that have no parents (and so trivial to delete) that are clones of others.

23

Page 24

Functions are invoked by sending selectors (that map to the functions either
generally or for a specific database platform: see methods
createBasicFunctionsFor: and initializeFunctions). Smalltalk-style, the
function selectors must be sent to expressions, although the resulting SQL
keywords may appear prefixing subselects.

MappingExpression>>isEmpty calls notExist: and could be used in this
example. I used notExists: to show more clearly how the SQL and the
Smalltalk are related.

24

Page 25

There are methods inUnitOfWorkDo: and begin/rollback/commitUnitOfWork.
Similarly there are inTransactionDo: and #begin/rollback/commitTransaction

 There are two basic scenarios. In the first scenario, you wrap your updates in a
UnitOfWork using #beginUnitOfWork, doing the updates, and then
#commitUnitOfWork. Method #commitUnitOfWork privately sends
#beginTransaction, writes all the data to disk, and then sends
#commitTransaction. So, the UnitOfWork itself keeps track of all the updates,
and if commited, it sends them on to the database within a private Transaction.

In the second scenario, you control the Transaction, starting with
#beginTransaction. If you then wrap your updates inside a UnitOfWork, you
get the same behavior as before--the UnitOfWork won't send to disk until you
say #commitUnitOfWork. But this time, your UnitOfWork will notice that you
have an ongoing Transaction so it sends neither #beginTransaction nor
#commitTransaction. Instead, it expects you to send #commitTransaction later.
In short, it won't touch the Transaction control since you own it. This scenario
can be used to execute a series of operations, each in a separate UnitOfWork,
where all can be committed or rolled back downstream.

inUnitOfWorkDo: - This method will only commit or rollback a unit of work
that it creates. If there is an ongoing unit of work, the sender must commit or
rollback. Likewise, for inTransactionDo:, if there is an ongoing transaction, the
sender must commit or rollback the transaction. By contrast, calling
beginUnitOfWork/Transaction will raise an error if one already exists.

25

Page 26

The #modify:in: method is a shortcut for both doing a #transact: and
registering an object. You can use #registerAsOld: method that can skip the
#isNew: check.

26

Page 27

DEMO UnitOfWork using
GlorpObjectMappedToImaginaryTableTest>>testWrite with break in
preCommit, show RowMap.

We have done work to improve the range of making inserts be updates (8.0).

Performance:

=========

Get all sequence numbers at the beginning of a transaction (except for identity
column DBs)

Prepared statements are cached, and arguments bound

For inserts, can use array binding, or grouping of statements depending what
the database supports.

27

Page 28

28

Page 29

29

Page 30

Things We did not have Time for.

Sequences (also VWPoolingDatabaseAccessor).

Cache Policies: several policies available - Keep forever, Timed Expiry, Weak
References (but with strong subset), and Expiring proxies. Or you can force
cache expiration, either for individual objects, or an entire cache.

Filtered Reads (also mention PhantomMappings).

It is also possible to use anySatisfyJoin: in place of anySatisfy:. The resulting
SQL will be slightly different, including an INNER JOIN.

Gaps in Glorp: Stored procedures, Meaningful exceptions, Thread safety,
Connection pooling, Nested units of work, Performance tuning, Tools,
Documentation, Validation, Error Messages

SelectCommand blockFactor

30

