
Object-centric profiling:
Advanced Visualizations to Tame Wild

Program Execution

Vanessa Peña, Juan Pablo Sandoval, Pablo Estefo,
Alexandre Bergel

Object Profile & University of Chile

2

Execution profiling with Kai

 Problem:

 Traditional code profilers are driven by the method stack,
discarding the notion of sending messages

 Why the problem is important:

 How to answer to “Is there a slow function that is called too
often?”

 Solution:

 An intuitive visual representation of the execution that visually
compare the time spent and the number of executions

3

54.8% {11501ms} MOCanvas>>drawOn:
 54.8% {11501ms} MORoot(MONode)>>displayOn:
 30.9% {6485ms} MONode>>displayOn:
 | 18.1% {3799ms} MOEdge>>displayOn:
 ...
 | 8.4% {1763ms} MOEdge>>displayOn:
 | | 8.0% {1679ms} MOStraightLineShape>>display:on:
 | | 2.6% {546ms} FormCanvas>>line:to:width:color:
 ...
 23.4% {4911ms} MOEdge>>displayOn:
 ...

Execution sampling profiler

4

Structural profiling blueprint

legend for methods

(color)

#different

receiver

executions

execution

time

5

Behavioral profiling blueprint

6

legend for methods

gray =
side

effect

yellow =
no side
effect

executions

execution
time

m2
m1

invokes
m2 and m3

m1 m3

DEMO

Structural profiling blueprint

legend for methods

(color)

#different

receiver

executions

execution

time

bounds

7

legend for methods

gray =
side

effect

yellow =
no side
effect

executions

execution
time

m2
m1

invokes
m2 and m3

m1 m3

Behavioral profiling blueprint

bounds
8

Code of the bounds method

MOGraphElement>>bounds
 "Answer the bounds of the receiver."

 | basicBounds |

 self shapeBoundsAt: self shape ifPresent: [:b | ^ b].

 basicBounds := shape computeBoundsFor: self.
 self shapeBoundsAt: self shape put: basicBounds.

 ^ basicBounds

9

Memoizing

MOGraphElement>>bounds
 "Answer the bounds of the receiver."

 | basicBounds |
 boundsCache ifNotNil: [^ boundsCache].
 self shapeBoundsAt: self shape ifPresent: [:b | ^ b].

 basicBounds := shape computeBoundsFor: self.
 self shapeBoundsAt: self shape put: basicBounds.

 ^ boundsCache := basicBounds

10

A

B

C

Upgrading
MOGraphElement>>bounds

11

A

B

C

Upgrading
MOGraphElement>>bounds

43%
speedup

12

B

A

Upgrading
MOGraphElement>>bounds

13

A
B C D

cached

absoluteBounds
make display:on:

call absoluteBounds
instead of absoluteBoundsFor:

A'

C'

B'

C'

14

A
B C D

cached

absoluteBounds
make display:on:

call absoluteBounds
instead of absoluteBoundsFor:

A'

C'

B'

C'

15

A
B C D

cached

absoluteBounds
make display:on:

call absoluteBounds
instead of absoluteBoundsFor:

A'

C'

B'

C'

16

Test coverage with Hapao

 Problem:

 Traditional code coverage tools have a binary view of the world

 Why the problem is important:

 Which method should you test first in order to increase the
coverage?

 Is my code well covered or not?

 Solution:

 An intuitive visual representation of a qualitative assessment of the
coverage

17

Test blueprint

cd

calling methods

complexity # executions

Legend for methods (inner boxes)

red = not executed
blue = abstract

invocation on self

C1

C2

18DEMO

Successive improvement

Version 2.2
27.27%

Version 2.3
54.54%

Version 2.4
87.71%

Version 2.5
100%

19

4 patterns

20

Moose-Test-Core.13
Moose-Core.313

Moose-Test-Core.48
Moose-Core.326

21.42%

56.86%

73.58%

68.25%

0%

36.78%

100%

96.66%

64.55%

100%

100%

100%

21

Reducing code complexity

Version 1.58.1
Coverage: 40.57%

Version 1.58.9
Coverage: 60.60%

22

Reducing code complexity

Version 2.10

Version 2.17
23

Visualizing data with Roassal

 Roassal is an agile and interactive visualization engine

Visualizing Incidents at the Fire
Department of NY

Supported Platforms

XMLTokenizer>>nextName

XMLNestedStreamReader>>atEnd

node
color

∆ number of executions

∆ number
of

messages

source code
 red: change
 black: do not change

green: # messages < than before

light red: # messages > than before
 and
 # executions <= than before

red: # messages > than before
 and
 # executions > than before

white: # messages = than before

yellow: this method did not exist before

Legend for methods

m1

m2
m1 invokes m2

Multidimentional profiling

Differences between tests

Conclusion

 Little innovation in the tools we commonly use

 Profilers, debuggers, testing tools have not significantly evolved

 Fantastic opportunities for improvement

 Kai, Hapao and Roassal are just a beginning

 Feel free to provide feedback on our tool

30

Spy @ Cincom Store
Spy @ SqueakSource
Roassal @ ...

ObjectProfile.com

Moose-Test-Core.13
Moose-Core.313

Moose-Test-Core.48
Moose-Core.326

21.42%

56.86%

73.58%

68.25%

0%

36.78%

100%

96.66%

64.55%

100%

100%

100%

Thanks to
 ESUG
 Chris T
 Cincom
 All of you guys!

