
Object-Centric
Reflection

Jorge Ressia
Software Composition Group

Thursday, August 30, 12

Profiling

Thursday, August 30, 12

Profiling:
Is the activity of analyzing a program
execution.

Thursday, August 30, 12

Profile

}

{

}

{

}

{
}

{

}

{

Domain-Specific Profiling 3

CPU time profiling

Mondrian [9] is an open and agile visualization engine. Mondrian describes a
visualization using a graph of (possibly nested) nodes and edges. In June 2010
a serious performance issue was raised1. Tracking down the cause of the poor
performance was not trivial. We first used a standard sample-based profiler.

Execution sampling approximates the time spent in an application’s methods
by periodically stopping a program and recording the current set of methods
under executions. Such a profiling technique is relatively accurate since it has
little impact on the overall execution. This sampling technique is used by almost
all mainstream profilers, such as JProfiler, YourKit, xprof [10], and hprof.

MessageTally, the standard sampling-based profiler in Pharo Smalltalk2, tex-
tually describes the execution in terms of CPU consumption and invocation for
each method of Mondrian:

54.8% {11501ms} MOCanvas>>drawOn:
54.8% {11501ms} MORoot(MONode)>>displayOn:
30.9% {6485ms} MONode>>displayOn:

| 18.1% {3799ms} MOEdge>>displayOn:
...

| 8.4% {1763ms} MOEdge>>displayOn:
| | 8.0% {1679ms} MOStraightLineShape>>display:on:
| | 2.6% {546ms} FormCanvas>>line:to:width:color:
...

23.4% {4911ms} MOEdge>>displayOn:
...

We can observe that the virtual machine spent about 54% of its time in
the method displayOn: defined in the class MORoot. A root is the unique non-
nested node that contains all the nodes of the edges of the visualization. This
general profiling information says that rendering nodes and edges consumes a
great share of the CPU time, but it does not help in pinpointing which nodes
and edges are responsible for the time spent. Not all graphical elements equally
consume resources.

Traditional execution sampling profilers center their result on the frames of
the execution stack and completely ignore the identity of the object that received
the method call and its arguments. As a consequence, it is hard to track down
which objects cause the slowdown. For the example above, the traditional profiler
says that we spent 30.9% in MONode>>displayOn: without saying which nodes
were actually refreshed too often.

Coverage

PetitParser is a parsing framework combining ideas from scannerless parsing,
parser combinators, parsing expression grammars and packrat parsers to model
grammars and parsers as objects that can be reconfigured dynamically [11].

1 http://forum.world.st/Mondrian-is-slow-next-step-tc2257050.html#
a2261116

2 http://www.pharo-project.org/

Thursday, August 30, 12

Domain

Profile

}

{

}

{

}

{
}

{

}

{

Domain-Specific Profiling 3

CPU time profiling

Mondrian [9] is an open and agile visualization engine. Mondrian describes a
visualization using a graph of (possibly nested) nodes and edges. In June 2010
a serious performance issue was raised1. Tracking down the cause of the poor
performance was not trivial. We first used a standard sample-based profiler.

Execution sampling approximates the time spent in an application’s methods
by periodically stopping a program and recording the current set of methods
under executions. Such a profiling technique is relatively accurate since it has
little impact on the overall execution. This sampling technique is used by almost
all mainstream profilers, such as JProfiler, YourKit, xprof [10], and hprof.

MessageTally, the standard sampling-based profiler in Pharo Smalltalk2, tex-
tually describes the execution in terms of CPU consumption and invocation for
each method of Mondrian:

54.8% {11501ms} MOCanvas>>drawOn:
54.8% {11501ms} MORoot(MONode)>>displayOn:
30.9% {6485ms} MONode>>displayOn:

| 18.1% {3799ms} MOEdge>>displayOn:
...

| 8.4% {1763ms} MOEdge>>displayOn:
| | 8.0% {1679ms} MOStraightLineShape>>display:on:
| | 2.6% {546ms} FormCanvas>>line:to:width:color:
...

23.4% {4911ms} MOEdge>>displayOn:
...

We can observe that the virtual machine spent about 54% of its time in
the method displayOn: defined in the class MORoot. A root is the unique non-
nested node that contains all the nodes of the edges of the visualization. This
general profiling information says that rendering nodes and edges consumes a
great share of the CPU time, but it does not help in pinpointing which nodes
and edges are responsible for the time spent. Not all graphical elements equally
consume resources.

Traditional execution sampling profilers center their result on the frames of
the execution stack and completely ignore the identity of the object that received
the method call and its arguments. As a consequence, it is hard to track down
which objects cause the slowdown. For the example above, the traditional profiler
says that we spent 30.9% in MONode>>displayOn: without saying which nodes
were actually refreshed too often.

Coverage

PetitParser is a parsing framework combining ideas from scannerless parsing,
parser combinators, parsing expression grammars and packrat parsers to model
grammars and parsers as objects that can be reconfigured dynamically [11].

1 http://forum.world.st/Mondrian-is-slow-next-step-tc2257050.html#
a2261116

2 http://www.pharo-project.org/

Thursday, August 30, 12

Mondrian

Thursday, August 30, 12

Thursday, August 30, 12

System Complexity
Lanza and Ducasse 2003

Thursday, August 30, 12

Domain-Specific Profiling 3

CPU time profiling

Mondrian [9] is an open and agile visualization engine. Mondrian describes a
visualization using a graph of (possibly nested) nodes and edges. In June 2010
a serious performance issue was raised1. Tracking down the cause of the poor
performance was not trivial. We first used a standard sample-based profiler.

Execution sampling approximates the time spent in an application’s methods
by periodically stopping a program and recording the current set of methods
under executions. Such a profiling technique is relatively accurate since it has
little impact on the overall execution. This sampling technique is used by almost
all mainstream profilers, such as JProfiler, YourKit, xprof [10], and hprof.

MessageTally, the standard sampling-based profiler in Pharo Smalltalk2, tex-
tually describes the execution in terms of CPU consumption and invocation for
each method of Mondrian:

54.8% {11501ms} MOCanvas>>drawOn:
54.8% {11501ms} MORoot(MONode)>>displayOn:
30.9% {6485ms} MONode>>displayOn:

| 18.1% {3799ms} MOEdge>>displayOn:
...

| 8.4% {1763ms} MOEdge>>displayOn:
| | 8.0% {1679ms} MOStraightLineShape>>display:on:
| | 2.6% {546ms} FormCanvas>>line:to:width:color:
...

23.4% {4911ms} MOEdge>>displayOn:
...

We can observe that the virtual machine spent about 54% of its time in
the method displayOn: defined in the class MORoot. A root is the unique non-
nested node that contains all the nodes of the edges of the visualization. This
general profiling information says that rendering nodes and edges consumes a
great share of the CPU time, but it does not help in pinpointing which nodes
and edges are responsible for the time spent. Not all graphical elements equally
consume resources.

Traditional execution sampling profilers center their result on the frames of
the execution stack and completely ignore the identity of the object that received
the method call and its arguments. As a consequence, it is hard to track down
which objects cause the slowdown. For the example above, the traditional profiler
says that we spent 30.9% in MONode>>displayOn: without saying which nodes
were actually refreshed too often.

Coverage

PetitParser is a parsing framework combining ideas from scannerless parsing,
parser combinators, parsing expression grammars and packrat parsers to model
grammars and parsers as objects that can be reconfigured dynamically [11].

1 http://forum.world.st/Mondrian-is-slow-next-step-tc2257050.html#
a2261116

2 http://www.pharo-project.org/

Thursday, August 30, 12

Which is the relationship?
Domain-Specific Profiling 3

CPU time profiling

Mondrian [9] is an open and agile visualization engine. Mondrian describes a
visualization using a graph of (possibly nested) nodes and edges. In June 2010
a serious performance issue was raised1. Tracking down the cause of the poor
performance was not trivial. We first used a standard sample-based profiler.

Execution sampling approximates the time spent in an application’s methods
by periodically stopping a program and recording the current set of methods
under executions. Such a profiling technique is relatively accurate since it has
little impact on the overall execution. This sampling technique is used by almost
all mainstream profilers, such as JProfiler, YourKit, xprof [10], and hprof.

MessageTally, the standard sampling-based profiler in Pharo Smalltalk2, tex-
tually describes the execution in terms of CPU consumption and invocation for
each method of Mondrian:

54.8% {11501ms} MOCanvas>>drawOn:
54.8% {11501ms} MORoot(MONode)>>displayOn:
30.9% {6485ms} MONode>>displayOn:

| 18.1% {3799ms} MOEdge>>displayOn:
...

| 8.4% {1763ms} MOEdge>>displayOn:
| | 8.0% {1679ms} MOStraightLineShape>>display:on:
| | 2.6% {546ms} FormCanvas>>line:to:width:color:
...

23.4% {4911ms} MOEdge>>displayOn:
...

We can observe that the virtual machine spent about 54% of its time in
the method displayOn: defined in the class MORoot. A root is the unique non-
nested node that contains all the nodes of the edges of the visualization. This
general profiling information says that rendering nodes and edges consumes a
great share of the CPU time, but it does not help in pinpointing which nodes
and edges are responsible for the time spent. Not all graphical elements equally
consume resources.

Traditional execution sampling profilers center their result on the frames of
the execution stack and completely ignore the identity of the object that received
the method call and its arguments. As a consequence, it is hard to track down
which objects cause the slowdown. For the example above, the traditional profiler
says that we spent 30.9% in MONode>>displayOn: without saying which nodes
were actually refreshed too often.

Coverage

PetitParser is a parsing framework combining ideas from scannerless parsing,
parser combinators, parsing expression grammars and packrat parsers to model
grammars and parsers as objects that can be reconfigured dynamically [11].

1 http://forum.world.st/Mondrian-is-slow-next-step-tc2257050.html#
a2261116

2 http://www.pharo-project.org/

?

Thursday, August 30, 12

Debugging

Thursday, August 30, 12

Debugging:
Is the process of interacting with a
running software system to test and
understand its current behavior.

Thursday, August 30, 12

Mondrian

Thursday, August 30, 12

Thursday, August 30, 12

System Complexity
Lanza and Ducasse 2003

Thursday, August 30, 12

Rendering

Thursday, August 30, 12

Shape and Nodes

Thursday, August 30, 12

Thursday, August 30, 12

Thursday, August 30, 12

How do we debug
this?

Thursday, August 30, 12

Breakpoints

Thursday, August 30, 12

Conditional
Breakpoints

Thursday, August 30, 12

}

{

}

{

}

{
}

{

}

{

Thursday, August 30, 12

}

{

}

{

}

{
}

{

}

{

Thursday, August 30, 12

Developer Questions

Thursday, August 30, 12

When during the execution is this method called? (Q.13)
Where are instances of this class created? (Q.14)
Where is this variable or data structure being accessed?
(Q.15)
What are the values of the argument at runtime? (Q.19)
What data is being modified in this code? (Q.20)
How are these types or objects related? (Q.22)
How can data be passed to (or accessed at) this point

in the code? (Q.28)
What parts of this data structure are accessed in this

code? (Q.33)

Thursday, August 30, 12

When during the execution is this method called? (Q.13)
Where are instances of this class created? (Q.14)
Where is this variable or data structure being accessed?
(Q.15)
What are the values of the argument at runtime? (Q.19)
What data is being modified in this code? (Q.20)
How are these types or objects related? (Q.22)
How can data be passed to (or accessed at) this point

in the code? (Q.28)
What parts of this data structure are accessed in this

code? (Q.33) Sillito etal.

Questions programmers ask during software

evolution tasks. 2008

Thursday, August 30, 12

Which is the relationship?

?
When during the execution is this method called? (Q.13)

Where are instances of this class created? (Q.14)

Where is this variable or data structure being accessed? (Q.15)

What are the values of the argument at runtime? (Q.19)

What data is being modified in this code? (Q.20)

How are these types or objects related? (Q.22)

How can data be passed to (or accessed at) this point in the code? (Q.28)

What parts of this data structure are accessed in this code? (Q.33)

Thursday, August 30, 12

What is the
problem?

Thursday, August 30, 12

Traditional
Reflection

Thursday, August 30, 12

Domain-Specific Profiling 3

CPU time profiling

Mondrian [9] is an open and agile visualization engine. Mondrian describes a
visualization using a graph of (possibly nested) nodes and edges. In June 2010
a serious performance issue was raised1. Tracking down the cause of the poor
performance was not trivial. We first used a standard sample-based profiler.

Execution sampling approximates the time spent in an application’s methods
by periodically stopping a program and recording the current set of methods
under executions. Such a profiling technique is relatively accurate since it has
little impact on the overall execution. This sampling technique is used by almost
all mainstream profilers, such as JProfiler, YourKit, xprof [10], and hprof.

MessageTally, the standard sampling-based profiler in Pharo Smalltalk2, tex-
tually describes the execution in terms of CPU consumption and invocation for
each method of Mondrian:

54.8% {11501ms} MOCanvas>>drawOn:
54.8% {11501ms} MORoot(MONode)>>displayOn:
30.9% {6485ms} MONode>>displayOn:

| 18.1% {3799ms} MOEdge>>displayOn:
...

| 8.4% {1763ms} MOEdge>>displayOn:
| | 8.0% {1679ms} MOStraightLineShape>>display:on:
| | 2.6% {546ms} FormCanvas>>line:to:width:color:
...

23.4% {4911ms} MOEdge>>displayOn:
...

We can observe that the virtual machine spent about 54% of its time in
the method displayOn: defined in the class MORoot. A root is the unique non-
nested node that contains all the nodes of the edges of the visualization. This
general profiling information says that rendering nodes and edges consumes a
great share of the CPU time, but it does not help in pinpointing which nodes
and edges are responsible for the time spent. Not all graphical elements equally
consume resources.

Traditional execution sampling profilers center their result on the frames of
the execution stack and completely ignore the identity of the object that received
the method call and its arguments. As a consequence, it is hard to track down
which objects cause the slowdown. For the example above, the traditional profiler
says that we spent 30.9% in MONode>>displayOn: without saying which nodes
were actually refreshed too often.

Coverage

PetitParser is a parsing framework combining ideas from scannerless parsing,
parser combinators, parsing expression grammars and packrat parsers to model
grammars and parsers as objects that can be reconfigured dynamically [11].

1 http://forum.world.st/Mondrian-is-slow-next-step-tc2257050.html#
a2261116

2 http://www.pharo-project.org/

?

Profiling

Thursday, August 30, 12

?
When during the execution is this method called? (Q.13)

Where are instances of this class created? (Q.14)

Where is this variable or data structure being accessed? (Q.15)

What are the values of the argument at runtime? (Q.19)

What data is being modified in this code? (Q.20)

How are these types or objects related? (Q.22)

How can data be passed to (or accessed at) this point in the code? (Q.28)

What parts of this data structure are accessed in this code? (Q.33)

Debugging

Thursday, August 30, 12

Object Paradox

Thursday, August 30, 12

Object-Centric
Reflection

Thursday, August 30, 12

Thursday, August 30, 12

Organize the
Meta-level

Thursday, August 30, 12

Explicit
Meta-objects

Thursday, August 30, 12

Object

Meta-object

Class

Thursday, August 30, 12

Object

Meta-object

Class

Thursday, August 30, 12

Evolved Object

Meta-object

Class

Thursday, August 30, 12

Execution
Reification

Structure
Evolution

ProfilingDebugging

Thursday, August 30, 12

Execution
Reification

Structure
Evolution

ProfilingDebugging

Thursday, August 30, 12

Object-Centric
Debugging

Thursday, August 30, 12

Object-Centric
Debugging

ICSE 2012
J. Ressia, A, Bergel and O. Nierstrasz

Thursday, August 30, 12

}

{

}

{

}

{
}

{

}

{

Thursday, August 30, 12

}

{

}

{

}

{
}

{

}

{

Thursday, August 30, 12

}

{

}

{

}

{
}

{

}

{

Thursday, August 30, 12

Thursday, August 30, 12

Thursday, August 30, 12

Thursday, August 30, 12

InstructionStream class>>on:
InstructionStream class>>new
InstructionStream>>initialize
CompiledMethod>>initialPC
InstructionStream>>method:pc:
InstructionStream>>nextInstruction
MessageCatcher class>>new
InstructionStream>>interpretNextInstructionFor:
...

on:
new

initialize
method:pc:
nextInstruction
interpretNextInstructionFor:
...

step into,
step over,
resume

next message,
next change

stack-centric debugging

object-centric debugging

...

centered on
the InstructionStream class

centered on
the InstructionStream object

next message,
next change

Thursday, August 30, 12

Mondrian

Thursday, August 30, 12

Shape and Nodes

Thursday, August 30, 12

Thursday, August 30, 12

Thursday, August 30, 12

halt on object in
call

Thursday, August 30, 12

Halt on next message
Halt on next message/s named
Halt on state change
Halt on state change named
Halt on next inherited message
Halt on next overloaded message
Halt on object/s in call
Halt on next message from
package

Thursday, August 30, 12

Execution
Reification

Structure
Evolution

Debugging Profiling

Thursday, August 30, 12

MetaSpy

Thursday, August 30, 12

MetaSpy

TOOLS 2011
Bergel etal.

Thursday, August 30, 12

Mondrian Profiler

Thursday, August 30, 12

Thursday, August 30, 12

System Complexity
Lanza, Ducasse 2003

Thursday, August 30, 12

Thursday, August 30, 12

Profiling

Structure
Evolution

Debugging

Execution
Reification

Thursday, August 30, 12

What if we do not
know what to evolve?

Thursday, August 30, 12

Thursday, August 30, 12

?
Thursday, August 30, 12

Prisma

Thursday, August 30, 12

Thursday, August 30, 12

Thursday, August 30, 12

Thursday, August 30, 12

Thursday, August 30, 12

Thursday, August 30, 12

Back in time
Debugger

Thursday, August 30, 12

Back in time
Debugger

Object Flow Debugger

Lienhard etal. ECOOP 2008

Thursday, August 30, 12

:Person field-write@t2

field-write@t3

init@t1

'Doe'

person := Person new t1
...
name := 'Doe' t2
...
name := 'Smith' t3

'Smith'

null
predecessor

predecessor

value

value

value

name

name

name

Thursday, August 30, 12

Profiling

Execution
Reification

Debugging

Structure
Evolution

Thursday, August 30, 12

Talents

scg.unibe.ch/research/talents

Thursday, August 30, 12

Talents

scg.unibe.ch/research/talents

IWST 2011
J. Ressia, T. Gîrba, O. Nierstrasz, F. Perin and

L. Renggli

Thursday, August 30, 12

Dynamically
composable units of

reuse

Thursday, August 30, 12

Streams

Thursday, August 30, 12

scg.unibe.ch/research/bifrost

Thursday, August 30, 12

Object-
Centric

Debugger
Prisma

Subjectopia MetaSpy

Talents Chameleon

Thursday, August 30, 12

scg.unibe.ch/jenkins/

Thursday, August 30, 12

http://www.scg.unibe.ch/jenkins/
http://www.scg.unibe.ch/jenkins/

Alexandre
Bergel

Marcus
Denker

Stéphane
Ducasse

Oscar
Nierstrasz

Lukas
Renggli

Oscar
Nierstrasz

Oscar
Nierstrasz

Oscar
Nierstrasz

Tudor
Gîrba

Fabrizio
Perin

Thursday, August 30, 12

scg.unibe.ch/research/bifrost

Thursday, August 30, 12

