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Execution profiling with Kai

 Problem:

 Traditional code profilers are driven by the method stack, 
discarding the notion of sending messages

 Why the problem is important:

 How to answer to “Is there a slow function that is called too 
often?”

 Solution:

 An intuitive visual representation of the execution that visually 
compare the time spent and the number of executions
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54.8% {11501ms} MOCanvas>>drawOn: 
  54.8% {11501ms} MORoot(MONode)>>displayOn: 
   30.9% {6485ms} MONode>>displayOn: 
      | 18.1% {3799ms} MOEdge>>displayOn: 
         ...    
      |  8.4% {1763ms} MOEdge>>displayOn: 
      |    | 8.0% {1679ms} MOStraightLineShape>>display:on: 
      |    |  2.6% {546ms} FormCanvas>>line:to:width:color: 
        ...    
   23.4% {4911ms} MOEdge>>displayOn:     
        ...    

Execution sampling profiler
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Behavioral profiling blueprint
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Code of the bounds method

MOGraphElement>>bounds
  "Answer the bounds of the receiver."

  | basicBounds |

  self shapeBoundsAt: self shape ifPresent: [ :b | ^ b ].

  basicBounds := shape computeBoundsFor: self.
  self shapeBoundsAt: self shape put: basicBounds.

  ^ basicBounds
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Memoizing

MOGraphElement>>bounds
  "Answer the bounds of the receiver."

  | basicBounds |
  boundsCache ifNotNil: [ ^ boundsCache ].
  self shapeBoundsAt: self shape ifPresent: [ :b | ^ b ].

  basicBounds := shape computeBoundsFor: self.
  self shapeBoundsAt: self shape put: basicBounds.

  ^ boundsCache := basicBounds
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Test coverage with Hapao

 Problem:

 Traditional code coverage tools have a binary view of the world

 Why the problem is important:

 Which method should you test first in order to increase the 
coverage?

 Is my code well covered or not?

 Solution:

 An intuitive visual representation of a qualitative assessment of the 
coverage
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Successive improvement

Version 2.2
27.27%

Version 2.3
54.54%

Version 2.4
87.71%

Version 2.5
100%
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4 patterns
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Reducing code complexity

Version 1.58.1
Coverage: 40.57%

Version 1.58.9
Coverage: 60.60%
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Reducing code complexity

Version 2.10

Version 2.17
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Visualizing data with Roassal

 Roassal is an agile and interactive visualization engine
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Differences between tests



Conclusion

 Little innovation in the tools we commonly use

 Profilers, debuggers, testing tools have not significantly evolved

 Fantastic opportunities for improvement

 Kai, Hapao and Roassal are just a beginning

 Feel free to provide feedback on our tool
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Spy @ Cincom Store
Spy @ SqueakSource
Roassal @ ...

ObjectProfile.com
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