

Goals	 and	 scopes	

•The	 goals	 of	 the	 workshop	 is	 to	 create	 a	 forum	 around	 advances	 or	 experience	
in	 Smalltalk	 and	 to	 trigger	 discussions	 and	 exchanges	 of	 ideas.	 Participants	 are	
invited	 to	 submit	 research	 articles.	 We	 will	 not	 enforce	 any	 length	 restriction.	
However	 we	 expect	 papers	 of	 two	 kinds:	

–Short	 position	 papers	 describing	 emerging	 ideas.	

–Long	 research	 papers	 with	 deeper	 description	 of	 experiments	 and	 of	 research	
results.	

•We	 welcome	 contributions	 on	 all	 aspects,	 theoretical	 as	 well	 as	 practical,	 of	
Smalltalk	 related	 topics	 such	 as:	

–Aspect-‐oriented	 programming,	

–Design	 patterns,	

–Experience	 reports,	

–Frameworks,	

–Implementation,	 	

–new	 dialects	 or	 languages	 implemented	 in	 Smalltalk,	

–Interaction	 with	 other	 languages,	

–Meta-‐programming	 and	 Meta-‐modeling,	

–Tools	

Publication	

•Both	 submissions	 and	 final	 papers	 must	 be	 prepared	 using	 the	 ACM	 SIGPLAN	
10	 point	 format.	 Templates	 for	 Word	 and	 LaTeX	 are	 available	 at	
http://www.acm.org/sigs/sigplan/authorInformation.htm	

•Authors	 of	 the	 best	 accepted	 papers	 will	 also	 be	 invited	 to	 submit	 extended	
versions	 for	 publication	 in	 a	 special	 issue	 of	 Elsevier	 "Science	 of	 Computer	
Programming:	 Methods	 of	 Software	 Design:	 Techniques	 and	 Applications"	 	 	

•Please	 submit	 your	 paper	 through	 EasyChair	 on	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
http://www.easychair.org/conferences/?conf=iwst2012	

Program	 Chairs	

	

•Loïc	 Lagadec	 Lab-STICC,	 UBO,	 France	

•Alain	 Plantec,	 Lab-STICC,	 UBO,	 France	

	

Program	 Committee	

	

•Gabriela	 Arevalo,	 Universidad	 Nacional	 de	 Quilmes,	 Agentina	

•Alexandre	 Bergel	 University	 of	 Chile	 	

•Andrew	 P.	 Black	 Portland	 State	 University,	 US	 	

•Marcus	 Denker	 Rmod,	 INRIA	 Lille	 -	 Nord	 Europe,	 France	 	

•Luc	 Fabresse	 Ecole	 des	 Mines	 de	 Douai,	 France,	 	

•Tudor	 Girba	 CompuGroup	 Medical	 Schweiz,	 Switzerland	 	

•Andy	 Kellens	 Software	 Languages	 Lab,	 Vrije	 Universiteit	 Brussel,	 Belgium	 	

•Mickaël	 Kerboeuf	 LabSticc,	 University	 of	 Brest,	 France	 	

•Jannik	 Laval	 LaBRI,	 University	 of	 Bordeaux,	 France	 	

•Mariano	 Martinez	 Peck	 Ecole	 des	 Mines	 de	 Douai,	 France,	 	

•Lukas	 Renggli	 Google,	 Switzerland	 	

•Jorge	 Ressia	 Software	 Composition	 Group,	 University	 of	 Bern,	 Switzerland	 	

•Bastian	 Steinert	 HPI,	 Software	 Architecture	 Group,	 Germany	 	

•Hernan	 Wilkinson	 10Pines,	 IT	 consultancy,	 Buenos	 Aires,	 Argentina	 	

•Roel	 Wuyts	 IMEC	 Leuven,	 Belgium	 	

	

	

IWST 2012 Table of Contents

Table of Contents

Forewords . 1
Loic Lagadec and Alain Plantec

SESSION 1

On the Integration of Smalltalk and Java . 7
Marcel Hlopko, Jan Kurs, Jan Vrany and Claus Gittinger

Refactoring Support For Smalltalk Using Static Type Inference . 19
Martin Unterholzner

Smalltalk in a C World. 37
David Chisnall

SESSION 2

Tracking Down Software Changes Responsible for Performance Loss . 49
Juan Pablo Sandoval Alcocer

Spec A Framework for the Specification and Reuse of UIs and their Models . 56
Benjamin Van Ryseghem, Stéphane Ducasse and Johan Fabry

4

IWST 2012 Author Index

Author Index

Chisnall, David 37

Ducasse, Stéphane 56

Fabry, Johan 56

Gittinger, Claus 7

Hlopko, Marcel 7

Kurs, Jan 7

Lagadec, Loic 1

Plantec, Alain 1

Sandoval Alcocer, Juan Pablo 49

Unterholzner, Martin 19

Van Ryseghem, Benjamin 56
Vrany, Jan 7

5

IWST 2012 Keyword Index

Keyword Index

Compilation 37

Framework 56

Interoperability 7, 37

Java 7

Language interoperability 7

MVP 56

Objective-C 37

Pharo 56
Profiling 49

Refactoring 19

Smalltalk 7, 19, 37, 56
Software evolution 49
Software execution 49
Static code analysis 19

Type inference 19

UI 56
UIBuilder 56

6

On the Integration of Smalltalk and Java
Practical Experience with STX:LIBJAVA

Marcel Hlopko
Czech Technical University in

Prague

marcel.hlopko@fit.cvut.cz

Jan Kurš
Software Composition Group,

University of Bern

kurs@iam.unibe.ch

Jan Vraný
Czech Technical University in

Prague,
eXept Software AG
jan.vrany@fit.cvut.cz

Claus Gittinger
eXept Software AG

cg@exept.de

Abstract
After decades of development in programming languages
and programming environments, Smalltalk is still one of
few environments that provide advanced features and is still
widely used in the industry. However, as Java became preva-
lent, the ability to call Java code from Smalltalk and vice
versa becomes important. Traditional approaches to inte-
grate the Java and Smalltalk languages are through low-level
communication between separate Java and Smalltalk virtual
machines. We are not aware of any attempt to execute
and integrate the Java language directly in the Smalltalk en-
vironment. A direct integration allows for very tight and
almost seamless integration of the languages and their ob-
jects within a single environment. Yet integration and lan-
guage interoperability impose challenging issues related to
method naming conventions, method overloading, exception
handling and thread-locking mechanisms.

In this paper we describe ways to overcome these chal-
lenges and to integrate Java into the Smalltalk environment.
Using techniques described in this paper, the programmer
can call Java code from Smalltalk using standard Smalltalk
idioms while the semantics of each language remains pre-
served. We present STX:LIBJAVA — an implementation of
Java virtual machine within Smalltalk/X — as a validation
of our approach.

[Copyright notice will appear here once ’preprint’ option is removed.]

Categories and Subject Descriptors H.3.3 [Programming
Languages]: Language Constructs and Features—Language
Interoperability; H.3.4 [Programming Languages]: Pro-
cessors—Interpreters, Virtual Machines

General Terms Language Interoperability

Keywords Language Interoperability, Smalltalk, Java

1. Introduction
Without doubt, the Java programming language has become
one of the most widely used programming languages today.
A significant amount of code is written in Java, ranging
from small libraries to large-scale application servers and
business applications. Nevertheless, Smalltalk still provides
a number of unique features (such as advanced reflection
support or expressive exception mechanism) lacking in Java,
which makes Smalltalk suitable for many kinds of project.
It is a tempting idea to call Java from Smalltalk and vice
versa, as it enables the use of many Java libraries within
Smalltalk projects.

The idea of Java-Smalltalk integration is not new and has
been explored by others in the past. JavaConnect (Brichau
and De Roover [1]) and JNIPort (Geidel [4]) use foreign
function interfaces to connect to the Java virtual machine
and to call a Java code. Bridges, such as VisualAge for Java
(Deupree and Weitzel [2]) or Expecco Java Interface Li-
brary (Expecco [3]), use proxy objects, which intercept and
forward function calls and return result values or handles
via an interprocess communication channel. Another more
versatile approach, is to execute both languages within the
same virtual machine and use a common object representa-
tion for both. STX:LIBJAVA, which is presented in this paper,
is an example of such an approach: it executes Java within
the Smalltalk virtual machine. Another example is Redline

1 2012/8/15

Smalltalk (Ladd [9]), which executes Smalltalk using stan-
dard Java virtual machine.

Seamless, easy to use integration of two programming
languages consists of various parts. First, it must allow one
language to call functions in the other, possibly passing
argument objects and getting return values (runtime-level
integration).

Second, it should support programmer-friendly argument
and return value passing between the languages.

Third, it should ideally preserve object identity. The use
of replicas or proxy objects can introduce various problems
when objects are stored or managed by their identity. This
also affects any side effects to such objects when calling
functions in the other language.

Finally, it should seamlessly integrate the two languages
on the syntactic level, which means that (ideally) no addi-
tional glue or marshalling code should be required to call
the other language (language-level integration).

In the case of Java and Smalltalk, language-level integra-
tion raises a number of challenges, due to their different de-
sign and semantics. In particular these are:

• Smalltalk uses keyword message selectors, whereas Java
uses traditional C-like selectors (virtual function names).
• Java supports method overloading based on static types,

whereas there is no static type information in Smalltalk.
• Exception and locking mechanisms differ.

In this paper, we present STX:LIBJAVA, a Java virtual ma-
chine (JVM) implementation built into the Smalltalk/X en-
vironment. STX:LIBJAVA allows for the program to call Java
code from Smalltalk almost as naturally as normal Smalltalk
code. We will demonstrate how STX:LIBJAVA integrates Java
into Smalltalk and we will describe how it deals with seman-
tic differences.

The contributions of this paper are (i) a new approach of
Smalltalk and Java integration, (ii) identification of problems
imposed by such an integration and (iii) solutions for these
problems and their practical validation in STX:LIBJAVA.

The paper is organized as follows: Section 2 discusses in-
tegration problems in detail. Section 3 gives an overview of
STX:LIBJAVA and its implementation. Sections 4, 5, 6 and
7 describe techniques to solve these problems. Section 8
presents some real-world examples to validate our solution.
Section 9 discusses related work. Finally, Section 10 con-
cludes this paper.

2. Problem Description
At first glance Smalltalk and Java are very similar. Both are
high-level object oriented, class-based languages with sin-
gle inheritance and automatic memory management. In both
languages message sending is the fundamental way of com-
munication between objects. In this section we enumerate
details by which these languages differ and which pose prob-

lems when integrating these languages into a common sys-
tem.

1. Class access. In Smalltalk classes are identified by name.
There is only one class with a given name at any time (al-
though it may change over time) and it must be present
and resolved prior to the code actually beeing executed.
The system triggers a runtime error otherwise. The pro-
cess of loading classes into the system is not specified in
the standard, although some Smalltalk dialects provide
namespaces and/or a lazy class loading facility.
On the other hand Java provides a well-defined, user-
extensible mechanism called classloaders for lazy-loading
of classes into a running system. Moreover in Java a
class is not only identified by its name but by its defining
classloader as well. In other words two possibly different
classes with the same name may coexist in the running
system as long as they have been defined by different
classloaders. Which classloader is used to load a partic-
ular class at a particular place in the code is a subject to
complex rules and depends on the runtime context.

2. Selector mismatch. On the bytecode level, a method is
identified by a selector in both languages. However, the
syntactic format of selectors differs. Smalltalk uses the
same selector in bytecode and in a source code. Java en-
codes type information into a selector at the bytecode
level. This may affect reflection and/or dynamic execu-
tion, eg via #perform:.
For example, consider the following code in Smalltalk:

out println: 10

Let’s assume that out is an instance of the Java class
java.io.PrintStream. Smalltalk compiles a message
send with the selector println:. However, at the byte-
code level the Java selector is println(I)V, whereas
println is the method name expressed in the source
code. The added suffix (I)V means that the method
takes one argument of the Java type int and V means
that the method does not return a value (aka returns a
void type).

3. Method overloading. Java has a concept of overload-
ing: in a single class, multiple methods with same name
but with different numbers or types of arguments may
coexist. For example, a PrintStream instance from
the previous example has multiple methods by the name
println, one taking an argument of type int, another
taking a Java String argument, and so on. On the vir-
tual machine level, each overloaded method has a dif-
ferent selector (println(I)V, respectively println
(Ljava/lang/String;)V).
The method which is called depends on the static types
of the argument types at the call site. At compile time the
Java compiler finds the best match and generates a send
with the particular selector. For example, the source code

2 2012/8/15

out.println("String");
out.println(1);

produces the following bytecode with type information
encoded in method selectors (arguments of INVOKEVIRT
instruction):

ALOAD ...
LDC 1
INVOKEVIRT println(L...String;)V
BIPUSH 1
INVOKEVIRT println(I)V

As Smalltalk is dynamically typed, no type specific se-
lector are chosen by the Smalltalk compiler at compile
time.

4. Protocol mismatch. Comparing Java and Smalltalk side
by side, many classes with similar functionality are
found. For example both Java’s java.lang.String
and Smalltalk’s String class represent a String type.
More complex examples are java.util.Map and
Smalltalk’s Dictionary class. Here, the classes have
different names, possibly have different method names,
but their purpose and usage is similar — both store ob-
jects under a particular key.
When using code from both languages the programmer
has to take care which kind of object (Java or Smalltalk)
is passed as an argument. For example the hash of a string
is obtained by sending the hashCode message in Java
but hash in Smalltalk. Passing a Smalltalk String as an
argument to a Java method which expects a Java-like
String may result in a MethodNotFound exception.

5. Exceptions. The exception mechanisms in Smalltalk and
Java differ in two very profound ways:
First in Smalltalk both exception and ensure-handlers
are blocks. Blocks are self-contained first-class closures
that can be manipulated and executed separately. In Java
exception and finally-handlers are syntactic entities and
technically generate a sequence of bytecode instructions,
which are spliced into the instruction stream. They can
be only executed by jumping to the beginning of the han-
dler and then continuing execution from that location.
The method in question contains a special exception ta-
ble which maps instruction ranges to the beginning of a
particular handler.
Second, Smalltalk provides resumable exceptions. When
an exception is thrown (raised) in Smalltalk, the handler
is executed on top of the context that caused that excep-
tion. The underlying stack frames are still present at han-
dler execution time. If the handler returns, i.e., the ex-
ception is not “proceeded”1, ensure blocks are executed

1 Smalltalk allows for exceptions to be “proceeded”, which effectively
means that the executions is resumed at the point where the exception was
thrown (raised).

after the exception handler. Java provides only return se-
mantics. When a handler is found, all contexts up to the
handler context are immediately unwound and the exe-
cution is resumed at the beginning of the handler. Any
finally block is treated like special exception handler,
which matches any exception.
In other words, the main difference between Smalltalk
and Java exceptions from the programmer’s point of view
is that in Smalltalk, ensure blocks are eventually executed
after the the handler, if the handler decides to return. In
contrast, finally blocks of Java are always executed and
their evaluation happens before the execution of the han-
dler. A Smalltalk handler is even free to dynamically de-
cide whether to proceed with execution after the excep-
tion is raised. Such proceedable exceptions are useful to
continue execution after fixing a problem in the handler,
or to implement queries or notifications (for example, to
implement loggers or user interaction).

6. Synchronization. The mechanisms for process synchro-
nisation differ both in design and implementation.
The principal synchronisation mechanism in Java is a
monitor. Conceptionally every Java object has associated
with it a monitor object. Synchronization is done using
two basic operations: entering the monitor, which may
imply a wait on its availablility and leaving the moni-
tor (Section 8.13, Lindholm and Yellin [10]). Monitor
enter and leave operations must be properly nested. In
Java, whole methods can be marked as synchronized, in
which case the Java virtual machine itself is responsi-
ble for entering the monitor associated with the receiver
and leaving it when the method returns. This happens
both for normal and unexpected returns, for example due
to unwinding after an uncaught exception. For synchro-
nized blocks, the compiler emits MONITORENTER and
MONITOREXIT bytecodes and ensures that no moni-
tor remains entered, no matter how the method returns.
Again, both normal and unwinding (Section 8.4.3.6,
Gosling et al. [8], Section 3.11.11, Lindholm and Yellin
[10]). The compiler achieves this by generating special
finally-handlers, which leave the monitor and rethrow the
exception.
In Smalltalk (Smalltalk/X, in particular), processes are
usually synchronized by semaphores. The programmer is
responsible for proper semaphore signaling, although li-
brary routines provide support for critical regions. Tech-
nically speaking, there is no support at the virtual ma-
chine level for semaphores, except for a few low-level
primitive methods.
Now consider the following code:

1 [
2 self basicExecute
3] on: ExecutionError do: [:ex |

3 2012/8/15

4 self handleError: ex
5]

A system which integrates Java and Smalltalk must en-
sure that all monitors possibly entered during execu-
tion of the basicExecute method are left when an
ExecutionError is thrown and caught by the han-
dler.

3. STX:LIBJAVA

3.1 In a Nutshell
STX:LIBJAVA is an implementation of the Java virtual ma-
chine built into the Smalltalk/X environment. In addition to
providing the infrastructure to load and execute Java code, it
also integrates Java into the Smalltalk development environ-
ment, including browsers, debugger and other tools.

Calling Java from Smalltalk is almost natural. Listing 1
demonstrates how a Java library can be used from Smalltalk.
In the example, an XML file is parsed and parsed data
is printed on a system transcript. The XML file is parsed
by the SAX parser, which is completely implemented in
Java. However, the SAX events are processed by a Smalltalk
object — an instance of CDDatabaseHandler (see Listing 2).

This example demonstrates STX:LIBJAVA interoperability
features:

• Java classes are referred to via a sequence of (unary)
messages, which comprise the fully qualified name of a
class. Java classes can be reached via the global variable
JAVA. For example, to access java.io.File from
Smalltalk, one may use2:

JAVA java io File

• To overcome selector mismatch errors, STX:LIBJAVA in-
tercepts the first message send and automatically creates
a dynamic proxy method. These dynamic proxy methods
translate the selector from Smalltalk keyword form into a
correctly typed Java method descriptor and pass control
to the corresponding Java method.
• STX:LIBJAVA provides a bridge between Java and Small-

talk exception models. Java exceptions can be handled by
Smalltalk code. When a Smalltalk exception is thrown
and the handler returns, all Java finally blocks between
the raising context and handler context are correctly exe-
cuted and all possibly entered monitors are left. No stale
Java locks are left behind.

3.2 Architecture of STX:LIBJAVA

In this section we will briefly outline STX:LIBJAVA’s internal
architecture.

Unlike other projects which integrate Java with other lan-
guages, STX:LIBJAVA does not use the original JVM in par-

2 alternatively, the class can also be referred to via a sub-namespace, as
JAVA::java::io::File.

allel with the host virtual machine, nor does it translate Java
source code or Java bytecode to any other host language. In-
stead the Smalltalk/X virtual machine is extended to support
multiple bytecode sets and execute Java bytecode directly.
To our knowledge, Smalltalk/X and STX:LIBJAVA is the only
programming environment that took this approach.

The required infrastructure for loading .class (chap-
ter 4, Lindholm and Yellin [10]) files, class loader support
and additional support for execution, such as native methods,
is implemented in Smalltalk. Java runtime classes and meth-
ods are implemented as customized Smalltalk Behavior
and Method objects. In particular, Java methods are repre-
sented as instances of subclasses of the Smalltalk Method
class. However, they refer to Java instead of Smalltalk byte-
code. Execution of Java bytecode is implemented in the vir-
tual machine. In the same way that Smalltalk bytecode is
handled by the VM, Java bytecode is interpreted and/or dy-
namically compiled to machine code (jitted).

However, some complex instructions (such as CHECK-
CAST or MONITORENTER) are handled by the virtual ma-
chine calling back into the Smalltalk layer via a so-called
trampoline and are implemented in Smalltalk as a library
method. Similarly, all native methods are implemented in
Smalltalk.

Both Smalltalk and Java objects live in the same ob-
ject memory and are handled by the same object engine
and garbage collector. Performance-wise, there is no dif-
ference between Smalltalk code calling a Java method or
other Smalltalk code. Moreover, all dynamic features of the
Smalltalk environment - such as stack reification and ad-
vanced reflection — can be used on the Java code.

The main disadvantage of our approach (as opposed to
having a separate original JVM execute Java bytecodes) is
that the whole functionality of the Java virtual machine. has
to be reimplemented. This includes an extensive number of
native methods, which indeed involve a lot of engineering
work. However, we believe that this solution opens possibil-
ities to a much tighter integration which would not be possi-
ble otherwise.

4. Class Access
In Smalltalk classes are stored by name in the global Smalltalk
dictionary. Obviously, this dictionary cannot be reused by
the Java subsystem, as Java classes are specified by name
and defining class loader. Therefore loaded classes are ac-
cessed through JavaVM class. Listing 3 shows its usage in
case of a known class loader instance.

1 JavaVM
2 classForName: ’org.junit.TestCase’
3 definedBy: classLoaderObject

Listing 3. Accessing Java class with known class loader

4 2012/8/15

1 factory := JAVA javax xml parsers SAXParserFactory newInstance.
2 parser := factory newSAXParser getXMLReader.
3 parser setContentHandler: JavaExamples::CDDatabaseHandler new.
4 [
5 parser parse: ’cd.xml’.
6] on: JAVA java io IOException do:[:ioe|
7 Transcript showCR: ’I/O error: ’, ioe getMessage.
8 ioe printStackTrace
9] on: UserNotification do:[:un|

10 Transcript showCR: un messageText.
11 un proceed.
12]

Listing 1. Smalltalk code calling Java XML parser

1 CDDatabaseHandler>>startElement:namespace localName:localName qName:qName attributes:
attributes

2 tag := qName.
3

4 CDDatabaseHandler>>endElement:namespace localName:localName qName:qName
5 qName = ’cd’ ifTrue:[
6 title isNil ifTrue:[self error: ’No title’].
7 artist isNil ifTrue:[self error: ’No artist’].
8 index := index + 1.
9 UserNotification notify:

10 (index printString , ’. ’, title , ’ - ’ , artist)
11]
12

13 CDDatabaseHandler>>characters: string offset: off length: len
14 tag = ’title’ ifTrue:[
15 title := string copyFrom: off + 1 to: off + len.
16 tag := nil.
17].
18 tag = ’artist’ ifTrue:[
19 artist := string copyFrom: off + 1 to: off + len.
20 tag := nil.
21].

Listing 2. An excerpt of CDDatabaseParser used in Listing 1

As already shown in Listing 1, the JAVA global variable
is provided to refer to a Java class using the current class
loader.

Interoperability approaches based on foreign-function in-
terfaces of the JVM and host virtual machine suffer from the
inability to reclaim classes which have entered the JNI (Java
native interface). In STX:LIBJAVA all loaded classes are re-
claimed in compliance with the JVM specification (Section
12.7, Gosling et al. [8]).

5. Dynamic Proxy Methods
The Dynamic Proxy Method is a mechanism employed by
STX:LIBJAVA to solve selector and protocol mismatch and
to deal with Java’s method overloading. A proxy method is

an intermediate method that possibly performs an additional
method resolution, transforms arguments and finally passes
control to a real method dispatching on the type and num-
ber of arguments. Such a proxy is generated dynamically
whenever the control flow crosses the language boundary,
i.e., when Smalltalk calls Java or vice versa. In the following
sections we describe in detail how dynamic method proxies
solve the problem outlined in the previous sections. We will
demonstrate proxies on examples of Smalltalk calling Java;
the actions performed in the opposite call direction are anal-
ogous.

5 2012/8/15

5.1 Selector Mismatch
Consider the example given in the listing 4. Without addi-
tional interoperability support, a DoesNotUnderstand
exception would be raised, since there is obviously no
method for the println: selector in the Java Print-
Stream class.

1 out := JAVA java lang System out.
2 out println: 10.

Listing 4. Example of selector mismatch

STX:LIBJAVA’s interoperability mechanism catches cross-
language message sends and dynamically generates a dy-
namic proxy method for the original selector, which per-
forms a second send using a transformed selector. The code
of the proxy is shown on Listing 5. The proxy is compiled on
the fly and installed into the receiver’s class and the original
message-send is restarted. This way a proxy method is gen-
erated only for the very first time and subsequent sends will
use the “fast path”, invoking the already generated proxy
directly. Details on how sends are intercepted are discussed
below in section 5.6.

1 java.io.PrintStream>>println: arg
2 self perform: #’println(I)V’
3 with: arg

Listing 5. A proxy method for println() Java method

5.2 Method Resolution
There are numerous ways to translate Smalltalk selectors
to corresponding Java selectors and vice versa. This section
does not discuss any pros and cons of possible approaches.
We do not believe that there is the only one the best way
how to translate selectors. STX:LIBJAVA simply uses the
way which showed to be the most natural and easy for our
purpose. The translation rules are described below.

Smalltalk to Java resolution. When calling a selector like
println:, and the receiver is a Java object, the Java object
and its super-classes are searched for all methods with a
name of println. In case there is no such method, the
#doesNotUnderstand: message is sent, as usual. If
exactly one method exists by that name, that method is
invoked. In case more than one method exists by the name
(e.g., the method is overloaded), the algorithm consults at
run-time the number and types of arguments and tries to find
the best matching Java method. If the number of arguments
does not match, the #doesNotUnderstand: message is
sent. Finally, if an interface type is expected as an argument
and the argument is a Smalltalk object (which usually does
not implement the Java interface), STX:LIBJAVA follows the
traditional Smalltalk duck-typing philosophy and passes the
Smalltalk argument unchanged to the method. Either the

argument object implements any required interface methods
(and everything works as expected then), or Java throws a
runtime exception, which can be handled either by Smalltalk
or by Java code.

Java to Smalltalk resolution. When calling a selector like
put(Ljava.lang.String;Ljava.lang.Object)
V3. and the receiver is a Smalltalk object, the object’s class
and its superclasses are searched for any selector starting
with the first keyword part, put:. The rest of the selec-
tor is ignored in this matching process. However, the num-
ber of arguments must match. Also argument types are ig-
nored. If more than one method fulfils these criteria, an
AmbiguousMessageSend error is raised.

Variable number of arguments. Starting with Java 1.6,
Java supports a variable number of arguments (section 8.4.1,
Gosling et al. [8]). Technically, variable arguments are
wrapped into an array object and passed to the method as
a single argument. A Java compiler is responsible for gen-
erating code that wraps variable arguments. Therefore, no
special care is required during method resolution.

5.3 Method Overloading
To demonstrate method overloading, we extend the example
in Listing 4 , as depicted in Listing 6. After execution of line
3, a new proxy method has been added to the java.io.
PrintStream class as depicted in Listing 5. The execu-
tion of line 4 would raise a runtime error, since we call the
println(I)V method with a boolean parameter.

1 out := JAVA java lang System out.
2 out println: 10.
3 out println: true.

Listing 6. An example of overloaded method called from
Smalltalk

1 java.io.PrintStream>>println: a1
2 | method |
3 (a1 class == SmallInteger) ifTrue:[
4 ↑ self perform: #’println(I)V’ with:

a1
5].
6 self recompile: a1.
7 ↑ self println: a1.

Listing 7. A proxy method for an overloaded method

Due to the dynamic nature of Smalltalk, argument types
cannot be statically inferred and may even change during
execution. Therefore, another method resolution step has to
be added to the proxy method. To ensure type-safety (as

3 A Java selector for method named put that takes two arguments of
types java.lang.String and java.lang.Object respectively and
whose return type is void

6 2012/8/15

required and assumed by the Java code) the actual call to
the Java method is protected by a “guard” that checks the
actual argument types. The code for the println: proxy
after execution of line 2 is shown in Listing 7.

Only one guard is added at a time. Line 6 ensures that if
no guard matches — like when line 3 of example from List-
ing 6 is executed — the proxy is recompiled, possibly adding
a new guard. Line 7 restarts the send. This prevents unnec-
essary guards which are actually never used from being gen-
erated. An alternative implementation based on multiple dis-
patch could be implemented by dynamically installing dou-
ble dispatch methods in the encountered argument classes.
However, as the number of dynamically encountered argu-
ment types is usually relatively small, we believe that the
switch code on the argument class is usually sufficient and
faster.

5.4 Protocol Mismatch
In some cases, it is not sufficient to simply translate the
Java selector to a Smalltalk selector and vice versa. For
example, Smalltalk code can send a #isEmpty message
to a java.lang.String (because it contains the is
Empty() method), but it cannot send #collectAll:,
as there is no such functionality in a Java string. Therefore
the arguments and return values should also be converted
when crossing the language boundary. STX:LIBJAVA makes
these conversions automatically for predefined types (such
as String, Integer, Boolean, ...). Thanks to dynamic proxy
methods, user-defined types can be converted automatically
as well.

Being aware of the protocol mismatch problem, we have
to update the proxy method from Listing 7 as depicted in
Listing 8. The #asJavaObject and #asSmalltalk
Object are responsible for conversion between Smalltalk
and Java types.

1 java.io.PrintStream>>println: a1
2 | jA1 jA1Class |
3 jA1 := a1 asJavaObject.
4 jA1Class :=
5 Java classForName:
6 ’java/Lang/String’.
7

8 (jA1 class == jA1Class) ifTrue: [
9 ↑ (self #’println(Ljava/lang/String;)

V’: jA1)
10 asSmalltalkObject.
11].
12 self recompile: a1.
13 ↑ self println: a1.

Listing 8. A proxy method with argument and return value
conversions

5.5 Field Accessing
In Java, public fields can be accessed directly using the dot-
notation whereas in Smalltalk, values of instance variables
could only be accessed using accessor methods. Although
in modern Java, declaring instance fields public and ac-
cessing them directly is considered as a “bad style”, pub-
lic static fields are often thorough Java libraries to expose
constant values. STX:LIBJAVA allows for public field to be
accessed from Smalltalk in a Smalltalk way,i.e., by access
methods. These accessor methods are dynamically compiled
whenever needed - just like proxy methods described above.

Consider the example given in the listing 9 that access
public static field PI of class java.lang.Math. STX:
LIBJAVA interoperability mechanism catches the send of
message #PI to the class and automatically generates getter
method returning corresponding field.

1 cf = 2 * (JAVA java lang Math PI) * r

Listing 9. An example of accessing Java fields from
Smalltalk

Accessor methods are generated only for Java fields de-
clared as public. If the field is declared as final, only
getter method is generated. Same mechanism is used to ac-
cess both static and instance fields.

5.6 Intercepting the Message Send
To install a proxy, a message send must be intercepted.
A standard Smalltalk solution would be to override the
#doesNotUnderstand: method so it creates and in-
stalls the generated proxy method.

However, STX:LIBJAVA utilizes the method lookup meta-
object protocol (MOP; Vraný et al. [12]) which is integrated
into the Smalltalk/X virtual machine. The MOP allows for a
user-defined method lookup routine to be specified on a per-
class basis. This user-defined method lookup routine installs
the proxy and invokes it.

6. Mixed Exception-Handling
Considering the mixed Smalltalk and Java code in Figure 1
(part a) which creates a user account, let us follow the ac-
tions taken when an exception is thrown in an invocation of
CreateAccountCmd»perform (part b). First, the han-
dler is searched and executed (Step 1 in Figure 1). Since the
handler does not proceed the stack should be unwound and
control passed to the createAccountClicked method.
All ensure and finally blocks between the current context and
the context for createAccountClickedmethod are ex-
ecuted first. The first such block is the ensure block in the
execute method (Step 2 in Figure 1). The second is the
finally block in createAccount(). However, the finally
block is not a Smalltalk block and thus cannot be evaluated
easily. Due to the underlying virtual machine implementa-
tion, the only way to execute the finally code is to (i) set

7 2012/8/15

the program counter to the beginning of the handler and
(ii) restart the method. Restarting a method also implies that
contexts below the restarted method’s context are destroyed
(i.e., contexts for called methods). In particular, the context
of the raise method should be destroyed. This poses a
problem, as it is the context of the method which controls
all handler and ensure block evaluation.

To solve this problem we exploit two facts. First, when
ensure or finally handlers are executed, the contexts below
the handler context are going to be destroyed anyway. Sec-
ond, finally blocks are compiled in such a way that they
never touch the exception object. The exception is only tem-
porarily stored and then rethrown by the ATHROW Java in-
struction. The exception object can be any object, not neces-
sarily a Java object inheriting from Throwable. To execute
the finally code, we pass a special finally token object as an
exception and restart the method with the finally block (Step
3 in Figure 1). This special finally token is recognised by the
ATHROW instruction. Upon detection of that special token,
ATHROW continues to evaluate finally and ensure blocks and
finally unwinds the stack (Step 4 in Figure 1).

7. Synchronization
The Java runtime library has been designed to be thread-safe.
Critical sections guarded by monitors are pervasive through
the code. Correct handling of monitors in case of mixed
Java-Smalltalk code is essential as a single leftover monitor
can easily result in blocking the whole system.

Prior to entering a critical section, a monitor is entered,
which must be left at the end of the section. This is done
either implicitly by the virtual machine (when the whole
method is marked as synchronized) or explicitly using spe-
cial MONITORENTER and MONITORLEAVE instructions.
Those implement fine-grain synchronization of Java’s syn-
chronized blocks.

7.1 Synchronized blocks
When an exception occurs during the execution of a syn-
chronized block, the guarding monitor must be left before
the control flow is passed to a handler higher up on an exe-
cution stack 4. To ensure this, a Java compiler must generate
a synthetic finally block in which the monitor is left and the
exception is rethrown (Section 7.13, Lindholm and Yellin
[10]). Figure 2 shows an example of such a finally block.

Consider the code shown in Figure 2. Because an excep-
tion could be thrown in the synchronized block (bytecode
lines 2 - 10), the compiler generates a special handler (byte-
code lines 11 - 15, Figure 2), in which the monitor is left and
the exception is rethrown.

7.2 Synchronized methods
In the case of synchronized methods, neither MONITOR-
ENTER / MONITOREXIT instructions, nor synthetic finally

4 assuming that the stack grows downwards

blocks are generated by the Java compiler. Instead, synchro-
nization is done directly by the virtual machine. The monitor
used for synchronization is the monitor associated with the
receiver or (in case of a static method) with the class.

Prior to executing a synchronized method, the virtual
machine enters the monitor associated with the receiver and
tags the context as an unwind context. The VM intercepts
returns through such tagged contexts and trampolines into
the Smalltalk level for any unwind actions to be executed. In
this case, the monitor-leave semantic is performed.

8. STX:LIBJAVA at Work
As mentioned in the 1 section, language integration consists
of runtime-level and language-level integration.

Runtime-level integration. Several reasonably large Java
projects have been chosen as benchmarks to validate the cor-
rect implementation of Java runtime support. These projects
include:

• Apache Tomcat5 – a Servlet/JSP container,
• SAXON6 – an XSLT and XQuery processor,
• Groovy7 – a dynamic language for Java platform,

Apache Tomcat makes heavy use of almost all Java fea-
tures, from threads and synchronization, through dynamic
class generation, class loading and finalization, to exceptions
and finally blocks. Groovy makes heavy use of Java reflec-
tion and especially class loading as it dynamically generates
Java bytecode and loads it into a running system. All these
programs run correctly under STX:LIBJAVA.

Language-level integration. Language-level interoperabil-
ity was already demonstrated in Listings 1 and 2, which use
the Xerces XML parser to parse an XML file. The filename
is passed into the Java method as a Smalltalk string. The
SAX handler which is passed to the parser and later called
for decoded elements is actually implemented in Smalltalk.
No boilerplate code is needed whatsoever.

Tool support. A Java implementation in Smalltalk would
not be complete without support in the development tools.
Java classes can be browsed using the standard Smalltalk
class browser, and Java objects or classes can be inspected
in the Smalltalk inspectors. For programmer convenience,
specialized inspectors are provided for specific Java classes
such as Vector, ArrayList, Set or Map. Java is also
fully supported by the debugger — breakpoints may be set
on methods and Java code can be single stepped and de-
bugged just like Smalltalk. A Groovy interpreter has been
integrated into the Workspace application so programmers

5 http://tomcat.apache.org
6 http://saxon.sourceforge.com
7 http://groovy.codehaus.com

8 2012/8/15

http://tomcat.apache.org
http://saxon.sourceforge.com
http://groovy.codehaus.com

NewAccountCmd>>perform

account hasStrongPassword ifFalse: [
 WeakPasswordError raise
].
...

execute:cmd
 self openTransaction.
 [
 cmd perform
] ensure:
 self closeTransaction
]

public void makeAccount(Account a) {
 this.beBusy();
 try {
 Cmd cmd = new NewAccountCmd(a);
 database.execute(cmd);
 } {finally
 this.setIdle();
 }
}

AccountController>>createAccountClicked
[
 manager makeAccount: account
] on: Error do: [:err |
 self showErrorMessage:err
]

#createAccountClicked

#on:do:

#makeAccount(LCmd;)V

#perform

#raise

[] in #createAccountCli...

#createAccountClicked

#on:do:

#makeAccount(LCmd;)V

#perform

#raise

[] in #execute

#createAccountClicked

#on:do:

#makeAccount(LCmd;)V

#ensure: #ensure: #ensure:

#execute: #execute: #execute:

#perform

#raise

#createAccountClicked

#on:do:

#makeAccount(LCmd;)V

#createAccountClicked

Step 1

Step 2

Step 3

Step 4

Legend

#method

#[] in #method:

S
TA

C
K

Callee

Caller

TIME

(error handler in create...) (ensure block in #execute)

(b)

Figure 1. (a) an example of mixed-exception code (b) method activation stackswhen executing code from (a). Too keep the
figure concise, unimportant intermediate contexts for “try” blocks in #on:error: and #ensure: are omitted.

 0: aload_1 //load lock
 1: dup
 2: astore_2 //temp. store lock
 3: monitorenter //enter lock
 4: aload_0 //load receicer
 5: invokevirtual #5; //invoke execute:()Z
 8: aload_2 //load lock
 9: monitorexit //leave lock
 10: ireturn //return
 11: astore_3 //temp. store exception
 12: aload_2 //load lock
 13: monitorexit //leave lock
 14: aload_3 //load exception
 15: athrow //rethrow it
 Exception table:
 from to target type
 4 10 11 any

public boolean perform(Object lock) {
 synchronized (lock) {
 return this.execute();
 }
}

Synchronization
handler

(a) Java Code (b) Generated Bytecode

Figure 2. Example of synchronized block in Java

9 2012/8/15

can quickly test Java code (doIt), in just the way they are
used to with Smalltalk. Also, JUnit8 has been integrated into
the standard tools to ease running of JUnit tests.

Java classes can be unloaded and then a possibly new
version can be loaded again at run-time – a feature missing
in other Java virtual machines. A new can be even written
and then “accepted” in the class browser. A standard javac
is then invoked a new class is reloaded into a running system.
However, this feature is still experimental.

9. Related Work
9.1 JavaConnect and JNIPort
JavaConnect (Brichau and De Roover [1]) and JNIPort
(Geidel [4]) are Smalltalk libraries that allow interaction
with Java code from within Smalltalk. A Java virtual ma-
chine is linked into the Smalltalk virtual machine and the
communication is made via foreign-function interfaces.
Cross-language messages are translated into FFI invocations
of either environment.

Java classes can be browsed, but cannot be modified from
within Smalltalk. This is caused by the implementation of
the Java virtual machine. Each Java object passed through
FFI must be wrapped and registered, which generates ad-
ditional overhead and disables automatic garbage collec-
tion of such objects. Because Java code is running in a
separate virtual machine, proxy Java class must be gen-
erated for every Smalltalk class passed into Java. To re-
duce the overhead due to FFI calls, JavaConnect introduces
the concept of language shifting objects. Shifted Java ob-
jects have part (or whole) of their behavior translated into
Smalltalk, but not all instructions and language constructs
are supported (such as MONITORENTER instruction and
synchronized methods). In multithreaded applications,
object state must be synchronized and problems arise, when
a single native-threaded Smalltalk virtual machine interacts
with a multithreaded Java application. Deadlocks can occur
when a Java thread tries to communicate with the Smalltalk
virtual machine, whose single native thread is blocked by
another Java thread.

In STX:LIBJAVA, Java classes can be created, modified,
or destroyed in runtime. There is no need to synchronize
object state across two virtual machines. Java methods are
directly executed, therefore no translation or interprocess
communication is needed.

9.2 IBM VisualAge
IBM VisualAge for Java (Deupree and Weitzel [2]) includes
an interaction mechanism on the Smalltalk side. Commu-
nication is realized using remote-method invocation (RMI).
Java and Smalltalk virtual machines run in parallel, possi-
bly even on two separate machines. The transition between
languages is explicit and managed by the programmer. A lot

8 www.junit,org

of boilerplate code must be written and objects must be reg-
istered, converted and maintained by the programmer when
crossing language barrier.

STX:LIBJAVA does not require any boilerplate code to ac-
cess code across the language barrier, nor does it require any
explicit handling or conversion when crossing the barrier.
There is no need to set up an RMI service and to explicitly
register objects in the RMI registry.

9.3 Redline Smalltalk
Redline Smalltalk (Ladd [9]) is a Smalltalk implementa-
tion running on the JVM. Java classes are dynamically com-
piled from Smalltalk source code and loaded into JVM us-
ing standard class loaders. Smalltalk exceptions are mapped
onto Java exceptions. Therefore, it is not possible to pro-
ceed or retry an exception. This greatly restricts the num-
ber of Smalltalk applications and libraries which could run
on Redline Smalltalk. Some methods, especially those re-
lated to object space reflection, such as allInstances
or become:, are not supported for performance reasons.
Common types such as string and integer must be explicitly
converted when crossing the language barrier. Due to Java’s
static type system, Smalltalk objects can only be passed as
argument if the Java method expects that type.

STX:LIBJAVA does not alter any feature of the Java lan-
guage, Java reflection is also fully compliant with the orig-
inal JVM. Any Java application could run on STX:LIBJAVA
without modifications. Common types are automatically
converted. Java and Smalltalk methods can be passed in
as needed and the programmer is freed from the need to
handle Java or Smalltalk objects differently. STX:LIBJAVA
is currently the only language implementation of this kind
on Smalltalk/X, however the approach does allow for di-
rect communication between other such languages if they
become relevant9.

10. Conclusion And Future Work
In this paper, we have presented STX:LIBJAVA, a Java vir-
tual machine implementation integrated into the Smalltalk/X
environment. We have described the main problems of a
seamless integration of Smalltalk and Java languages and
their solutions. We use dynamic method proxies to allow for
Java code to be easily called from Smalltalk and the other
way round. Also, we described how to integrate Smalltalk
and Java exception and synchronization mechanisms, so
Smalltalk code can handle Java exceptions while the seman-
tics of Java finally and synchronized blocks are preserved.
A number of significantly large programs such as SAXON
XSLT processor and Apache Tomcat Server/JSP container
run on STX:LIBJAVA.

9 Ruby (Vraný [11], Chapter 8) and a JavaScript dialect (Gittinger [5]) have
been integrated into are Smalltalk/X, but these translate the source language
into Smalltalk/X bytecode and do not suffer from the complexity resulting
from major semantic differences of eg. the exception mechanism

10 2012/8/15

http://www.junit,org

Figure 3. Class Browser and Debugger showing Java code

In the future we plan to further improve the integration
of Java into Smalltalk environment, for instance: add sup-
port for extension methods on Java classes, integrate Java
support to Smalltalk/X packaging tools and building pro-
cess, improve code highlighting and navigation, add more
specialised object inspectors. We also plan to extend STX:
LIBJAVA to provide a fully incremental development envi-
ronment for Java, similar to that provided for the Smalltalk
language.

Acknowledgement. We would like to gratefully thank to Oscar
Nierstrasz and Eliot Miranda for their precious comments.

References
[1] J. Brichau and C. De Roover. Language-shifting objects

from java to smalltalk: an exploration using javaconnect.
In Proceedings of the International Workshop on Smalltalk
Technologies, IWST ’09, pages 120–125, New York, NY,
USA, 2009. ACM. ISBN 978-1-60558-899-5. doi: 10.1145/
1735935.1735956. URL http://doi.acm.org/10.1145/1735935.
1735956.

[2] J. Deupree and M. Weitzel. Visualage integration for the 21st
century: Smalltalk, java, websphere. URL http://www-01.ibm.

com/support/docview.wss?uid=swg27000174.

[3] Expecco. Java interface library 2.1. http://wiki.expecco.de/wiki/
Java_Interface_Library_2.1.

[4] J. Geidel. Jniport, Feb. 2011. URL http://jniport.wikispaces.
com/.

[5] C. Gittinger. Javascript compiler and interpreter. http://live.
exept.de/doc/online/english/programming/goody_javaScript.html.

[6] C. Gittinger. Die Unified Smalltalk/Java Virtual Machine in
Smalltalk/X. In Proceedings of NetObjectDays, 1997.

[7] C. Gittinger and S. Vogel. Smalltalk/Java Integration in
Smalltalk/X. Tagungsband STJA’97, GI Fachtagung Objek-
toriente Softwareentwicklung, 1997.

[8] J. Gosling, B. Joy, G. Steele, and G. Bracha. Java Lan-
guage Specification, The (3rd Edition). Addison Wesley,
Santa Clara, California 95054, U.S.A, 3 edition, 6 2005. ISBN
9780321246783. URL http://java.sun.com/docs/books/jls/.

[9] J. Ladd. Smalltalk implementation for the jvm. URL www.
redline.st.

[10] T. Lindholm and F. Yellin. JavaTM Virtual Machine Specifica-
tion, The (2nd Edition). Prentice Hall, Santa Clara, California
95054 U.S.A, 2 edition, 4 1999. ISBN 9780201432947. URL
http://java.sun.com/docs/books/jvms/.

11 2012/8/15

http://doi.acm.org/10.1145/1735935.1735956
http://doi.acm.org/10.1145/1735935.1735956
http://www-01.ibm.com/support/docview.wss?uid=swg27000174
http://www-01.ibm.com/support/docview.wss?uid=swg27000174
http://wiki.expecco.de/wiki/Java_Interface_Library_2.1
http://wiki.expecco.de/wiki/Java_Interface_Library_2.1
http://jniport.wikispaces.com/
http://jniport.wikispaces.com/
http://live.exept.de/doc/online/english/programming/goody_javaScript.html
http://live.exept.de/doc/online/english/programming/goody_javaScript.html
http://java.sun.com/docs/books/jls/
www.redline.st
www.redline.st
http://java.sun.com/docs/books/jvms/

[11] J. Vraný. Supporting Multiple Languages in Virtual Ma-
chines. PhD thesis, Faculty of Information Technologies,
Czech Technical University in Prague, Sept. 2010.

[12] J. Vraný, J. Kurš, and C. Gittinger. Efficient Method
Lookup Customization for Smalltalk. Objects, Models,
Components, Patterns, pages 1–16, 2012. doi: 10.1007/
978-3-642-30561-0_10. URL http://www.springerlink.com/
index/PU875371770R562R.pdf.

12 2012/8/15

http://www.springerlink.com/index/PU875371770R562R.pdf
http://www.springerlink.com/index/PU875371770R562R.pdf

Smalltalk in a C World

David Chisnall
University of Cambridge

David.Chisnall@cl.cam.ac.uk

Abstract
Smalltalk, in spite of myriad advantages in terms of ease of
development, has been largely eclipsed by lower-level lan-
guages like C, which has become the lingua franca on mod-
ern systems. This paper introduces the Pragmatic Smalltalk
compiler, which provides a dialect of Smalltalk that is de-
signed from the ground up for close interoperability with
C libraries. We describe how high-level Smalltalk language
features are lowered to allow execution without a virtual ma-
chine, allowing Smalltalk and C code to be mixed in the
same program without hard boundaries between the two.
This allows incremental deployment of Smalltalk code in
programs and libraries along with heavily optimised low-
level C and assembly routines for performance critical seg-
ments.

1. Introduction
Smalltalk was originally written for the Xerox Alto and
closely integrated with the system. It ran directly on the
hardware with the Smalltalk environment taking the place
of an operating system. Describing this design, Dan Ingalls
wrote ‘The operating system is everything that doesn’t fit in
the language. It shouldn’t exist’[17].

Modern Smalltalk VMs, such as Squeak and Pharo, often
inherit this view, with a Smalltalk environment running in-
side, but isolated from, the rest of the system. This view is
even adopted by Smalltalk-derived languages such as Java,
which run in their own environment and have difficult inter-
acting with foreign code. Any interactions with code outside
of this world, for example native libraries, require a foreign
function interface. This provides both a conceptual and a
performance barrier and comes with composition problems
if you want to mix code from two languages that each use
the virtual machine model, both needing to go via a native-
compatibility layer for interoperability.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
International Workshop on Smalltalk Technologies August 28th, 2012, Gent
Copyright c© 2012 ACM [to be supplied]. . . $10.00

The virtual machine approach arises from an histori-
cal curiosity: an implementation detail of how languages
were implemented on the Xerox Alto. As described in [22],
the Alto made heavy use of microcoding, with a low-level
micro-instruction set shared by all languages and a higher-
level instruction set for each target language. Each target lan-
guage defined a bytecode, with each bytecode implemented
as a short sequence of micro-instructions. Algol on the Alto,
like Smalltalk, had a VM. This approach was important for
the Alto because it was a research machine, and the use
of microcoding made experimentation with the instruction
set easier. The goal was to determine which instructions
were useful in a CPU so that future CPUs could incorporate
them. For example, the Smalltalk environment made use of
a microcoded BitBLT instruction[16] to achieve good per-
formance for a GUI, an operation that later appeared imple-
mented entirely in hardware in early graphics accelerators.
This goal is lost on modern VMs, where the VM is a vesti-
gial indirection layer, retained because it - in theory, at least
- allows code to run on multiple platforms.

Since the 1980s, Smalltalk has remained a niche lan-
guage. In the same time, lower-level languages have accu-
mulated large bodies of legacy code, much of which remains
very useful. Low-level languages had an early advantage:
although the cost of development is higher, the cost of the
hardware needed to run software written in them was signif-
icantly lower. The larger potential market meant that signifi-
cant amounts of effort were invested in development in these
languages. For example, the Alto used to develop Smalltalk
had 512KB of RAM in 1979, while the first Macintosh, ship-
ping five years later and with a similar experience only re-
quired 128KB. Systems like the Apple II, which were con-
temporary with the Alto and were programmed mostly in as-
sembly languages, typically cost over an order of magnitude
less.

Interoperability is very important. At the time of writ-
ing, the amount of reusable C code that is publicly avail-
able dwarfs the amount of Smalltalk code similarly avail-
able. Ohloh.net, which collects statistics of public code
repositories, counts 4,465,070,607 lines1 of C code, plus
2,239,514,292 and 56,649,630 lines of C++ and Objective-
C code respectively. In contrast, it only counts 2,041,366

1 All figures were correct on 2012-06-08.

lines of Smalltalk code. This is a slightly misleading com-
parison, as it does not track code stored in Monticello, but
even counting the amount of code in the public reposito-
ries it does not come close to the almost seven billion lines
of [Objective-]C[++] code available and the greater expres-
siveness of Smalltalk does not bridge the gap.

This difference includes some omissions in key areas in
Smalltalk, for example the lack of a modern HTML render-
ing engine and the relatively poor state of PDF rendering
severely limit the possibilities of a pure Smalltalk environ-
ment. HTML and PDFs are two of the most popular formats
for interoperability, and there are well-supported C/C++ li-
braries for displaying both, including embedded dynamic
JavaScript elements. Modern video CODECs are similarly
lacking Smalltalk implementations. This leads to an impor-
tant choice: Should we aim to rewrite everything in Small-
talk, or to better interoperate with the large body of existing
code? Even if we optimistically assume that a Smalltalk de-
veloper is 100 times more productive than a C developer, it
is clear that the first approach would leave Smalltalk a long
way behind.

2. Goals
The work described in this paper forms part of the Étoilé
project, which, among other things, aims that no program
should contain more than 1,000 lines of non-reusable code.
All other code should be in frameworks and libraries that
can be easily shared between applications. For example,
a class encapsulating a window is a generic and reusable
component and so does not count towards this total, whereas
a class implementing a controller for a preference panel
for a specific application would, as it is of no use to other
applications.

To accomplish this goal, we need to make two things
easy: reusing existing code and writing expressive descrip-
tive new code. Smalltalk is a good fit for the second goal, as
it provides a clean and elegant syntax for expressing high-
level ideas. Existing implementations made this difficult,
however.

Étoilé builds on the GNUstep project, which originally
aimed to build an open source implementation of the Open-
Step specification and now aims to track the extensions
made in Apple’s implementation of this specification: Co-
coa. GNUstep, and its accompanying frameworks are writ-
ten in Objective-C, which is a set of Smalltalk-like exten-
sions to C, aimed at allowing C libraries to be reused via a
loose-coupled object-oriented abstraction[13].

Our initial approach at combining languages was to im-
plement bridges between GNU Smalltalk and Objective-C
and between Io and Objective-C. This had numerous prob-
lems, including performance and the proliferation of proxies
as the two (or three) languages all contained different under-
lying object models.

In this paper, we describe an implementation of Smalltalk
that targets the same binary format as Objective-C, allowing
Smalltalk and C to be mixed at the method granularity: a
single object can have methods written in both languages.
Within the scope of the overall goals of Étoilé, this imple-
mentation had the following goals:

• No virtual machine. There should be no run-time concept
of ‘Objective-C objects’ versus ‘Smalltalk objects’, only
objects that may have been written in either language.

• The ability to mix Objective-C and Smalltalk code at a
fine granularity, with the message send as the boundary
between the two worlds, not the object.

• The ability to easily use C++ code from Smalltalk (and
vice versa).

• Support for native threading APIs and other low-level
primitives with a very small overhead—syntactically or
in terms of run-time cost—to encourage their use.

• Support for static compilation, to ease deployment.

An explicit non-goal of this project is a complete Smalltalk-
80 environment. We (initially) aim to build a compiler and
underlying framework that makes it possible to implement
a Smalltalk-like environment, but we aim to use the Open-
Step class libraries rather than the Smalltalk-80 ones. This is
partly motivated by personal preference and partly because
a large number of developers already have experience with
these via Mac OS X and iOS.

We are not aiming to perform source-to-source transla-
tion implementing Smalltalk on top of Objective-C, we are
aiming to implement both Objective-C, Smalltalk, and other
languages on top of the same set of shared code. It would
be possible to remove all of the Objective-C code from our
implementation, if this is deemed desirable in the future, by
rewriting it in Smalltalk.

This project is not limited to Smalltalk. We aim to provide
a set of reusable components for implementing late-bound
dynamic languages. As such, some of our improvements
are usable in other contexts. For example, several of our
optimisations also benefit Objective-C.

3. Design Overview
The implementation described in this paper is referred to
as Pragmatic Smalltalk, and is built on top of—and devel-
oped as part of—the LanguageKit framework. LanguageKit
is intended to be a reusable abstract syntax tree (AST), inter-
preter, JIT, and static compiler for dynamic object oriented
languages. Smalltalk is the most actively used front end for
LanguageKit, but there is also a proof-of-concept front end
for a JavaScript-like language and an OMeta-like parser gen-
erator.

The compiler portions use LLVM[19], a set of libraries
for writing optimising compilers. LLVM allows extra opti-
misations to be added relatively easily, transforming a low-

LanguageKit

Smalltalk Parser

OMeta Parser

Interpreter

LLVM Optimiser JIT

Clang (Objective-C)

LLVM Optimiser

LLVM Linker / Optimiser

Native Linker

Executable

Figure 1. LanguageKit Compiler Architecture.

level static single-assignment intermediate representation.
We augment the standard set of optimisations with a number
of additional ones geared to both Smalltalk and Objective-C.

The LanguageKit framework and Smalltalk front end are
available in the Étoilé project’s subversion repository under
a BSD-style license:

http://svn.gna.org/svn/etoile/trunk/Etoile.
LanguageKit provides three ways of running Smalltalk

code:

• A simple AST interpreter.
• A just-in-time (JIT) compiler.
• A static compiler.

How these fit together is shown in Figure 1. When com-
piling, LanguageKit generates LLVM’s intermediate rep-
resentation (IR), and links in the set of small integer sup-
port functions, written in C and compiled to LLVM IR
with clang, the [Objective-]C[++] front end for LLVM. The
LLVM inliner can then insert these at the point where they
are used, allowing fast arithmetic and making it easy to add
new small integer methods that provide similar performance
without modifying the compiler. We then run a set of LLVM
optimisations, which transform the IR. This can then be
linked to other LLVM IR from C, Smalltalk, or any other
language with an LLVM front end, and then further opti-
mised. The optimisations run on Smalltalk and Objective-C
code are largely the same currently, but in the future these
may diverge as we add more Smalltalk-specific optimisa-
tions.

This provides some interesting benefits. For example,
it is possible to inline C functions in Smalltalk methods
and potentially vice versa. Once this optimisation has taken
place, the resulting IR is translated into machine code, either
in-process for immediate execution in JIT mode or on disk
as object code that can then be linked with other libraries.

The JIT compiler is augmented by a background static
compiler that we refer to as the ‘just too late’ (JTL) compiler.

Kernel

libc

C/C++ Libraries

X11

libobjc

GNUstep Foundation

GNUstep AppKit

ObjC Frameworks

GNUstep AppKit

ObjC ApplicationsSmalltalk Applications

SmalltalkSupport
LanguageKitRuntime

Figure 2. LanguageKit execution architecture.

This runs at a low priority and generates a shared library
from the code that has been JIT compiled. The next time the
program is run, if there have not been any changes made
to the code or any dependent libraries, the shared library
is run in preference to the JIT’d version. This improves
startup times and reduces memory usage: the JIT compiler
itself takes around 20MB of RAM, and is lazily loaded
by LanguageKit if it is required, but not if simply loading
statically compiled code or interpreting.

IDE support is currently very immature, although most of
the features required to build a full-featured Smalltalk IDE
do exist. The AST interpreter (implemented as a generic vis-
itor on the AST) is intended to be used mainly for debugging
and development. It makes it relatively easy to modify run-
ning code: simply change the AST as it is being interpreted.
Bits that have not changed for a little while can then be JIT
compiled.

The interpreter uses the same underlying object model as
the compiler, it simply installs a stub method for each one
declared on an interpreted class, which calls out to the inter-
preter. This means that it is possible to mix statically com-
piled, JIT compiled, and interpreted code, all in the same
running program. For example, we can ship well-tested li-
braries as statically compiled binaries, run code that is cur-
rently in development in the interpreter, and replace it with
a JIT-compiled version as we gain confidence in its correct-
ness. We can always replace a method with a different im-
plementation, so compilation does not prevent future modi-
fication.

Unlike more traditional Smalltalk environments, we use
a more conventional program and process model rather than
an image. For persistence, the CoreObject framework, also
developed as part of the Étoilé project, provides a simple
mechanism for automatic (versioned) storage of arbitrary
objects.

LanguageKit inherits a design philosophy from Objective-
C, which provides a Smalltalk-like environment without the
need for a virtual machine by splitting the implementation

http://svn.gna.org/svn/etoile/trunk/Etoile

into two components. The compiler interprets Smalltalk-like
message sends and a few other syntactic constructs and re-
place them with a call to the Objective-C runtime library
(libobjc). This library defines the binary representation of
classes and other components that have no direct equivalent
in C and is responsible for handling message sending.

LanguageKit was developed along with the GNUstep
Objective-C runtime, which was based on our older re-
search prototype[11, 12]. This is intended to provide both a
high-performance implementation of the Objective-C object
model and provide the support required for other languages.
We have made some extensions to the Objective-C runtime
that are potentially useful for Objective-C and also provide
two extra support libraries. The LanguageKitRuntime li-
brary provides supporting functions for things like small
integer arithmetic, non-local returns, and other features that
may be shared between different languages using this Lan-
guageKit. The SmalltalkSupport framework provides some
extra support functions, classes, and methods that are spe-
cific to Smalltalk. These two frameworks are linked with any
Smalltalk code that is compiled with LanguageKit. Other
front ends may provide additional support functions.

Figure 2 shows how these fit together at run time. Note
the significant amounts of non-Smalltalk code in a typi-
cal Smalltalk application. We are reusing existing kernels
and windowing systems, C and C++ libraries, Objective-C
frameworks, and so on, yet still allowing Smalltalk code to
exist as a first-class citizen of the resulting environment.

4. Example 1: Using a C Library
Before delving into the details of the implementation, here is
a small example to help show the capabilities of the system.
This is a single method from a test program.

run [

| queue count |

queue :=

C dispatch_get_global_queue: {0.

0}.

ETTranscript show: ’main thread ’ ;

cr .

count := 0.

1 to: 10 do: [

C dispatch_async: { queue .

[

ETTranscript show:

’Another thread ’ ; cr .

count := count + 1

] }] .

C sleep: 1.

ETTranscript show: ’Threads used: ’;

show: count ; cr.

]

In this example, we use the libdispatch library, running on
FreeBSD. This library implements an N:M threading model

multiplexed on top of POSIX threads and providing a work-
queue based model. This highlights one of the typical limita-
tions of Smalltalk implementations that we have addressed:
the difficulty of efficiently interacting with the host system’s
multithreading abilities.

This example is fairly trivial, but it demonstrates the con-
cept clearly. The first line calls a C function that returns a
pointer to a C opaque type. This is boxed and stored in a local
variable. It is then used as an argument to a second C call,
dispatch_async(), which takes a dispatch_queue_t

and a block as arguments.
This form of FFI, calling C code, was not part of our

original design. We intended to use Objective-C[++] as our
foreign interface layer in all cases. After writing the code to
send Objective-C methods, calling C functions was a trivial
extension and so we incorporated it.

The ETTranscript class is implemented in Objective-
C, wrapping the standard C I/O capabilities. The compiler
does not need to know that this is an Objective-C class.
It determines the class and method information by using
runtime introspection and so does not need access to headers
when interacting with classes (or objects) implemented in
Objective-C.

Although it is possible to call C directly, as this example
shows, we more commonly wrap C libraries in Objective-C
before using them in Smalltalk. This allows the Smalltalk
code to only deal with high-level abstractions, rather than
leaking low-level C abstractions up into a high-level lan-
guage. In other approaches to FFI, this kind of abstraction
is possible, but results in individual Smalltalk methods con-
taining multiple round trips in and our of the VM. We do
unboxing when assigning a value to an instance variable that
was declared in Objective-C with a non-object type. This
means that we can reduce the amount of boxing and unbox-
ing required with well-designed interfaces.

Note that this example contains a race condition: it does
not update the count variable atomically. This is intentional:
running this example a few times—especially on a multi-
core system—will demonstrate that it is exhibiting real par-
allelism, because some of the updates will be lost.

5. The Object Model and Reflection
Every Smalltalk class compiled by LanguageKit is indistin-
guishable in the resulting binary—in memory or in object
code—from a class written in Objective-C. Classes in this
implementation are represented by a C structure: struct
objc_class. As in Smalltalk, classes are also objects. Ev-
ery object or class begins with a pointer to one of these struc-
tures, referring to the object’s class (or the class’ metaclass).

The class structure contains all of the metadata related
to the class, including the types and offsets of all instance
variables and methods. Note that in this world not every-
thing is an object: Objective-C code may declare variables,
including instance variables, to be any C type. This is usually

transparent to Smalltalk code, which gets these values boxed
and unboxed automatically as required, but can be accessed
via introspection information for cases where it is important.
We also expose some functionality that is not available in
Objective-C. For example, Objective-C does not contain the
notion of class variables, even though these are exposed in
the runtime.

We do not aim to implement the Smalltalk-80 libraries
and so provide different reflection APIs to a traditional
Smalltalk, however it is possible to implement things like
method dictionaries as thin wrappers around our reflection
support if these are desired. The EtoileFoundation frame-
work2 implements mirrors[9] on top of our reflection APIs,
demonstrating their flexibility.

Reflection is one of the most important aspects of Small-
talk. Our implementation supports reflection down to the
method level, but does not support submethod introspec-
tion or reflection for compiled code. If the AST is avail-
able, either loaded from a serialised form or from the source
code, then it is possible to inspect and modify the code for a
method, recompile and then attach the new method.

It is not, however, possible to modify the code in existing
stack frames, unless they are running interpreted code. This
is a difficult problem in general for compiled languages,
because optimisations can make it very difficult to map state
from one version to another. For example, local variables
may be stored in registers or have their values recomputed
at different points in the generated code. In future versions,
we aim to support this in a subset of possible cases, to make
development easier.

Objective-C introspection and reflection is accomplished
via a set of functions that call into the runtime library. We
have wrapped several of these in a set of classes for easier
access from Smalltalk. It is possible, for example, to replace
(at run time) a method in an existing class with a block. This
involves a small trampoline that is written in assembly and
copied by the runtime, which transforms a call frame created
for calling a method into one expected by a block.

The following snippet is valid in this dialect of Smalltalk
and demonstrates a trivial method being added to the class
at run time.

addMethod [count |

self class

addInstanceMethod: #testMethod

fromBlock: [:self |

count := count + 1.

ETTranscript show: count;

show: self;

cr

].

self testMethod.

]

2 http://svn.gna.org/viewcvs/etoile/trunk/Etoile/

Frameworks/EtoileFoundation/

Executing this code fragment involves running code writ-
ten in four different languages. The snippet itself is writ-
ten in Smalltalk. The +addInstanceMethod:fromBlock:

method is implemented in Objective-C in the EtoileFounda-
tion framework, as a category on the NSObject class. It is
a short method, which calls three runtime library functions
written in C.

The first of these, imp_implementationWithBlock()
copies a fragment of hand-written assembly (3-7 instruc-

tions, depending on the architecture) and a pointer to the
block structure and the function that invokes it into a new
allocation. The returned value is a small trampoline func-
tion. When invoked, it rearranges the arguments slightly and
calls the block function.

This is required because methods and blocks both take a
hidden first argument, the receiver. Methods also take a hid-
den second argument, the selector. The trampoline moves the
receiver to where the block expects its first explicit argument
to be (typically in a different register) and then replaces the
first argument with the block pointer. It does not alter the call
frame in any other way, and so is very fast.

The remaining two functions determine the correct type
encoding for the method based on the block and attach
it to the class. For completeness, the implementation of +
addInstanceMethod:fromBlock: is shown below.

+ (BOOL)addInstanceMethod: (SEL)

aSelector fromBlock: (id)aBlock

{

IMP imp =

imp_implementationWithBlock(

aBlock);

if (0 == imp) { return NO; }

char *encoding =

block_copyIMPTypeEncoding_np(

aBlock);

class_replaceMethod(self ,

aSelector , imp , encoding);

free(encoding);

return YES;

}

It is also possible to add methods to a single object. This
is accomplished by the runtime inserting a hidden class just
for that object. This class will not be returned in response
to a -class message sent to the receiver and is regarded as
an implementation detail. A similar mechanism allows new
properties to be attached to existing instances. This is the
same technique employed by the Self VM[24] and the V8
JavaScript VM[4].

6. Message Sending
There are two traditional mechanisms by which message
sending in Objective-C is implemented, and a third sup-
ported by the GNUstep Objective-C runtime used by this

http://svn.gna.org/viewcvs/etoile/trunk/Etoile/Frameworks/EtoileFoundation/
http://svn.gna.org/viewcvs/etoile/trunk/Etoile/Frameworks/EtoileFoundation/

implementation. The original implementation, from the
StepStone and NeXT implementations, involves calling an
objc_msgSend() function, which takes the receiver and se-
lector as the first two arguments and calls the corresponding
method.

The GCC runtime did not adopt this mechanism, be-
cause it is impossible to implement in portable C: it re-
quires a trampoline function that preserves the state of the
call frame when invoking the method. Instead, the GCC ap-
proach splits message sending into two parts. The first part
calls objc_msg_lookup(), a function that maps a receiver
and a selector to a function pointer referring to the method.
The second part then calls the method.

The GNUstep runtime supports both, as well as an
extended version of objc_msg_lookup() that returns a
cacheable structure. This is typically used in loops, where
avoiding the repeated lookup when sending the same mes-
sage to multiple objects can be advantageous. We also cache
all message lookups where the receiver is super, as the
result of these lookups changes infrequently. The method
pointer returned by objc_msg_lookup() can not be safely
cached because it is just a function pointer: if a new cat-
egory is loaded or the method is replaced using reflection
then the cache would become invalid, without there being
any mechanism for clearing it.

The caching is inserted as an LLVM optimisation pass.
We currently use some heuristics to determine the best sites
to cache, although in future we intend to connect this to
profiling information, so that we can only cache lookups
on hot code paths where subsequent lookups often return
the same value. The cost of a lookup is relatively small in
microbenchmarks, but it varies depending on the accuracy
of branch prediction. Determining when caching lookups
makes sense is an open research problem. In our testing,
we have discovered that polymorphic inline caching[15] is
less useful on modern hardware, because the cost of testing
two cache entries is greater than the cost of performing the
lookup again.

We can also use the cacheable structure in conjunction
with speculative inlining. For small methods, where the cost
of the call is significant, static languages benefit from inlin-
ing, where the body of the method is inserted into the call
site. This is not possible in the general case in Smalltalk
(or Objective-C) because the user is free to replace meth-
ods at run time or substitute subclasses at arbitrary points. It
is, however, possible to inline methods, but wrap the inlined
version in a test checking that the method that we are expect-
ing to call is the method that we are actually calling. With the
lookup cache at the call site, we can also eliminate the need
for the call to perform the lookup. In contrived microbench-
marks, doing this in a loop is approximately 30% faster than
calling a C function. Again, the best time to perform this
optimisation is an open research problem, because the ex-
tra branch imposes a run-time overhead if it is incorrectly

predicted and the inline version consumes more instruction
cache space even when it is not. As the gap between memory
and CPU speed has grown over the past decade, the cost of a
cache miss has grown to hundreds of clock cycles, so a few
extra cache misses in a procedure can impose a performance
penalty far greater than the gain from all of the optimisations
performed by the compiler on the same piece of code.

Most implementations of Smalltalk provide some special
handling for small objects: those embedded inside a pointer.
In our 32-bit implementation, we provide support for one
such class, used for storing 31-bit signed integers. On 64-
bit platforms, we provide seven. Currently, four of these
are used. We support 61-bit signed integers and two kinds
of double-precision floating point values3. We also support
strings of up to seven ASCII characters. These frequently
appear in file paths, JSON and property list dictionary keys,
and several other places: GNUstep creates 20 of these just
loading the library, before launching the application when
constructing file paths for configuration and library loca-
tions.

A typical XML, JSON, or property list parser generates
far more. These also provide a convenient speedup in dic-
tionary lookups. Dictionaries, implemented in Objective-C,
perform pointer comparison on their keys before sending an
-isEqual: or -compare: message. Because two identical
short strings will have the same pointer value, we get to
check them for equality in a single instruction, rather than
requiring a message send, and we save some cache.

Operations on integers should ideally be fast. Other
Smalltalk implementations perform a number of tricks to
ensure that this is the case. In a naı̈ve implementation, where
every integer add or multiply required a message send, we
would have very slow code. To avoid this, we move the small
object check into the caller and then call an inline function,
written in C, that does the arithmetic and overflow check.
The LLVM optimiser will inline these calls before code gen-
eration.

One obvious case of impedance mismatch occurs in
method types. In Smalltalk, the arguments to and result from
any method are objects. In Objective-C, this is not the case.
Worse, the types are not unique to a given selector. It is pos-
sible to have multiple methods with the same name but with
different parameter types. Because we are setting up tradi-
tional call frames for method invocations, this can result in
stack corruption if we get it wrong.

This is actually a problem in Objective-C, where calling
a method with the wrong signature is undefined behaviour,
yet it is impossible for a compiler to statically check whether
it will happen, in the general case. Other languages that
interoperate with Objective-C solve this in the same way

3 One where the last bit is repeated, one where the last two are repeated.
Thanks to the developers of Smalltalk/X and Cincom Smalltalk for propos-
ing these.

as Objective-C; by requiring explicit type annotations for
disambiguation.

To eliminate this problem, we modified the behaviour of
the GNUstep runtime so that selectors are only treated as
equal if they have both the same name and type encoding.
Selectors are interned on load and method lookup is based on
the unique number assigned when this occurs, so this adds
no cost to method lookup. This means that an attempt to call
a method with the wrong types would have the same effect as
calling a nonexistent method. We also provide a callback in
the runtime for the case where a method does exist but with
the wrong types. This can be used to print an error message
or throw an exception on type mismatch.

The NeXT / Apple runtime does not store type informa-
tion with selectors at all. The GCC runtime does, but does
not use this information for dispatch. This means that there
are several cases where either the GCC or Apple runtime will
silently corrupt the stack, whereas the GNUstep runtime will
throw an exception.

We take this a step further for Smalltalk. If we have deter-
mined that a selector has multiple type encodings registered
then we use the extended lookup function mentioned earlier,
with an untyped selector. This returns a cacheable structure
containing, among other things, the type encoding of the real
method4. We can then branch to the part of the code that gen-
erates the correct call frame.

Note that this is a simpler case than running in a JVM as
in [8] because our underlying object model was not intended
to allow a single class to implement two methods with the
same name but different types. It does now as an implemen-
tation detail, but this is not exported in any languages that
target this model and is undefined behaviour if it happens
accidentally. This is less of a requirement for late-bound dy-
namic languages than for ones with more rigid type systems,
such as C++ or Java, because it is relatively easy to have mul-
tiple code paths within a method depending on the types of
the objects.

7. Memory Management
C is infamous for its manual memory management, while
Smalltalk is well known for supporting accurate garbage col-
lection. Reconciling these two models is a nontrivial prob-
lem, especially when we wish to be able to pass pointers to
Smalltalk objects into C code.

Our current implementation supports two models: conser-
vative garbage collection and automatic reference counting.
The former requires all Objective-C code to be compiled in
garbage-collected mode, while the latter interoperates with
Objective-C code using either manual or automatic reference
counting.

It’s important when discussing garbage collection not to
conflate garbage collection (a goal) with tracing (a technique

4 If the class implements two methods with the same name but different
types, the one that is returned by this lookup is undefined.

for implementing this goal). Automatic garbage collection
means that objects are automatically deallocated when they
are no longer required. There are a number of techniques
on a spectrum for implementing this goal, with automatic
reference counting plus cycle detection at one extreme and
tracing collectors at the other end. [7] informs us that these
approaches are both expressions of the same general algo-
rithm.

Approaches at the reference counting end have a num-
ber of advantages, including deterministic performance and,
with the low cost of atomic operations on modern systems5

a relatively small cost in the acyclic case.
Most of our use involves the second mode: the semantics

of Objective-C garbage collection are poorly defined and
easy to break. For example, storing an object pointer in some
memory allocated with malloc() or in a static variable
declared in a C compilation unit will cause it to escape
from the garbage collector’s visibility and be prematurely
deallocated, leaving dangling pointers, but often won’t give
any compiler warnings.

In automatic reference counting mode, the Objective-C
memory model is improved, with explicit casts required to
take pointers out of the managed world. In practice, we find
that reference counting with weak pointers for explicit cycle
detection are mostly sufficient. We are able to elide reference
count manipulations for most on-stack assignments, making
reference counting very cheap, in the absence of cycles.
Given the large quantity of shipping Objective-C code on
Mac OS X and iOS that manages memory efficiently with
explicit (not automatic) reference counting, we observe that
manual cycle breaking is possible for most programmers,
although certainly not an ideal situation.

We have implemented an experimental cycle detector
based on the concurrent cycle detector proposed by [6], but
have not yet enabled it. This will likely appear in a future
version of LanguageKit as an option. This works by adding
objects that have their reference count decremented without
being deallocated to a temporary set. If they are not deallo-
cated within a certain amount of time then the cycle detector
attempts to see if every reference to them can be accounted
for by circular references and deleting the object if this is the
case.

The disadvantage of the implicit cycle detector is the
same as that of a tracing garbage collector: it makes object
deallocation less deterministic. With reference counting and
explicit cycle breaking with zeroing weak references, it is
relatively easy to write code that does not leak memory, yet
still deallocates objects at deterministic points in time.

The memory model used with automatic reference count-
ing in Objective-C provides a lot of potential for future im-
provements. Conceptually, it makes object pointers distinct
to C pointers and requires an explicit bridging cast to move

5 An atomic increment on an Intel Core i7, in the uncontended case, costs
three times as much as a non-atomic increment

between the two worlds. This makes it—theoretically, at
least—possible to implement accurate garbage collection for
objects that have not escaped into the C world of untyped
memory.

8. Blocks
The current version of LanguageKit implements blocks us-
ing the same ABI as Apple’s block extension to C. This al-
lows blocks that come from Smalltalk or [Objective-]C to
be used interchangeably. Our first versions predated blocks
in C, and so used a custom BlockClosure class, responding
to a similar set of messages to the Smalltalk-80 version. We
have since replaced this with a set of methods attached to the
NSBlock class, which is the superclass of the block classes
in our implementation.

This allows messages such as -whileTrue: to be sent to
blocks from either Smalltalk or Objective-C. As an optimi-
sation, it is possible to perform an AST transform that turns
-whileTrue: messages into loops, allowing both the tested
block and the body to be inlined into the caller. This optimi-
sation is not run by default, because it alters the semantics of
the program and should only be used in code where perfor-
mance matters more than flexibility. These cases are quite
rare, as our interoperability model makes it easy to sink to
a lower level of abstraction and use C or even assembly for
these cases.

Blocks, like classes, are represented as a structure with a
fixed layout and a class pointer as their first field. One of the
fields is a function pointer for the function called when the
block is invoked. When a block is invoked from Objective-
C or C code, this function is called directly. From Smalltalk
code, it is invoked via the -value: family of methods. This
allows Smalltalk code to use any object that implements this
method as if it were a block of the correct type.

Blocks are initially allocated on the stack. In the vast ma-
jority of cases, blocks do not persist beyond the lifetime of
their enclosing scope. When they do, they are copied to the
heap. Accesses to all bound variables happen via an indi-
rection layer in the block structure itself. When the block
is promoted to the heap, all bound variables are also pro-
moted, in reference-counted structures. The reference count-
ing is required because a variable may be referenced by mul-
tiple blocks. This indirection layer theoretically provides a
performance penalty, but not one that we have been able to
measure. It does, however, make certain categories of opti-
misation harder by complicating alias analysis.

The cost of copying a block to the heap, which happens
whenever the block is assigned to a variable that is not on
the stack, is relatively high, but this is offset by the fact that
it is also relatively rare.

Currently, the back end in LanguageKit supports blocks
with arbitrary argument types, but the Smalltalk front end
does not. In a future version, we will implement explicit
type annotations for instance variables as well as block and

method arguments, to better facilitate interoperability. An
example where this is needed is the iteration methods on
many Objective-C collection classes, which expect a block
that takes a pointer to a boolean value as an argument, allow-
ing the block to stop iteration. A correct implementation for
interoperability would provide a mechanism for writing to
this value. Simpler examples include blocks taking primitive
C types as arguments.

One issue in Smalltalk makes blocks somewhat diffi-
cult to implement: the fact that they are allowed to return
from the scope in which they were declared. We implement
this using the same ‘zero-cost’ model as Objective-C excep-
tions. Something similar is essential because a block may be
passed through stack frames containing C or C++ code be-
fore it returns and so must allow all of these to run cleanup
code. This is a difficulty implicit in the language, not just in
our implementation: however you implement non-local re-
turns, the VM, runtime, or compiler must include some way
of unwinding the call stack. It is more complex in our case
because the stack may contain frames from other languages.

Unfortunately, the ‘zero-cost’ comes from the fact that it
costs nothing when you don’t use it. Unwinding the stack
in this way is actually quite expensive. We can avoid this
cost in the most common cases if we inline the block, but
unfortunately it is unavoidable in the general case without
losing the ability to place code from other languages on the
stack in between our Smalltalk stack frames.

That said, there are some special cases where perfor-
mance could be improved. For example, the Objective-C col-
lection iteration block types described earlier take a pointer
to a boolean value for aborting the iteration as the final argu-
ment. It would be possible to implement the non-local return
in these cases by relying on the cooperation of the interven-
ing method respecting the behaviour of this last parameter.
It is not clear whether it is worth optimising for special cases
such as this.

9. Outside the Box
We regard Objective-C, and Objective-C++, as our default
foreign function interface. These languages allow the cre-
ation of classes with methods that call C and C++ functions
directly. We also make use of this capability to use Source-
CodeKit, which uses libclang (a C wrapper around a C++
library) to parse and inspect the contents of C header files.

In Pragmatic Smalltalk, you can send a message to a fake
class called C and have it interpreted as a call to a function of
the same name as the message (with colons removed). Note
that because there is no VM, there is no extra overhead for
calling C functions in this way. The compiler sets up the call
frame in exactly the same way that a C compiler would. In
fact, it is often cheaper to call a C function from Smalltalk
than it is to send a Smalltalk message.

The exception happens when boxing or unboxing is re-
quired. C types are boxed in the NSValue class or one of

its subclasses, an OpenStep class designed for encapsulat-
ing arbitrary C types. The most notable subclass of this is
NSNumber. We insert our small integer and floating point
classes into the existing hierarchy below this, so that boxed
integers do not require allocating on the heap, unless they
overflow the 31 or 61 bits allocated within pointers.

10. Performance
The current release of LanguageKit focusses on correctness
over performance and so incurs some performance regres-
sions over previous versions, which we aim to address in
future versions. In spite of this, Pragmatic Smalltalk com-
pares reasonably with our baseline: GCC 4.2.1 compiling
Objective-C code. This version is somewhat old, but was
widely used for shipping code and is the last version under
the GPLv2 and so the last version shipped with several oper-
ating systems. Brief testing indicates that newer releases do
little to improve Objective-C performance and make several
regressions. Objective-C code compiled with clang benefits
from a number of our enhancements, so would not make a
sensible baseline, as it is a moving target.

Most of the performance improvements that we have
made in Smalltalk are also of use in Objective-C when com-
piling with clang. We have reduced the cost of message send-
ing to somewhere between 1.5 and 2 times the cost of a C
function call, depending on the architecture and mechanism
used. In older versions of the runtime this cost was 3-4 times
that of a C call. This mechanism is used by both Objective-C
and Smalltalk and so both Objective-C and Smalltalk benefit
from this speedup.

Our implementation currently performs very poorly in
any cases involving floating point arithmetic, as we have not
optimised this at all. Every floating point operation involves
a message send (while small integer operations are inlined)
and so is typically at least a factor of ten slower than the
equivalent code in C.

Small integer arithmetic is comparable in performance to
C integer arithmetic. A recursive fibonacci benchmark in-
dicates that we achieve something around 20% of C perfor-
mance, however profiling indicates that most of this is due to
the requirement of checking whether we need to increment
the reference count of the returned object. It’s also worth not-
ing that, in this benchmark, the Smalltalk version becomes
significantly slower for larger numbers while the C version
does not: it much more quickly gives the wrong answer as
the result of undetected integer overflow.

11. Example 2: Scripting with Smalltalk
Étoilé includes a very small framework called ScriptKit,
which exposes objects from applications via the distributed
objects mechanism for external scripting. It also include an
AppleScript-inspired class called Tell, that implements one
method: +application:to:, which is used as shown in the
following example. The method requests the dictionary of

scriptable objects from the application and passes it to the
block.

Tell application: ’Typewriter ’

to: [:dict | app win |

app := dict objectForKey:

’Application ’.

win := app mainWindow.

app sendAction: #performClose

to: win

From: nil

]

This example will close the main window of the Type-
writer application, the rich text editor that forms part of
Étoilé. LanguageKit is also used for scripting in the 3SUM[1]
modelling application. This goes one step further and parses
a set of command-line arguments as a message expression,
allowing users to write Smalltalk code inside shell scripts,
with the program itself appearing to be an object.

In a lot of applications, the line between scripting code
and real application code is blurred. The Firefox web browser,
for example, is written in a mixture of JavaScript and C++.
JavaScript is used for scripting and plugins, but also for sig-
nificant parts of the user interface. LanguageKit aims to en-
courage this development model by eliminating the overhead
from transitions between languages. This allows applica-
tions to be rapidly prototyped in Smalltalk and performance-
critical parts to later be rewritten in C if they are determined
to be too slow.

In particular, it is possible using LanguageKit for code
to begin life as interpreted or JIT-compiled ‘scripting’ code
inside an application, but then be statically compiled and
shipped with a future version. End users will be totally
unaware of the presence of Smalltalk code: even if they open
up a class browser in the application’s scripting environment,
they will just see classes with methods and be unaware of
whether they were implemented in Objective-C, Smalltalk,
or some domain-specific language.

12. Example 3: The CodeMonkey IDE
The CodeMonkey IDE is a work-in-progress integrated
development environment that is intended to be used for
Smalltalk and Objective-C development. It is written in a
mixture of Smalltalk and Objective-C. For example, the
code required for syntax highlighting Smalltalk is written
in Smalltalk, while the code required for syntax highlighting
Objective-C uses the clang Objective-C parser.

CodeMonkey development is currently slow because it
has not been an active focus for developers (it has received a
total of approximately two person-weeks of developer time),
but it demonstrates the use of Smalltalk in a program using
many C, C++ and Objective-C libraries.

Figure 3. The CodeMonkey IDE

13. Future Work
Our current implementation is usable and suffices to prove
that the concept is viable, but there is significant potential
for future work. An obvious area for improvement is per-
formance. For example, we currently test whether small in-
teger operations overflowed twice, once when determining
whether to box them and then again determining whether
they need explicit reference count manipulation. We do not
run any of the feedback-driven optimisations by default (e.g.
speculative inlining, which can provide a significant perfor-
mance benefit), even though doing so would be relatively
easy if we added the instrumentation when doing the first
JIT compilation and then used the results in the JTL. Even
with our current performance, however, this implementation
is fast enough for most new code, and makes it easy to fall
back to C for the few cases where it is not.

Another focus of future work is adding more languages
to the system. We have an experimental dialect of JavaScript
compiled using LanguageKit and work is underway on a
dialect of OMeta[25]. Once the latter is completed, it will
become a lot easier to add new front ends for experimental
languages.

Smalltalk is not expected to be the end result of our work.
In the future, programming languages are going to need to
deal with increased levels of concurrency and with hetero-
geneous multiprocessor systems. We intend to explore vari-
ous extensions to our system to allow languages to develop
apace with hardware, without requiring any legacy code to
be rewritten faster than its natural replacement rate.

14. Related Work
Our C callout mechanism is heavily inspired by the notion
of Aliens from Newspeak[10].

Two other notable attempts have been made to cou-
ple Objective-C with a higher-level language. F-Script[2]

and MacRuby[3] both target Apple’s implementation of
Objective-C, which limits their flexibility as they are unable
to extend the Objective-C.

F-Script is similar to the earlier StepTalk scripting in-
terface for Objective-C, which began life on GNUstep and
was ported to OS X. Both provide a scripting environment
where a dialect of Smalltalk can be used to send messages
to Objective-C objects, allowing introspection information
to be presented to the user. The existence of these tools pro-
vided motivation for our development, as they are commonly
used not just for scripting but also for prototyping. We aim
to make it possible to use Smalltalk in production where
StepTalk or F-Script would only have been used in the pro-
totyping phase.

MacRuby provides some integration between Ruby and
Objective-C, for example using Objective-C classes to rep-
resent things like strings, just as we do. MacRuby began af-
ter our work, but implements some similar ideas. They only
support the garbage collected mode for Objective-C, which
is no longer encouraged for new development on OS X or
GNUstep and was never supported for iOS. The MacRuby
approach retains a Ruby class model, so certain operations
need conversions. In contrast, we compile Smalltalk and
Objective-C to binary code with the same underlying rep-
resentations for all common features.

RubyCocoa uses the BridgeSupport framework, which
statically provides type information for things like C func-
tions, rather than dynamically extracting it from C head-
ers. The RubyCocoa project is also limited by the require-
ment to work on the Apple Objective-C runtime, which con-
tains a number of limitations. For example, it does not allow
safe caching of method lookups, nor does it provide a cheap
mechanism for checking the types of a method at run time.

Other work has been done on improving Smalltalk’s abil-
ity to interoperate with other languages. Most notably, the
NativeBoost[21] work has made it possible to attach C func-
tions as methods to Smalltalk objects. This works by cre-
ating a small assembler in Smalltalk—also used for JIT
compilation—using it to create method stubs that perform
unboxing and create C call frames.

NativeBoost attempts to keep Smalltalk in its isolated
world, but make it easier to punch holes in the edges. This
has several issues from a programmer perspective. Most
notably, retaining the image abstraction but having some
things outside the image (and therefore not persistent) is
problematic, especially when they can be encapsulated in
normal Smalltalk classes. There are also issues with garbage
collection, which are the mirror image of the ones that we
encounter: the Pharo garbage collector must be told not to
relocate objects while C code may hold references to them.

While promising, NativeBoost falls into the typical Small-
talk trap of avoiding using existing resources. By writing
assembly or machine code natively, it requires the entire
optimisation stack to be written in Smalltalk. This is a far

from trivial amount of code: The standard set of LLVM op-
timisations include over 80,000 lines of C++ code, exclud-
ing complex supporting logic and the register allocator. The
target-specific logic in LLVM weighs in at around 160,000
lines of C++. Reimplementing all of this in Smalltalk would
be a considerable amount of work. Simply extending it with
some Smalltalk-specific optimisations is much simpler.

Smalltalk/X [14] provides a potentially more interest-
ing approach, performing a source-to-source translation of
Smalltalk into C and then compiling this with the system’s
native C compiler and loading the resulting shared library.
This has some significant disadvantages, for example the in-
ability to insert Smalltalk-specific optimisations into the C
compiler and the requirement to round-trip via the filesys-
tem for JIT compilation. This approach does make interop-
erability easier, as Smalltalk methods can contain inline C
that is passed through to the C compiler, something that our
implementation can not do.

Three other notable projects have aimed at providing
interoperability with other environments. Redline[5] and
IronSmalltalk[23] compile Smalltalk to the Java and .NET
bytecode, respectively. These both target other virtual ma-
chines, both of which were—directly or indirectly—inspired
by the Smalltalk VM. Both have had one significant ad-
vantage over Smalltalk in terms of uptake: large companies
devoting huge marketing and development budgets to pro-
ducing them.

The third project is Amber Smalltalk (formerly JTalk[20]),
which translates Smalltalk into JavaScript that runs on the
V8 JavaScript virtual machine. JavaScript is very similar
to Self in terms of object model, which makes it a natural
target for Smalltalk. Amber provides similar advantages to
our approach: interoperability with widely deployed envi-
ronments, allowing gradual deployment of Smalltalk code.
The only difference is the target, with Amber aiming to run
code in web browsers.

15. Conclusion
We have shown that it is possible to retain most of the
flexibility of a high-level language like Smalltalk, as well as
achieving good performance, while managing to achieve a
high degree of interoperability with low-level languages. We
believe that there is a potential for significant performance
improvements, on the order of a factor of two to four, without
too much effort.

By making it easy to mix C and Smalltalk, we make it
easy to choose the correct tool for the job, writing high-level
code in a high-level language and performance-critical code
in a low-level language. We have shown that incremental
migration to Smalltalk from low-level languages is possible
by providing a framework for easy interoperability between
new Smalltalk code and legacy C code.

We have also shown that it is possible to achieve rea-
sonable performance with a late-bound dynamic object ori-

ented language. Our current implementation lacks a number
of important optimisations, in particular type inference for
sequences of integer or floating point operations, which gave
a significant speedup in HiPE[18]. It is also far more conser-
vative in memory management than is strictly necessary and
makes no attempt to inline reference counting operations. In
spite of these limitations, we achieve performance very close
to Objective-C for common operations, such as string ma-
nipulation6 and a tolerable speed for arithmetic-heavy code.

Our current approach lacks some of the advantages of
Smalltalk. The most obvious of these is debugging. Our cur-
rent implementation emits very sparse DWARF debugging
information and so is fairly limited in terms of debugging
support even in comparison to C, and therefore a long way
behind the state of the art for Smalltalk circa 1980. This is
currently the focus of ongoing work. Once this is done, then
implementing things like thisContext making use of de-
bug metadata become possible. In our current implementa-
tion, run-time introspection is only available for objects and
variables bound to blocks, not for activation records.

Closely related is the rest of the IDE. In traditional Small-
talk implementations, the IDE is closely integrated with the
execution environment. GNU Smalltalk is the major excep-
tion, and provides a model close to ours. Building a good
IDE and debugger is beyond the scope of the LanguageKit
project, but building these tools on top of LanguageKit is a
goal of Étoilé.

16. Acknowledgements
LanguageKit would not have been possible without feed-
back from a number of people, most notably Nicolas Roard,
Quentin Mathé, Niels Grewe and Eric Wasylishen. Eric also
wrote the initial version of the interpreter and Niels added
support for x86-64. It would certainly be far less useful if not
for Guenther Noack, who wrote the test suite and filed nu-
merous bugs. More recently, Mathieu Suen has been work-
ing on adding support for debug information and on the
OMeta front end.

Portions of this work were sponsored by the Defense
Advanced Research Projects Agency (DARPA) and the
Air Force Research Laboratory (AFRL), under contract
FA8750-10-C-0237. The views, opinions, and/or findings
contained in this report are those of the authors and should
not be interpreted as representing the official views or poli-
cies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the Department of Defense.

References
[1] 3sum. http://sourceforge.net/apps/mediawiki/

mus3/. Accessed: 08/06/2012.

[2] F-script. http://www.fscript.org/. Accessed:
08/06/2012.

6 These are difficult to benchmark fairly, because much of the execution
time is spent in Objective-C[++] code.

http://sourceforge.net/apps/mediawiki/mus3/
http://sourceforge.net/apps/mediawiki/mus3/
http://www.fscript.org/

[3] Macruby. http://macruby.org/. Accessed: 08/06/2012.

[4] V8 javascript engine design elements. https:

//developers.google.com/v8/design/. Accessed:
08/06/2012.

[5] S. Allen. Redline smalltalk. In 2011 International Smalltalk
Conference, 2011.

[6] D. F. Bacon and V. T. Rajan. Concurrent cycle collection in
reference counted systems. In J. L. Knudsen, editor, Pro-
ceedings of the Fifteenth European Conference on Object-
Oriented Programming, volume 2072 of Lecture Notes in
Computer Science, pages 207–235, Budapest, Hungary, June
2001. Springer-Verlag.

[7] D. F. Bacon, P. Cheng, and V. T. Rajan. A unified theory of
garbage collection. In Proceedings of the ACM Conference
on Object-Oriented Systems, Languages, and Applications,
pages 50–68, Vancouver, British Columbia, Oct. 2004.

[8] A. Bergel. Reconciling method overloading and dynamically
typed scripting languages. Computer Languages, Systems &
Structures, 37:132–150, 2011. doi: 10.1016/j.cl.2011.03.002.

[9] G. Bracha. Mirrors: design principles for meta-level facilities
of object-oriented programming languages. pages 331–344.
ACM Press, 2004.

[10] G. Bracha, P. Ahe, V. Bykov, Y. Kashai, and E. Miranda. The
newspeak programming platform. Design, pages 1–15, 2008.

[11] D. Chisnall. A modern Objective-C runtime. Journal of
Object Technology, 8(1):221–240, Jan. 2008.

[12] D. Chisnall. A new objective-c runtime. Communications of
the ACM, Sept. 2012.

[13] B. J. Cox and A. J. Novobilski. Object-Oriented Program-
ming: An Evolutionary Approach. Addison-Wesley, 1986.

[14] C. Gittinger. Guided tour through smalltalk/x. In 2011 Inter-
national Smalltalk Conference, 2011.

[15] U. Hölzle, C. Chambers, and D. Ungar. Optimizing
dynamically-typed object-oriented languages with polymor-
phic inline caches. In ECOOP ’91: Proceedings of the Eu-
ropean Conference on Object-Oriented Programming, pages
21–38, London, UK, 1991. Springer-Verlag. ISBN 3-540-
54262-0.

[16] D. H. H. Ingalls. The Smalltalk-76 programming system
design and implementation. In POPL ’78: Proceedings of
the 5th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, pages 9–16, New York, NY, USA,
1978. ACM. doi: http://doi.acm.org/10.1145/512760.512762.

[17] D. H. H. Ingalls. Design principles behind Smalltalk. Byte
Magazine, special issue on Smalltalk, August 1981.

[18] E. Johansson, M. Pettersson, K. Sagonas, and T. Lindgren.
The development of the hipe system: Design and experience
report. Journal of Software Tools for Technology Transfer, 4
(4):421–436, August 2002.

[19] C. Lattner. LLVM: An Infrastructure for Multi-Stage Opti-
mization. Master’s thesis, Computer Science Dept., Univer-
sity of Illinois at Urbana-Champaign, Urbana, IL, Dec 2002.

[20] N. Petton. Iliad & jtalk. In 2011 International Smalltalk
Conference, 2011.

[21] I. Stasenko. Native boost. In 2011 International Smalltalk
Conference, 2012.

[22] C. Thacker, E. McCreight, B. Lampson, R. Sproull, and
D. Boggs. Alto: A personal computer. Technical report, Xerox
PARC, 1979.

[23] T. Todorov. Running smalltalk on top the .net dlr. In 2011
International Smalltalk Conference, 2011.

[24] D. Ungar and R. B. Smith. Self: The power of simplicity. In
OOPSLA, pages 227–242, 1987.

[25] A. Warth. Experimenting With Programming Languages. PhD
thesis, UCLA, 2008.

http://macruby.org/
https://developers.google.com/v8/design/
https://developers.google.com/v8/design/

Refactoring Support For Smalltalk Using Static Type Inference

Martin Unterholzner
Lifeware SA, Switzerland

martin unterholzner@hotmail.com

Abstract
Refactoring is a crucial activity in agile software development. As
a consequence, automated tools are expected to support refactor-
ing, both for reducing the developer’s effort as well as for avoiding
errors due to manual changes. In this context, the chosen program-
ming language has a major impact on the level of support that an
automated refactoring tool can offer. One important aspect of a pro-
gramming language concerning the automation of refactoring is the
type system. While a static type system, present in languages such
as Java, provides information about dependencies in the program,
the dynamic type system of the Smalltalk programming language
offers little information that can be used by automated refactoring
tools.

This paper focuses on the challenges in the context of refactor-
ing raised by the dynamic type system of Smalltalk. It highlights
the problems caused by the absence of static type information and
proposes the use of static code analysis for performing type infer-
ence to gather information about the dependencies in the program’s
source code. It explains the mechanism of the static code analysis
using sample code and presents a prototype of an enhanced refac-
toring tool, which uses the structural information extracted through
static code analysis. Empirical samples build the base for evaluat-
ing the effectiveness of the approach.

1. Introduction
Frequent requirement changes challenge the design of a software
system and eventually lead to the erosion of its structure [35]. Mod-
ern agile software development methodologies, such as Extreme
Programming, propose continuous restructuring of the code as a
countermeasure to avoid the decay of the architecture [2, 12]. The
activity of restructuring the code without altering the behaviour of
the program is referred to as refactoring. In his Ph.D thesis [24],
Opdyke listed a catalogue of refactorings and addressed the is-
sue of their safety in the context of preserving program seman-
tics. In his pioneer work, Johnson implemented a refactoring tool
for the Smalltalk programming language [30]. By reducing the ef-
forts needed for refactoring as well as the number of defects in-
troduced during restructuring, refactoring tools ease frequent struc-
tural changes and, thus, software maintainance [5, 20, 23]. Today’s
IDEs (Integrated Development Environments) ship with a number
of tools for refactoring [7].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
IWST 2012 August 28th, 2012, Gent.
Copyright © ACM [to be supplied]. . . $10.00

The degree to which a tool can provide refactoring support
depends on the programming language, because the type system
plays a major role in refactoring. A static type system, present in
programming languages such as Java, reveals information about
the program’s structure, which can be used by refactoring tools
[16, 27]. In contrast, a dynamic type system, such as the one
of Smalltalk, provides no precise information to refactoring tools
about dependencies in the program. Therefore, in some cases, tools
are unable to identify the code affected by a refactoring [38].
For instance, overloaded method names in Smalltalk cannot be
distinguished by refactoring tools, which hinders the automation
of various refactorings, such as the rename method refactoring.
This disadvantage raises challenges regarding the maintenance of
large software systems written in Smalltalk by forcing developers
to carry out refactorings manually.

To avoid the need for manual refactoring, this paper proposes
the enhancement of refactoring tools in Smalltalk with type in-
formation extracted through static code analysis. It illustrates the
mechanisms of the static code analysis by means of a sample pro-
gram. The solution approach is implemented as a prototype of se-
lected enhanced refactoring tools for the VisualWorks Smalltalk
programming environment. Empirical analyses build the base for
evaluating the effectiveness of the prototype and of the approach.

The remainder of this paper is organised as follows:
Section 2 focuses on the challenges regarding refactoring automa-
tion raised by the dynamic type system in Smalltalk, exemplified
through a sample program. Section 3 describes the details of the
static code analysis used to extract the type information. Sample
code snippets illustrate the single steps performed during the code
analysis. The section concludes with the description of the compo-
nents used for building the prototype. Section 4 assesses the effec-
tiveness of the approach and of the prototype, based on empirical
statistics. Section 5 concludes this paper by mentioning the contri-
butions of the presented research.

2. Problem Description
It is common for the customer’s requirements to change during
the entire life-cycle of a software product, which - according to
Lehmann - is caused by a changing operational domain [18]. The
impact of changing requirements on a software project depends
on the importance given to software maintenance within the cho-
sen development methodology. For instance, the classical waterfall
model does not promote change requests after the initial require-
ment engineering phase. In contrast, modern agile software de-
velopment processes use incremental development combined with
short release cycles to gather early and continuous customer feed-
back. Continuous feedback allows one to quickly react to change
requests. However, frequent change requests conflict with the exist-
ing software architecture by leading to ”design erosion” [35] and,
thus, demand for a software architecture that can be restructured
and maintained easily.

For reaching a continuously evolving software architecture,
Extreme Programming - one of the agile software development
methodologies - incorporates refactoring as a crucial concept into
the development process [2]. Refactoring is the activity of re-
structuring the program, without changing the behaviour that is
relevant from the customer’s perspective [12, 24]. Examples for
widely known refactorings are: rename method, rename class, ex-
tract method, extract to component, inline method, add method
parameter, and remove method parameter.

2.1 Refactoring Automation and Tool Support
There are two different contexts, in which developers do refactor-
ing. Firstly, refactoring is done after the completion of a feature
implementation, when the developer reviews the code and finds
bad code smells [12]. Secondly, when the team is given a require-
ment for a new functionality and realises that the current architec-
ture does not support the abstractions needed for implementing the
functionality, the system has to be restructured before implementa-
tion [9, 30].

During refactoring three steps can be identified [21]:

1. finding the piece of software that needs to be restructured

2. deciding which refactoring to apply

3. performing the chosen refactoring

Automation and tool support for refactoring is crucial for turn-
ing this activity into an intrinsic part of the development process
[30]. Researchers made various attempts to automate all the three
steps [20, 22]. Kataoka et al. propose program invariants for finding
places in the code where particular refactings are applicable [17].
Lippert and Roock as well as Ducasse et al. propose a metric-based
smell detection mechanism for finding pieces in the program that
are candidates for refactorings [8, 19].

In today’s programming environments, however, only the last
step is automated and integrated into tools, leaving the first two
steps, which require decisions based on experience, to the devel-
oper. Automated refactoring tools divide their work into smaller
steps, including the application of preconditions and postcondi-
tions for ensuring that the refactoring is correct and behaviour-
preserving.

Regardless of the automation of many refactorings, in today’s
tools, in some cases the developer needs to perform also step 3 of a
refactoring manually, if the tool does not provide automation of the
desired refactoring.

2.2 Impact of the Programming Language
While dynamically typed languages such as Smalltalk support short
release cycles by easing the quick implementation of new features
(behavioural change), they bring up additional challenges regarding
the application of refactorings (structural change) [9].

On the one hand, in the context of refactorings - both man-
ual and automated - dynamic languages are less safe than stati-
cally type-checked languages, since they do not provide static type
checking, which can detect type inconsistencies [9, 38]. For in-
stance, Tip et al. use the static type system of Java to reason about
the correctness of refactorings [32].

On the other hand, the absence of type information at compile
time hampers finding and understanding dependencies of objects
in the program [37], which raises further issues regarding the au-
tomation of refactorings, such as identifying the affected pieces of
source code [9, 16, 27, 38]. These issues will be further explained
by means of two concrete examples of refactorings applied to a
sample program.

2.3 Sample Code
Figure 1 presents the classes of a sample program. The code list-
ings 1, 2, and 3 show the methods of the classes. Fragments of
this sample program’s code are used throughout the paper for ex-
plaining the problems and solution concepts regarding refactoring.
To increase legibility, the listings omit trivial code elements such
as constructors, getters and setters, which are not relevant for the
refactoring example, and standard objects like the Stream classes,
which belong to the standard Smalltalk library [14].

In addition to the methods of the aforementioned classes, List-
ing 5 presents a code fragment, which instantiates objects. In a
productive system, object instantiation is introduced, for example,
through the GUI or other external interfaces such as a web service.

Listing 1. methods in the class Movie
price
ˆprice

price: aNumber
price := aNumber

name
ˆname

name: aString
name := aString

Listing 2. methods in the class Customer
name
ˆname

name: aTranslation
name := aTranslation

Listing 3. methods in the class Rental
movie: aMovie
movie := aMovie

customer: aCustomer
customer := aCustomer

numberOfDays: aNumber
numberOfDays := aNumber

price
ˆmovie price * numberOfDays

printTotalOn: aStream
aStream nextPutAll: 'Customer name: '.
aStream nextPutAll: customer name.
aStream cr.
aStream nextPutAll: 'Movie title: '.
aStream nextPutAll: (movie name displayIn: customer

language).
aStream cr.
aStream printNumber: self price.
aStream nextPutAll: ' EUR'.

Listing 4. methods in the class Translation
displayIn: aString
ˆaString = 'english' ifTrue: [english] ifFalse: [german]

Customer

+name

+language

+name()

+name:(aString)

+language()

+language:(aString)

Object

Movie

+name

+price

+price()

+price:(aMoney)

+name()

+name:(aTranslation)

Rental

+movie

+numberOfDays

+customer

+movie:(aMovie)

+customer:(aCustomer)

+numberOfDays:(aNumber)

+price()

+printTotalOn:(aStream)

Translation

+english

+german

+english:(aString)

+german:(aString)

+displayIn:(aString)

Figure 1. Original class diagram before refactoring

Listing 5. code fragment for creating instances
| theGodfather alice rental stream title |

stream := WriteStream on: String new.

title := Translation new.
title english: 'The Godfather'.
title german: 'Der Pate'.

theGodfather := Movie new.
theGodfather name: title.
theGodfather price: 3.

alice := Customer new.
alice name: 'Alice'.
alice language: 'english'.

rental := Rental new.
rental movie: theGodfather.
rental customer: alice.
rental numberOfDays: 2.

rental printTotalOn: stream.
stream contents.

The upcoming manual refactoring on this sample program em-
phasises the drawbacks of a dynamically typed language with re-
spect to refactoring.

2.4 Manual Refactoring
The purpose of the first sample refactoring is to prepare the pro-
gram architecture to support more than one currency in the movie
rental system. It requires the following changes to the sample pro-
gram to maintain semantic equivalence according to the definition
of refactoring [24]:

1. creating two new classes, Currency and Money, according to
Figure 2.

2. ensuring that all the writers of the variable price in Movie pass
an instance of Money instead of a number. Consequently, the
return type of its reader is changed.

3. changing all the references to the getter method price in Movie
- shown in Listing 6 - according to its new return type.

Listing 6. methods in Rental after refactoring
price
ˆmovie price amount * numberOfDays

printTotalOn: aStream
aStream nextPutAll: 'Customer name: '.
aStream nextPutAll: customer name.
aStream cr.
aStream nextPutAll: 'Movie title: '.
aStream nextPutAll: (movie name displayIn: customer

language).
aStream cr.
aStream printNumber: self price.
aStream nextPutAll: movie price currency name.

As a prerequisite for this refactoring, the developer needs to
know the following details:

• Which methods are affected?
• What changes does she have to make in each method?
• In which order does she have to make the changes on the

affected methods? For instance, between the steps 2 and 3, the
program is in an inconsistent state. Hence, the execution of both
of them is an atomic operation.

While in the case of automated refactorings the tool is responsible
to handle the aforementioned issues automatically, when perform-
ing manual refactoring, the programmer has to take care of them.
However, the IDE is assumed to give assistance in finding the af-
fected methods by listing all the references (Rental>>price and
Rental>>printTotalOn:) to the method whose return value is
about to be changed (Movie>>price). Giving this assistance is
essential for supporting those manual refactorings in a large scale
industry software project.

In Smalltalk, the refactory browser assists the programmer by
listing all the methods referring to methods with the name price.
This is accurate as long as the method name price has only one
meaning and is not overloaded. In our code example, however,
there are two different methods named price, of which only one is
relevant for the sample refactoring. In a large scale industry envi-
ronment many more method names are overloaded with numerous
implementors. This is true for methods having generic names like
price, name, description as well as names referring to do-
main specific concepts. For instance, in the life insurance system
of Lifeware, which contains more than 37,000 classes, there exist
more than 150 implementors of methods named premium. In such
a situation, the list of references given by the refactory browser is

Customer

+name

+language

+name()

+name:(aString)

+language()

+language:(aString)

Object

Movie

+name

+price

+price()

+price:(aMoney)

+name()

+name:(aString)

Rental

+movie

+numberOfDays

+customer

+movie:(aMovie)

+customer:(aCustomer)

+numberOfDays:(aNumber)

+price()

+printTotalOn:(aStream)

Money

+amount

+currency

+amount()

+amount:(aNumber)

+currency()

+currency:(aCurrency)

Currency

+name

+name()

+name:(aString)

Translation

+english

+german

+english:(aString)

+german:(aString)

+displayIn:(aString)

Figure 2. Class diagram after refactoring

a superset of the relevant set of references, and therefore contains a
considerable amount of noise. As a consequence, the usefulness of
the refactory browser for supporting such kinds of manual refactor-
ings decreases rapidly in such a large project.

2.5 Renaming Overloaded Methods
The same problems mentioned for the sample refactoring in Sec-
tion 2.4 hinder the automation of some standard refactorings, like
the ones listed in Section 2.

Assume the developer wants to clarify the semantics of the
method name in Customer by changing its name to lastname,
possibly by using the automated rename method refactoring. The
method name has two implementors - as shown in Listing 1 and
Listing 2 - with different meanings, i.e., they are not used poly-
morphically. The automated rename, however, is unable to com-
plete the desired change, because safely renaming a method in a
dynamically typed language such as Smalltalk requires renaming
all the implemented methods that have the same name, as well as
changing all the senders of this method name, regardless of them
not being used polymorphically. Similarly, adding or removing pa-
rameters from methods alters all the methods with the correspond-
ing method name and all the potential references. In a dynamically
typed language this is currently the only way an automated refactor-
ing can preserve semantic equivalence due to the absence of static
type checking.

3. Proposed Solution
3.1 Overview
After having studied the specific cases, where tool automation for
refactoring raises challenges in dynamically typed languages, it
becomes clear that improvements in this area could significantly
increase the developer’s productivity [20]. The desired solution is
an automation level close to the one offered by Eclipse for Java,
where the tool identifies not only the method names, but also the
different semantics with respect to polymorphism by using the
information coming from the type system.

To reach this objective, it is required to understand why the
refactoring tools benefit from the existence of a type system, and
which of its components are essential for identifying different se-
mantics.

In the case of dynamically typed languages, the information
available is the complete list of all the implementing classes and
all the senders of one particular method name. However, the infor-
mation which sender refers to which implementor is missing. For
this reason, the refactoring uses a pessimistic approach for guar-
anteeing safety regarding behaviour preservation by assuming that
each sender could refer to any of the existing implementors [30].

The following subsections present the missing concept - which
sender refers to which implementor - as a graph. Using this graph,
this paper shows the advantages of having access to type informa-
tion extracted through static code analysis. As an example, it in-
troduces a proof-of-concept implementation of a rename method
refactoring built upon the aforementioned graph as well as on the
built-in refactoring framework, which provides and manipulates the
parse tree of the source code.

Figure 3 shows all the used concepts and the links between
them. A grey shading of a concept means re-usage of an existing
implementation, while the non-shaded components are newly de-
veloped for the proof-of-concept refactoring. An arrow connecting
two concepts in the diagram indicates a dependency of its destina-
tion on its source. The upcoming subsections explain each concept
in detail.

typed rename

static code analysis

rewrite rules
refactory

framework

senders &

implementors

clustered polymorphic

graph

polymorphic graph

type informationparse tree

Figure 3. The implementation of the enhanced rename method
refactoring requires various concepts and frameworks

In addition to the description of concepts given in this paper,
the original thesis explains the development process and challenges
encountered during the implementation of the prototype [33].

3.2 Missing Information
Before presenting the solution approach, this section briefly con-
trasts the properties of the type systems of Smalltalk and Java.
Given a hierarchy shown in Figure 4 that uses the classes Bird,
Cat, and Dog, Smalltalk allows polymorphic usage of all the
classes with respect to the message eat, while in Java the pro-
grammer must decide at compile-time whether the receiver is ei-
ther a Mammal or an instance of Bird by declaring the type of the
variable.

Mammal

+eat()

Dog

+bark()

Cat

Bird

+eat()

Object

Figure 4. In Java - according to this class hierarchy - only in-
stances of Cat and Dog can be assigned to a variable declared as
Mammal

This difference is depicted in Figure 5 and Figure 6. They show
the sets of objects allowed for polymorphic use in Smalltalk and
Java as a bipartite graph. Its right hand side shows the sent message
eat, while the left hand side shows the potential class candidates
of the receiver objects: Bird, Cat, and Dog.

Bird

Cat

Dog

eat

Figure 5. In Smalltalk the message eat can be sent to any of the
objects

Cat

Dog

eat

Bird eat

Figure 6. Java requires the programmer to decide between the two
options: either the receiver is a Mammal or an instance of Bird

This bipartite graph is referred to as ”polymorphic graph” in this
paper and is used to illustrate actual or potential polymorphic use.
The following definition specifies its properties in more detail:

Polymorphic graph Each implementor and each sender of a
method name is represented as vertex in a bipartite graph, having
the implementors on one side, and the senders on the other side.
The edges represent the information, which sender refers to which
implementor.

This paper proposes an approach for distinguishing the set of
objects for which the programming language allows polymorphic
usage corresponding to the type constraints, depicted in Figure 5
and Figure 6, from the set of objects that are potentially polymor-
phically used in the program, which is a subset of the objects al-
lowed by the type system of a programming language.

The remaining sections of this paper use the model of the poly-
morphic graph to analyse the relationship between those two sets
and focus on the consequences on refactoring that arise from it.

As mentioned previously, in a dynamically typed language,
the information which sender refers to which implementor is not

available. Hence, for guaranteeing safety, refactoring tools consider
the pessimistic case of a complete graph [30], as shown in Figure 7.

sendersimplementors

Figure 7. A complete graph indicates that any sender potentially
refers to any implementor

In statically typed languages, however, the type system can
provide some information about the edges of the polymorphic
graph. For instance, if the receiver of the message name is declared
as Customer, the type system guarantees that the receiver is not of
the type Movie. Thus, the static type system can help by reducing
the number of edges in this bipartite graph. As a consequence,
potential clusters according to the following definition emerge:

Cluster Clusters are separate bipartite subgraphs, whose vertices
do not share any connection with vertices belonging to any other
cluster. An example is depicted in Figure 8.

Figure 8. The type information fosters emerging clusters

If such separate subgraphs can be found, it is no longer nec-
essary to rename all the implementors and all the senders of one
method name. Semantic equivalence can safely be achieved by
changing only the implementor and sender vertices contained in
one cluster. This explains why the automated rename in Eclipse for
Java can handle the rename of the method name in equivalent Java
code for Listing 2.5.

In order to support advanced automated refactoring tools for
dynamically typed languages, such as Smalltalk, it is required to
enrich the bipartite graph with the information which edges can
safely be excluded. The next subsection shows existing approaches
for extracting information regarding the edges in a polymorphic
graph.

3.3 Previous Solution Approaches
The following approaches aim at obtaining the type information
needed to build the polymorphic graph.

3.3.1 Extension of Smalltalk with a Static Type System
Bracha and Griswold extend the Smalltalk language with a static
type declaration and checking system (Strongtalk) [4]. This ap-
proach demands active support by the developer, requiring to ex-
plicitly add type declaration annotations for all the used variables.

The type checker coming with Strongtalk verifies the manually
added type declarations. Using this approach, Strongtalk can bene-
fit from the same advantages that come with statically type-checked
languages such as Java. However, it also comes with the same draw-
back: the developer needs to do additional type declaration work,
which is usually perceived as overhead. Furthermore, this approach
becomes a heavy burden when migrating existing large code bases,
because it is necessary to enrich the entire code base with the miss-
ing type declarations.

3.3.2 Combination of Type Declarations with Type Inference
Borning and Ingalls enhance the Smalltalk language with a type
declaration mechanism combined with type inference [3]. Even
though inside methods a type inference mechanism is used for
temporary variables to reduce the need for type declarations, also
this approach relies on active type declarations from the developer,
which implies additional effort as mentioned previously. The eval-
uation of the implemented prototype was limited to small projects
done by its developers.

3.3.3 Static Type Inference Using Pruning for Scalability
Spoon and Shivers present a demand driven type inference mecha-
nism that uses pruning [31]. Type information is extracted only on
a selected subset of program elements. To make the inference scal-
able, this approach trades precision of type information with scala-
bility and performance by applying pruning that is either based on
timeouts or the number of visited nodes. The evaluation - which
consisted of manually checking the results of the implemented pro-
totype - revealed good precision on a large scale project.

While having partial type information is valuable for a better
understanding of the program, losing precision potentially under-
mines safety in the context of refactoring.

3.3.4 Dynamic Type Inference While Running Test Cases
Rapicault et al. dynamically infer the type of the message receiver
by running the automated test cases available in software projects
developed according to test driven development paradigms such as
Extreme Programming [27]. The construction of the polymorphic
graph is based on run-time information extracted from test runs.
This approach avoids the pitfalls mentioned for the method be-
fore. Nevertheless, it demands a representative set of automated
test cases. Even though the Extreme Programming development
paradigm includes the creation of a strong automated test suite, it
is well known that tests are usually not complete, i.e., they do not
cover all the possible program execution path combinations and all
inputs [6, 39]. Furthermore, in a large scale software system, run-
ning all the tests potentially takes a considerable amount of time,
which makes this approach less appealing for interactive usage.

3.4 Alternative Solution Approaches
The previous subsections outlined the techniques described in other
papers together with their strengths and drawbacks. In the follow-
ing, this section presents approaches for which no paper could be
found in the context of the Smalltalk programming language.

3.4.1 Showing the Changes Before Execution
One approach for supporting the developer in a situation where she
needs to rename an overloaded method is to inform her that there
are multiple implementors. This idea is realised for the rename
method refactoring in VisualWorks 7.9. The refactoring tool gives
the option to show the changes before applying them. This allows
to check whether there are implementors of methods with the same
name that the developer does not want to rename. However, if the
developer does not intend to rename all of the proposed methods,
he must manually decide, which senders and implementors are to

be changed, which brings him back to the questions described in
Section 2.4.

3.4.2 Reducing the Refactoring Scope
An extension of the idea described above is to reduce the scope
of a refactoring. The effect is that only senders and implementors
belonging to a certain subset of methods in the source code are con-
sidered. Even though this feature is not available in VisualWorks up
to version 7.9, all the necessary building blocks are present, which
makes its implementation technically trivial. However, the decision
how to partition the code must be taken by the developer, which
limits this idea to systems where modules or layers are structured
well enough to clearly identify the scope of the refactorings.

3.4.3 Dynamic Type Inference While Running a Productive
System

Apart from dynamic type inference based on test cases described
in Section 3.3.4, there is the possibility to gather type information
from a running system used in production or a similar environment.
Such a dynamic inference extracts the type information directly
from a system that is used in a representative way rather than rely-
ing on ”good enough” test coverage. Potential drawbacks are slow
performance or other disturbances of the productive system caused
by the measuring mechanism. In addition, the type information is
related only to deployed code, which causes a delay between de-
velopment and availability of type information.

3.4.4 Extracting Type Information from the Database
Similar to dynamically inferring types while running a productive
system is the idea of extracting type information regarding the in-
stance variables of persistent objects from a database. Besides the
advantages that no test cases are required and that the productive
context is representative, this technique does not affect the per-
formance of the productive system, which makes its application
appealing. However, the database only provides type information
regarding instance variables. Furthermore, it does not contain any
type information for classes whose instances are transient.

This paper presents a different approach by proposing the use of
a type inference mechanism, based on static code analysis. This
technique avoids the shortcomings of the approaches mentioned
before: no type declaration by the programmer is needed. Fur-
thermore, the code analyser does not rely on the existence of a
representative set of automated tests. Since type information needs
to be precise for refactoring safely, accuracy is an important aspect
of the inference mechanism presented in this paper. The upcoming
subsections explain the solution approach and the details regarding
its components.

3.5 Chosen Solution Approach
The creation of the polymorphic graph relies on type information
extracted by a static code analysis. Section 3.7 outlines the struc-
tural building blocks of a method’s source code and their direct
impacts on the type extraction. Based on the those building blocks,
Section 3.8 focuses on the challenges associated with dependencies
between methods.

Once the type information is extracted through the static code
analysis, the polymorphic graph is built as explained in Sec-
tion 3.11. Considering the extracted type information allows to
remove edges and thereby potentially renders the graph incom-
plete. Consequently, as explained in Section 3.12, possible clusters
emerge in the graph, which distinguish the different semantics of a
single method name.

The next subsection introduces the concepts used for the type
extraction.

3.6 Definitions of Concepts
Type A type is a set of classes representing all the possible val-
ues for a specific variable or expression.

The type information is extracted performing a static code anal-
ysis. This code analysis requires the source code represented as
a parse tree with semantics attached to the various tokens in the
source code. As indicated in Figure 3, in VisualWorks Smalltalk
the parse tree is created using the existing refactoring framework
[29]. The existence of this framework eases the implementation of
the static code analysis.

Symbolic evaluation The static code analysis of a method is
done by analysing the parse tree’s components in the order they
would be executed if the corresponding method was actually run.
The impact of each single parse tree element or statement is con-
sidered, as well as each possible execution branch.

On the one hand, the symbolic evaluation provides type in-
formation when analysing an assignment. One example is the
assignment to the instance variable name in the setter method
Movie>>name:, shown in Listing 7. In the sample code snip-
pet in Listing 8, the argument passed to the setter method name:
adds the class Translation as one possible class candidate to the
type of the instance variable name in the class Movie.

Listing 7. The assignment provides type information
name: aTranslation
name := aTranslation

Listing 8. The argument determines the type of the instance vari-
able
| theGodfather title |

title := Translation new.
title english: 'The Godfather'.
title german: 'Der Pate'.

theGodfather := Movie new.
theGodfather name: title.
theGodfather price: 3.

On the other hand, the static code analysis potentially needs
type information. This is the case, when analysing both the side
effects and the returned value of a message send, since the code
analyser must know the possible classes of the receiver to consider
only the relevant implementors of the sent message. For instance,
when evaluating the method Rental>>printTotalOn:, shown
in Listing 9, the code analyser requires the type of the variable
customer to decide which implementor of the method name to
evaluate.

Listing 9. The type of the variable customer is crucial for choos-
ing the implementation of the method name

printTotalOn: aStream
aStream nextPutAll: 'Customer name: '.
aStream nextPutAll: customer name.
aStream cr.
aStream nextPutAll: 'Movie title: '.
aStream nextPutAll: (movie name displayIn: customer

language).

aStream cr.
aStream printNumber: self price.
aStream nextPutAll: ' EUR'.

This dependency is a challenge when it comes to extracting
the type information, because inferring the type for one program
element potentially requires the type information of many other
program elements.

The following two concepts, which are relevant during the static
code analysis phase, emphasise this dependency.

Closed context inference It is a type inference mechanism which
uses the symbolic evaluation defined in Section 3.6 at the level of
a single method that does not depend on program state scoped out-
side the method. All the necessary information is either available
or defined in the method itself. Listing 10 shows a method that sat-
isfies those constraints.

Listing 10. The temporary variable does not depend on outer con-
text
planetEarth
| earth |
earth := Planet new.
earth name: 'Earth'.
ˆearth

Since the symbolic evaluation handles global variables differ-
ently than instance variables and method arguments, as will be de-
scribed in Section 3.8.4, global variables are the only allowed ex-
ceptions among the variables scoped outside the method that are
considered during closed context inference.

Open context inference It is an extension of the closed context
inference. As soon as the symbolic evaluation encounters depen-
dencies to variables or program state scoped outside the method, it
interrupts the current method analysis to determine first the type of
those variables. Since instance variables, method arguments, and
block closure arguments depend on program state scoped outside
the method, they trigger the open context inference. One example
is shown in Listing 11

Listing 11. The type of argument myName depends on the sender
of the method
planetNamed: myName
| tmp |
tmp := Planet new.
tmp name: myName.
ˆtmp

Also the symbolic evaluation of the method printTotalOn:,
which is shown in Listing 9, requires open context inference: the
instance variable customer is defined outside the method’s scope.
Thus, as a prerequisite to symbolically evaluating the method, the
type of customer has to be inferred.

The next subsection describes in detail the structure of the parse
tree in Smalltalk and the semantics of the different kinds of el-
ements contained in it, as well as the implications on the static
code analysis with respect to extracting type information during
the symbolic evaluation.

3.7 Building Blocks of a Program
According to the original Smalltalk 80 language described by Gold-
berg [14], the different elements in the parse tree are:

1. method signatures

2. calls to primitives

3. variable declarations

4. literal objects or expressions

5. message sends

6. variable assignments

7. returns of values or expressions

The latter three parse tree elements are composed of different
sub-trees. This implies a dependency between them and the sub-
trees. As an example, Figure 9 depicts the dependency graph for
the parse tree of the method price shown in Listing 12.

Listing 12. The method is composed by various parse tree ele-
ments
price
ˆmovie price * numberOfDays

return node: ^movie price * numberOfDays

message node: movie price * numberOfDays

message node:
movie price

variable:
numberOfDays

variable: movie symbol: price

value

argumentreceiver

receiver

symbol:
*

selector

selector

Figure 9. There are dependencies in the parse tree elements of the
code shown in Listing 12

As a consequence of the dependency, the symbolic evaluation is
recursive when performing the static code analysis.

The upcoming subsections contain explanations for each of the
different code elements regarding their syntax by showing a sample
code snippet in a shaded box, followed by a description of their
semantics and the mechanism used during the analysis.

3.7.1 Method Signatures
The first line of code inside every method is the method’s signa-
ture. Its purpose is to give the method a name and to specify the
number of input arguments as well as their names. As the method
signature is not executable code, during symbolic evaluation, only
the argument names are considered as declarations. The extraction
of the types of the arguments is further explained in Section 3.8.1.

3.7.2 Calls to Primitives
<primitive: 32>

Even though most of the Smalltalk programming language is
written in itself, primitives are necessary building blocks for the
Smalltalk system. They represent the technical interface to the
underlying core of the virtual machine, which is written in a low
level programming language.

By using primitives, the system can perform basic operations
such as number arithmetic, number comparison, and I/O oper-
ations. The original Smalltalk 80 system featured only a small

number of primitives to make most of the system available as
Smalltalk source code and, thus, extensible. The further evolution
of Smalltalk systems and their usage in productive environments
demanded better performance, which was often achieved by adding
new primitives. Even though in today’s Smalltalk systems there
are hundreds of primitives, they are part of the code elements for
which the analysis is trivial. One reason is that most of them will
not have an effect on the state of the variables in the system. Fur-
thermore, primitives represent the boundary between the object ori-
ented world and the low level libraries composing the virtual ma-
chine. Therefore, polymorphism is not available and the type of
input and output parameters and values must be strictly specified.
Accordingly, the code analyser presented in this paper considers the
type of arguments and return values for primitives when extracting
type information.

3.7.3 Variable Declarations
| temp |

The developer can declare variables in different contexts with
different scopes:

• instance variables
• class variables
• method arguments
• block closure arguments
• temporary variables within methods or block closures

Since variable declarations do not represent executable code, no
symbolic evaluation is applied. However, the code analyser adds the
declared variable identifiers to the variable scope. The inferred type
is initialised to UndefinedObject, which is the class of nil. The
type for each variable is updated during the symbolic evaluation of
the code contained in the variable’s scope. A detailed explanation
of the different kinds of variables follows in Section 3.8.

3.7.4 Literal Objects or Expressions
The Smalltalk language specifies literal objects or expressions and
differentiates between pseudo-variables, literal expressions or val-
ues, and declared variable identifiers. Among the pseudo-variables
there are nil, self, super, true, and false. In contrast to
pseudo-variables, there are literal expressions and values, which
create commonly used types, i.e., strings, symbols, numbers, literal
arrays, and block closures. Performing the analysis of those code
elements is straightforward, mainly due to two reasons.

Firstly, the class of the result of almost all such literals is known
at compile time. The only exception is the pseudo-variable self,
which could be of different classes if the implementing class has
subclasses. However, even the class of self can be easily found,
given the information about the receiver.

Secondly, the execution of those literal code elements will not
trigger any side effect on the state of any variable. Hence, the code
analyser focuses solely on the resulting value.

In contrast to the pseudo-variables, the type of the declared
variables cannot be determined at compile time. Whenever the code
analyser performs the symbolic evaluation of a variable, it looks up
for the nearest scope declaring the underlying identifier, as does the
virtual machine during the execution. Once found, the variable’s
scope and its type is extracted as described in Section 3.8.

The literal block closure triggers the creation of a special type
candidate containing the block’s source code and knowledge about
its creation context. This information is needed when symbolically
evaluating the block as explained in Section 3.8.5.

3.7.5 Message Sends

1 isPrime
2 isBetween: 1 and: 3
1 + 2

To perform the static code analysis of message sends, the fol-
lowing two steps have to be carried out in compliance with the or-
der at run-time.

First, the code analyser begins with the evaluation of the ar-
guments to determine their types. Since each of them could be a
composite expression, the symbolic evaluation is recursive.

Second, the type of the message receiver is determined through
symbolic evaluation of the corresponding parse tree expression. All
the classes contained in the receiver’s type are considered when
looking up the implementation of the sent message.

For the method look-up, the code analyser follows the same
rules as the virtual machine when doing the late binding dur-
ing the execution: it looks for implementations of the sent mes-
sage in the class hierarchy of the receiver. Unless the receiver is
the pseudo-variable super, it considers the implementation that
is nearest to the receiver’s class. The mechanism regarding the
method look-up corresponds to the implementation of the late-
bound-polymorphism in Java and C♯ [15, 25]. Figure 10 illustrates
the method look-up: when symbolically evaluating the sent mes-
sage foo for a receiver of class B, the implementation in class B
is considered. In contrast, the message foo sent to an instance of
class C refers to the implementation in the superclass A.

A (abstract)

+foo()

B

+foo()

+print()

C

+print()

Figure 10. The symbolic evaluation takes the nearest implementa-
tion

While the classes that do not provide an implementation for the
sent message are ignored, the implementation found in all other
classes is symbolically evaluated. Considering all the implementors
aims at analysing all the possible program flows to determine both
their potential impact on the state of variables and the type of the
return values.

3.7.6 Variable Assignments

temp := 1

When performing a symbolic evaluation on this kind of code
element, two different aspects have to be considered. Firstly, an
assignment might add one new class candidate to the type of the
underlying variable. Secondly, the right hand side of the assign-
ment has to be symbolically evaluated. This symbolic evaluation
is recursive, since the assigned value might be a nested expression
composed by other code elements.

Depending on the structure of the assigned expression, the ac-
tual evaluation at run-time of the right hand side of an assignment
may trigger side effects on the program state. Given the implemen-
tation of Stack>>pop, presented in Listing 13, the assignment in
the code snippet shown below changes the program state.

nextElement := stack pop.

By symbolically evaluating the right hand side of the assignment,
the code analyser keeps track of potential side effects on the pro-
gram state i.e., on the types of variables.

Listing 13. Sending the message pop changes the program state
pop
| result |
result := elements last.
elements remove: result.
ˆresult

Furthermore, according to the run-time behaviour, the result of
the symbolic evaluation of an assignment is the type of the assigned
value: Consequently, in the code snippet shown below, the type of
the variable y is the type of the result of the assignment to the vari-
able x, which is the assigned number.

y := x := 1

3.7.7 Returns of Values or Expressions

ˆname

Every method in Smalltalk returns a value, which is either
determined by one or more explicit return statements or is the
receiver itself, if the method does not include any explicit return
statement. As a consequence of potentially having more than one
explicit return statement, a method’s return type is the union of the
classes of all the potentially returned values.

The return program element terminates the execution of the
method. It will not have an impact on any variable’s state, unless
the returned value is an expression whose evaluation triggers side
effects on the state of variables.

This subsection explained the different types of parse tree elements,
their dependencies and in which order the symbolic evaluation con-
siders them. The next subsection gives a more detailed insight about
when type information is needed and extracted and the challenges
associated with the type extraction during the symbolic evaluation.

3.8 Extracting Type Information
As mentioned in Section 3.6, the code analyser extracts the types
of variables and expressions during the symbolic evaluation. It
starts with closed context inference, which performs type extraction
for each parse tree element described in the previous subsection.
However, as soon as the code analyser encounters a variable scoped
outside the method, the closed context inference is suspended to
determine the type of the variable. Subsequently, the closed context
inference proceeds using the type information extracted during the
open context inference.

For determining the type of each different kind of variable
scoped outside the method, the open context inference applies dif-
ferent strategies, which are described in the following subsections.

3.8.1 Method Arguments
First, the code analyser finds all the senders to the name of the
underlying method. This step is part of the VisualWorks refactory
browser. Second, all the sender nodes are symbolically evaluated
according to the closed context inference mechanism, keeping track
of the types of all the variables and expressions used in the method.
Third, for all the sender nodes whose receiver type contains the
method implementor for which the method argument has to be
inferred, the type information for the argument is considered.

For instance, inferring the type of the argument in the method
Movie>>name:, presented in Listing 14, requires the symbolic
evaluation of the method that contains the senders of name:, which
is shown in Listing 15. Among the two emphasised senders, only
one is relevant for the argument in Movie>>name:, because only
one refers to a receiver of type Movie. The symbolic evaluation
of the expression passed as an argument reveals that the class
Translation is the type candidate for the method argument.

Listing 14. The type of the argument depends on the senders
name: aTranslation
name := aTranslation

Listing 15. Only one sender of the method name: is relevant
title := Translation new.
title english: 'The Godfather'.
title german: 'Der Pate'.

theGodfather := Movie new.
theGodfather name: title.
theGodfather price: 3.

alice := Customer new.
alice name: ’Alice’.
alice language: 'english'.

3.8.2 Instance Variables
The code analyser first considers all the writers of the particular in-
stance variable. A writer is a method that contains an assignment
to a specific variable. Constructors and setter methods are among
the writers. While symbolically evaluating all the writers, the code
analyser keeps track of the class candidates assigned to the instance
variable. The type of the assigned value might depend on a method
argument. In this case, for first determining the types of the argu-
ments, the mechanism described in Section 3.8.1 is used.

The symbolic evaluation of writer methods reveals the class
candidates associated with a particular instance variable. However,
it does not provide any information regarding the internal state of
the object contained in the instance variable.

Therefore, additional analysis is needed to enrich the type infor-
mation concerning the state of the instance variable. This additional
analysis consists of symbolically evaluating all the variable’s read-
ers, because any message send to it can alter its internal state. A
variable’s reader is a method that is directly accessing an instance
variable. As a consequence, for further analysing the state of the
instance variable, all readers are symbolically evaluated.

Typical readers are the getter methods, which give access to the
variable to other methods in the program. Hence, methods refer-
ring to getters potentially modify the variable’s internal state. For
this reason, all references to the variable’s getter are symbolically
evaluated as well, with the objective of collecting more type infor-
mation about the variable’s internal state.

3.8.3 Indexable Variables
Collections use indexable variables. There are collections, such
as strings and symbols, that can contain only specific types of
elements. This constraint is enforced by the system. Thus, the
symbolic evaluation does not perform any analysis on collections
that have built-in type constraints.

However, generic collection classes allow the programmer to
add any kind of object as element. The code analyser performs
type inference on the elements stored as indexable variables, as

they are part of the internal state of an object. The main difference
between indexable variables and instance variables is that there
is not a separate getter or setter for each of them. In contrast,
there are only a few primitives granting access for reading, adding,
or removing elements. The symbolic evaluation keeps track of
the elements. Initially, when the collection is instantiated, it does
not contain elements and therefore no type is associated with its
indexable variable. Whenever an element is added through the
aforementioned primitives, the symbolic evaluation first determines
the type of the object passed as an argument. Then its type is
considered as a type of the indexable variable.

As there is only one common accessor for reading elements
of the collection, the index that is passed as an argument decides
which element is returned. When extracting type information, the
code analyser keeps track only of the class candidates of variables
and expressions, rather than their specific values. Hence, the sym-
bolic evaluation infers that the index passed as an argument to the
accessor is an integer. However, it does not infer its exact integer
value. Consequently, it is unable to infer which element of the col-
lection is returned. For this reason, when fetching an element of the
collection, shown in Listing 16, the symbolic evaluation considers
the union of all the types of the elements in the collection as return
type, which are the classes Integer and String.

Listing 16. The code analyser considers all element types as po-
tential return type when fetching an element
collection := OrderedCollection new.
collection add: 5.
collection add: 'test'.
ˆcollection at: 1

As mentioned in Section 3.6, when analysing the statements and
expressions within a method, the symbolic evaluation maintains the
actual run-time execution order. However, it is unable to maintain
the program flow in general, since the order in which methods are
called depends on the program state, external events, and user input.
For this reason, it is impossible for the static code analyser to infer
the order in which elements are added, removed, or read. Listing 17
illustrates an example of a collection that is modified in different
methods. The element returned by the method getFirstElement
depends on whether the method removeSomeElements is called
first.

Listing 17. The order in which the methods are called determine
the content of the collection
initialize
collection := OrderedCollection new.
collection add: 'test'
collection add: 1.

removeSomeElements
collection remove: 'test'

getFirstElement
ˆcollection at: 1

Consequently, for the symbolic evaluation, removing elements
from a collection has no impact on the type of its elements and
on the return type of methods that read single collection elements:
no type candidate is removed. The types of all the elements added
to the collection are always considered, since the code analyser
can not determine whether a particular element has been removed
before accessing the collection’s content.

3.8.4 Class Variables and Global Variables
In object oriented programming, the usage of class variables and
global variables is considered a bad practise, unless used in the
context of design patterns, e.g., the Singleton pattern [13, 26].
Within the Smalltalk system, global variables are used in special
contexts, such as system configuration. Usually, the content of
global variables is not changed during the program execution, since
they are reserved for configuration. Some of the global variables are
changed manually, which makes it impossible to analyse what class
candidates might be assigned to them. Global variables and class
variables are accessible at system level. For this reason, the code
analyser accesses their value to directly extract the class candidates.
To avoid changes to be made to their content during the symbolic
evaluation, the type inference process is synchronous, i.e., modal.
This means that the user is not able to make any changes to the
source code or to the global variables until the type extraction is
completed.

3.8.5 Block Closures
Block closures are best described as anonymous methods that con-
tain executable code, including their own arguments and temporary
variables. Nevertheless, they have to be treated differently when
inferring the types of variables used inside block closures.

It is crucial to distinguish between the instantiation of a block
and its execution. Once instantiated, a block might be stored in a
variable or passed as argument. Sending particular messages that
invoke certain primitives, such as value and value:, trigger its
execution.

As mentioned in Section 3.7.4, every time the symbolic eval-
uation encounters the creation of a block closure by a literal parse
tree element, it creates a type candidate that contains the entire code
contained in the block closure as well as a reference to the creation
context. This information is used as follows during the symbolic
evaluation and type extraction within blocks.

Temporary variables defined inside the scope of the closure it-
self are handled according to the closed context inference con-
cept defined in Section 3.6. Block closures may also contain bind-
ings to variables defined outside their own scope, such as instance
variables. In this case, their type is extracted as described in Sec-
tion 3.8.2. However, there is an important detail regarding the bind-
ing of variables in block closures: the block might be evaluated in
a different context than the context where it has been created. Cor-
responding to the semantics of blocks at run-time, the binding of
variables scoped outside the block is done based on the creation
context of the block closure. Thus, the code analysis on such vari-
ables is performed in the creation context of the block closure.

3.8.6 Block Closure Arguments
Even though they are syntactically different from method argu-
ments, block arguments are similar to them. The only difference is
that, instead of having a user defined method name with which the
arguments are passed, there is a small set of generic methods for
evaluating block closures and passing the corresponding parame-
ters.

Because the method name for the execution of a block is
generic, there is no support for finding the references to a specific
block as for method names. This makes it impossible to use the
mechanism for inferring the type of method arguments and, thus,
demands for a different strategy: according to the explanation given
in Section 3.7.4, when encountering the creation of a block closure,
the code analyser creates a type candidate that contains the code
of the block and a reference to its creation context. The resulting
type might be either stored in a variable or passed as an argument,
like any other type candidate. As soon as the block type candidate
is identified as potential receiver of a message during the symbolic

evaluation of a message send, as described in Section 3.7.5, the sent
message potentially triggers the evaluation of the code contained in
the block. The method lookup for block closures during the code
analysis is the same as for other type candidates. Hence, the deci-
sion depends on whether the implementation of the sent message
found in the hierarchy of the system class BlockClosure contains
calls to certain primitives. If the method implementation triggers
the evaluation of the block, the expressions passed as arguments
to the block are symbolically evaluated and their type is associated
with the block arguments.

In contrast to the evaluation of externally defined variables used
within the block, the symbolic evaluation of the expressions passed
as arguments takes place in the method context where the block
is evaluated rather than where it was created. This interpretation
complies with the behaviour of block closures at run-time.

The following sample code passes a block that expects the
argument amount to the method Invoice>>printOn:unless:.
The type of the block argument amount corresponds to the type
of the variable accountBalance in Invoice, which is passed as
argument when triggering the evaluation of the block by sending
the message value:.

Listing 18. The variable accountBalance determines the type of
the block argument
Printer>>processInvoice: anInvoice

anInvoice printOn: self unless: [:amount | amount = 0]

Invoice>>printOn: aPrinter unless: aBlock
(aBlock value: accountBalance) ifFalse: [aPrinter print:
self]

3.9 Not Considered Code Constructs
As mentioned in the previous subsections, the type inference is
based on static code analysis. As Smalltalk supports reflection
- which means that the programmer can dynamically query and
change the program’s structure, implementation, and state [11] -
not necessarily all the relevant code is available at compile-time.

Two common contexts where reflective features are used are
code generation or data binding between the model and the GUI.
For some of the reflective code constructs, such as the ones shown
below, the argument values such as method names are available at
compile time.

• anObject perform: #foo

• anObject perform: ’foo’ asSymbol

• anObject perform: (’foo’ , ’:’) asSybmol

This means that all the information that is necessary for per-
forming the static type inference is present at compile time. How-
ever, the prototype implementation of the type inference mecha-
nism presented in this paper does not consider code that uses any
of the reflective features. Consequently, it does not extract type in-
formation that results from reflective code. The reason for not con-
sidering the subset of reflective code constructs that provides the
necessary information at compile-time is that the presented code
analyser is still a prototype rather than being a sophisticated and
mature tool.

In contrast to the examples shown above, if the code constructs,
such as message names, method implementations, or even classes,
depend on external state or input, as shown in Listing 19, they are
not yet present at compile-time. As a result, the static code analyser
is unable to consider its implications with respect to types and
program state.

Listing 19. The method to be called depends on the content of the
file
callMethodOn: anObject

| methodName |
methodName := 'methodName.txt' asFilename
readStream nextLine.

ˆanObject perform: methodName asSymbol.

3.10 Sample Type Analysis
The aforementioned subsections described the details concern-
ing the static code analysis and the strategies used for extracting
the type information depending on the program structure. This
subsection illustrates the type analysis step by step for the sam-
ple refactoring of renaming the method Customer>>name to
Customer>>lastname mentioned in Section 2.5.

The purpose of the refactoring is to rename the method name
in the class Customer. The method name in the sample code has
two implementors: Movie (Listing 1) and Customer (Listing 2).
The sample code contains two senders of the method name, both
in the method printTotalOn: and emphasised in Listing 20.
According to the implementation of the refactory framework [29],
the program elements sending a message are named “message
node” or “message sends”. They do not represent the whole method
that contains the message send, instead, they represent only the
single parse tree element. This distinction is crucial, since one
method can contain more than one message send with the same
name as shown in Listing 20.

Listing 20. Knowing the type of both receivers of the message
name is necessary
printTotalOn: aStream
aStream nextPutAll: 'Customer name: '.
aStream nextPutAll: customer name.
aStream cr.
aStream nextPutAll: 'Movie title: '.
aStream nextPutAll: movie name.
aStream cr.
aStream printNumber: self price.
aStream nextPutAll: ' EUR'.

Understanding the dependencies between the senders and the
implementors is crucial for constructing the polymorphic graph
and, thus, for safely renaming the method. The following descrip-
tion focuses on the single steps that are necessary for extracting the
type information for the senders of the method name in the given
sample program, which is a prerequisite for creating the polymor-
phic graph.

For both message nodes emphasised in the aforementioned
code listing, the code analyser determines the receiver’s type
using symbolic evaluation on the method printTotalOn:. As
soon as the symbolic evaluation encounters the message node
customer name , it interrupts the evaluation of printTotalOn:

for first identifying the type of the receiver, which is the instance
variable customer. Similarly, it infers the type of the instance vari-
able movie to understand whether the message node movie name
is relevant for the rename method refactoring. According to the
description in Section 3.8.2, it is necessary to consider the instance
variable’s writers, which, in the case of the class Rental, are the
setter methods customer: and movie: shown in Listing 21.

Listing 21. the types of the variables depend on the arguments

customer: aCustomer
customer := aCustomer

movie: aMovie
movie := aMovie

When symbolically evaluating each of the setters, the code anal-
yser detects the dependency on the method argument and deter-
mines first its type. According to the mechanism presented in Sec-
tion 3.8.1, this requires the symbolic evaluation of the methods call-
ing the setter method. The code fragment illustrated in Listing 22,
which creates the instances in the sample program, contains the
only callers to the setter methods customer: and movie:.

Listing 22. Extracting the types of the arguments passed to the
setter methods movie: and customer: from the callers
| theGodfather alice rental stream title |

stream := WriteStream on: String new.

title := Translation new.
title english: 'The Godfather'.
title german: 'Der Pate'.

theGodfather := Movie new.
theGodfather name: title.
theGodfather price: 3.

alice := Customer new.
alice name: 'Alice'.
alice language: 'english'.

rental := Rental new.
rental movie: theGodfather.
rental customer: alice.
rental numberOfDays: 2.

rental printTotalOn: stream.
stream contents.

The two senders pass as arguments the temporary variables
theGodfather and alice respectively. By examining the two as-
signments emphasised in Listing 22, the symbolic evaluation infers
their types: The type of theGodfather contains only Movie as
class candidate while alice is of type Customer. Putting the type
information of the previous steps together, the symbolic evaluation
shows that, in the method printTotalOn:, the message send of
name in customer name refers to the implementation in the class
Customer while movie name refers to the implementor Movie.

The next subsection focuses on building the polymorphic graph,
based on the extracted type information for the method name.

3.11 Creating the Polymorphic Graph
According to the definition given in Section 3.2, the polymorphic
graph consists of all the program elements sending a message with
one particular name. Each message node is represented as a vertex
of the polymorphic graph’s right hand side. For all the message
node vertices, the code analyser identifies the class candidates
of the receiver as described in the previous subsections. All the
receiver’s class candidates are vertices on the left hand side of
the polymorphic graph. The graph contains edges connecting each
message node with all of its receiver’s class candidates.

Figure 11 depicts the resulting polymorphic graph, which uses
the extracted type information for the method name in the sample
program.

Movie

Person

movie name

customer name

Figure 11. Edges represent the type information for the method
name

This graph clearly shows two clusters: movie name referring to
Movie and customer name referring to Person. The next subsec-
tion describes the algorithm for identifying the separate clusters in
the graph.

3.12 Separating Clusters in the Polymorphic Graph
The algorithm used for identifying and separating the individual
clusters within the polymorphic graph is described below. The
corresponding pseudo-code-listing can be found in the thesis that
builds the base for this paper [33].

Initially, none of the vertices is assigned to a specific cluster.
All of them belong to the list of unassigned vertices. The program
creates a new empty cluster assigning one of the sender vertices
to it, removing it from the list of the unassigned sender vertices.
All the implementor vertices that are directly connected to it are
added to the same cluster. All the sender vertices that are directly
connected to any of the previously added implementor vertices and
are not yet part of the cluster are also assigned to the same cluster.
The program adds the implementor vertices that are connected to
the newly added sender vertices to the cluster unless they already
belong to the cluster. This mechanism of adding connected sender
and implementor vertices continues until no more new vertices are
added. If there are still unassigned sender vertices left, the entire
procedure is run again on the remaining list of unassigned vertices
of the graph, creating one cluster at a time.

Refactorings involving overloaded method names rely on the
resulting clustered polymorphic graph. The following subsection
presents a sample refactoring.

3.13 Mechanisms of Typed Refactorings
As a concrete example for a refactoring that uses type information,
this paper focuses on the widely used ”Rename method” refactor-
ing. The reason for this choice is that it can be used as a step-
ping stone for performing other refactorings on overloaded method
names by first renaming the relevant method to a unique name, and
then performing other existing refactorings. Nevertheless, the type
information allows to implement enhanced versions of other refac-
torings that benefit from type information, such as the refactorings
mentioned below:

• add or remove method argument
As for the ”rename method” refactoring, the type information
helps to limit the scope of the refactoring.

• inline method from component
If the receiver type is known, the candidate list of method
implementations to inline can potentially be reduced.

• extract method to component
If the receiver type is known, the set of target classes to which
to extract the code can be more precise.

• finding the senders or implementors
As described in Section 2.4, finding the references or imple-
mentors is crucial when performing manual refactorings. The

clusters built on the extracted type information allow to deliver
more precise results in a code base with overloaded method
names by listing only the senders or implementors in one par-
ticular cluster.

As mentioned in Section 3.6, in Smalltalk there is a refactoring
framework available, which provides the interface for extending
existing refactorings or implementing new ones. This framework
provides the possibility to use code rewrite rules, which apply a
pattern matching mechanism for both finding and changing specific
structures in the source code, such as references to methods.

The prototype of the typed rename method refactoring uses the
clusters in the polymorphic graph to avoid renaming all the refer-
ences to the target method name by changing only the references
that are contained as vertices in one cluster. As for the built-in re-
name method refactoring, the user has to choose the method to re-
name by selecting a specific implementor. The scope of the typed
rename method refactoring is the cluster that contains the class of
the chosen implementor among its vertices.

The implementation of the typed rename method refactoring
uses the built-in refactory framework by applying a customised
rewrite rule for performing the pattern matching within the parse
tree. While doing the pattern matching, every node in the parse
tree is visited. The pattern matching rule first checks whether the
currently analysed node is a message node sending the message to
be renamed. If this is the case, it also checks whether the message
node is among the sender vertices of the relevant cluster, which
has been chosen as a target scope for the rename. Only if both
conditions are met, the refactoring changes the name of the sent
message in the visited parse tree element.

The built-in refactoring framework allows to visualise the
changes before their actual execution, as shown in Figure 12 and
Figure 13. This is a crucial step for evaluating the tool’s utility and
to make the developer familiar with the mechanisms of this particu-
lar refactoring. The purpose is to speed up acceptance and the trust
building process within the development team, by giving them full
control over the proposed changes. The changes are undoable after
their confirmation through the built-in undo menu.

Figure 12. The implementor is renamed

Figure 13. The user can see which senders will be changed

This concludes the step-by-step explanation of the different
phases and concepts of the implementation of the sample refac-
toring.

3.14 Limitations
The solution approach and its implementation are subject to the
following limitations.

3.14.1 Use of Reflection
The Smalltalk programming language offers powerful reflection
features. A reflective programming language offers the possibility
to dynamically query and change the program’s structure, imple-
mentation, and state [11].

In Smalltalk, reflection provides also the possibility to intercept
method invocations to alter the mechanism of the method look-up
[11]. During the symbolic evaluation, the static code analyser as-
sumes the standard method look-up for sent messages, as explained
in Section 3.7.5. As a consequence, the symbolic evaluation does
not consider potential alterations of the method look-up.

Furthermore, as mentioned in Section 3.9, the code analyser
does not consider code that uses reflective features when extracting
type information.

3.14.2 Absence of Formal Model
The symbolic evaluation considers the characteristics and the side
effects of each of the possible parse tree elements to extract type
information, as explained in Section 3.7 and Section 3.8. More
than 250 test cases informally verify the type information extracted
during the static code analysis. However, its implementation is not
based on a formal model. Consequently, there is no formal proof for
completeness or correctness of the resulting polymorphic graph.

3.14.3 Slow Performance
For some program elements, extracting type information requires
analysing many methods of the program’s source code. In partic-
ular, the extraction of type information for instance variables po-
tentially triggers the symbolic evaluation of hundreds of methods,
because of the dependencies mentioned in Section 3.8.2. The time
required to analyse the large number of methods potentially hinders
the interactive usage of the prototype of the typed refactoring.

The next section illustrates statistics that consider the time required
for extracting type information on individual methods to assess the
effectiveness of the prototype.

4. Evaluation
This section assesses the potential contribution of the implemented
prototype from the user’s perspective. It defines research questions
and explains the strategy for answering them by giving a descrip-

tion of the experimental setup. It presents the results coming from a
statistical analysis and discusses the limitations of the experiment.

4.1 Research Questions
When considering the adoption of the implemented prototype of
the refactoring tool, the developer is interested in the following
questions:

Q1 Is the tool capable of supporting every case where she wants to
rename overloaded methods?

Q2 If not, what is the percentage of cases, where it can be used?

Q3 Is the tool fast enough to be used interactively?

The upcoming subsections present an experiment and the ac-
cording statistical analysis for giving an estimation of the proba-
bility of successfully applying the implemented prototype. In addi-
tion, the experiment uses time limits to assess whether interactive
usage is feasible.

4.2 Evaluation Approach
In the source code there exist overloaded methods that the proto-
type can successfully rename, and other overloaded methods that
cannot be renamed by the prototype within a reasonable time. Even
though the number of methods of both kinds is unknown, the out-
come for each method is deterministic and is either success or fail-
ure. The probability of success when renaming one arbitrarily cho-
sen overloaded method depends on the probability of choosing a
method on which the prototype applies successfully. This situation
corresponds to the concept of a Bernoulli trial with unknown prob-
ability of success [1, 10].

4.2.1 Experimental Design
The evaluation relies on an experiment based on repeating the
Bernoulli trial for 2000 times, i.e., binomial experiment, to give
an estimation for the unknown probability and to measure the in-
fluence of the time limit on it. The experiment consists in draw-
ing statistical samples from the Smalltalk image and in measuring
the outcome. Since extracting the polymorphic graph for a method
represents the critical step for the enhanced rename method refac-
toring, the decision regarding success or failure for one trial on a
single method, which corresponds to the Bernoulli trial mentioned
before, is reduced to the question whether the code analyser can
extract the polymorphic graph for the chosen method within the
given time limit. The methods for which the code analyser could
complete the analysis within the given time count as successes as
opposed to the methods, where no result could be extracted within
the given time.

According to the aforementioned textual explanation, the fol-
lowing definitions describe the experiment with statistical nota-
tions.

Population: methods having at least two implementors, i.e.,
overloaded methods

N : number of overloaded methods

M : number of overloaded methods, for which the type infer-
encer is able to extract the polymorphic graph within the given
time

X ∼ B(1, p): Bernoulli trial with a success probability p,
where:

X is the random variable, which assumes two possible val-
ues:

X =

{
1 success
0 failure

Success means choosing a method for which the code anal-
yser can extract the polymorphic graph

P (X) =

{
p X = 1
1− p X = 0

In this experiment, p is the proportion of overloaded meth-
ods in the population, for which the code analyser can ex-
tract the polymorphic graph, i.e., M/N

Y : random variable for the repeated Bernoulli trial, i.e., bi-
nomial experiment, describing the number of successes in the
sample

Y ∼ B(k, p): binomial experiment consisting of k Bernoulli
trials with the probability p. The sample size k of the performed
experiments is 2000

4.2.2 Scoping the Samples
The VisualWorks image of Lifeware is the target of the experiment.
In addition to the code that is specific to each of Lifeware’s cus-
tomers, it contains framework code for the insurance domain, im-
plemented by Lifeware. Even though the image has a monolithic
structure, classes that are relevant only for one of the customers
and, hence, do not belong to the framework code, are marked as
such. Furthermore, customer-specific code is allowed only to de-
pend either on code used for the same customer, or on framework
code.

This structure of the image potentially facilitates the extraction
of type information, because two method implementors belonging
to customer-specific code of distinct customers are independent,
unless the framework code contains a sender of the same method
name. Such a sender in the framework code introduces a depen-
dency between the distinct customer-specific code bases, since re-
naming one method possibly requires renaming the sender in the
framework code and therefore also the implementor in the code of
the other customer.

Figure 14 illustrates an example, where the framework code
does not contain a sender of the method and, hence, the two
customer-specific code bases are independent. In contrast, Fig-
ure 15 shows a class in the framework code that contains a sender
of the relevant method name, introducing a dependency between
the customer-specific code bases.

framework code

code for customer 1 code for customer 2

A

+foo()

B

+foo()

C

+run()

D

+print()
sends sends

Figure 14. The customer-specific implementations are indepen-
dent

framework code

code for customer 1 code for customer 2

A

+name()

B

+name()

E

+print()

sends sends

Figure 15. The sender in the framework introduces a dependency

For methods without senders in the framework code, such as
shown in Figure 14, the code analyser considers the customer-
specific parts as independent partitions and, therefore, ignores the
implementors and senders in the code of the other customers. This
potentially reduces the number of dependent methods that must be
processed during the type inference for a specific program element.
Consequently, the likelihood of successfully extracting the poly-
morphic graph within the given time might differ for method names
that are implemented and sent only within customer-specific code
compared with method names used also within the framework code
or the Smalltalk base classes.

To quantify this difference, two independent sets of methods
build the base of the experiment, each of which consists of 2000
randomly selected methods among those having at least two im-
plementors chosen once from the entire Lifeware image, and once
excluding methods that have either implementors or senders also in
the framework code. The reason for distinguishing the two cases is
to give the programmer a more precise estimation of the likelihood
of successfully using the prototype of the enhanced rename method
refactoring on any Smalltalk image.

4.2.3 Applying Time Limits
In addition to the partitioning, the applied time limit potentially
influences the success rate of extracting the polymorphic graph. In
order to assess whether increasing the time limit raises the number
of methods for which the code analyser is capable of extracting
the polymorphic graph, each method name has been processed
with two different time limits, i.e., one and ten seconds, creating
dependent pairs of samples [10]. The motivation for choosing those
particular time limits is the interactive usage of the prototype,
which is a crucial criteria for the acceptance of the tool among
programmers [28].

4.2.4 Random Selection
The application of the model of a series of Bernoulli trails, as ex-
plained in Section 4.2.1, requires the single trials to be stochasti-
cally independent, which means that the result of one trial does not
alter the probability of the outcomes of the following trials [1, 10].
In order to achieve stochastic independence for the creation of the
samples of the 2000 methods, a chosen method was not excluded
for the random choice of the next method, allowing a method to ap-
pear more than once in the sample. The evaluation presented in this
paper also assumes that randomising in VisualWorks Smalltalk is
stochastically independent and equally likely among all the avail-
able choices.

4.2.5 System Specification
Table 1 gives details regarding the specifications of the system used
for the experiment.

CPU Intel Core i5-2500K, 3.3 GHz
Main memory 8 GB
Operating system Windows 7 Ultimate x64 SP 1
IDE VisualWorks 7.41
Number of classes 37,700

Table 1. System specification

4.3 Statistical Analysis
Measuring the two independent sets of 2000 methods for each of
the two time limits revealed the results depicted in Table 2.

scope timeout (seconds) # successes % successes

global 1 505 25.25%
10 507 25.35%

partitioned 1 876 43.80%
10 878 43.90%

Table 2. Statistical result for the two paired experiments with 2000
samples

At the first glance, the success rate for methods taken from the
entire image differs with respect to the success rate for methods
taken only from the customer-specific partitions, while increasing
the time limit seems to cause only marginal improvements.

However, deciding whether those first observations can be con-
firmed requires a statistical analysis. Therefore, for each of the four
extracted samples illustrated in the table, the binomial proportion
confidence interval is calculated. It provides information regarding
the proportion of overloaded methods in the image for which the
prototype could successfully extract the polymorphic graph within
the given time limit. Since for a single Bernoulli trial, the proba-
bility of success is the proportion in the population, the confidence
interval corresponds to the estimated probability of success for a
single trial and, hence, for the rename of one randomly chosen
method.

The calculation of the confidence interval is based on the widely
used formula of Laplace [36]. It approximates the underlying bino-
mial distribution with a normal distribution, which can be done if
both the number of successes and the number of failures in the sam-
ple are greater than ten [10, 34]. Table 2 shows that the observed
numbers are far greater than the required minimum for approximat-
ing the binomial experiment with a normal distribution.

The formula used for calculating the confidence interval is
shown below,(

x− z(1−α
2)

s√
n
;x+ z(1−α

2)
s√
n

)
where the meaning of the used symbols is as follows:

n: sample size

x: proportion of observed successes in sample

s: standard deviation of the sample

1− α: confidence level

z(1−α
2
) = Φ−1(1 − α

2
): the value of the quantile function for

the standard normal distribution for 1− α
2

Table 3 presents the results of the calculation with a confidence
level of 99 % and an error level of 1 %, respectively.

confidence interval for the probability
scope timeout lower bound upper bound

global 1 22.75% 27.75%
10 22.84% 27.85%

partitioned 1 40.94% 46.66%
10 41.04% 46.76%

Table 3. The confidence interval gives an estimation for the prob-
ability

After calculating the confidence interval for the two sample
pairs, i.e., global and partitioned, each measured with two time
limits, the next step is to assess the effect of increasing the time
limit. For this purpose, Table 5 combines the two sample pairs,
which are summarised in Figure 4, together as new samples.

The idea is to quantify the improvement triggered by increas-
ing the time limit from one to ten seconds. Among the methods for
which no type information could be extracted within one second,
potentially exist candidates for which within ten seconds the code
analyser was able to extract the polymorphic graph. In other words,
the interesting aspects of the combined samples, presented in Ta-
ble 5, are the number and the proportion of methods that transform
from failures to successes by changing the time limit.

timeout: 1 second timeout: 10 seconds
scope successes failures successes failures
global 505 1495 507 1493
partitioned 876 1124 878 1122

Table 4. The number of failures after 1 second is the sample size
of the combined sample shown in Table 5

scope failures with
1 second

yield with 10
seconds

yield rate

global 1495 2 0.13%
partitioned 1124 2 0.18%

Table 5. Increasing the time limit brings almost no improvement

The purpose of combining the two sample pairs is to calculate
another confidence interval on the probability of successfully com-
puting the polymorphic graph within ten seconds on methods for
which within one second the code analyser could not extract type
information. However, as Table 4 shows, increasing the time limit
brought success solely for two methods out of 1495 and 1124 re-
spectively. This corresponds to a success rate of far less than one
percent. Actually, the number of additional successes is too small
for applying the formula of the confidence interval, since the sam-
ples do not satisfy the previously mentioned conditions for approx-
imating a binomial experiment with a normal distribution. Still, the
numbers clearly indicate that increasing the time limit yields almost
no additional value.

4.4 Results
Based on the aforementioned analysis, the answers to the research
questions stated in Section 4.1 are the following:

Q1 Is the tool capable of supporting every case where the developer
wants to rename overloaded methods?

A1 No, the tool is unable to support every case.

Q2 If not, what is the percentage of cases, where it can be used?

A2 The probability of success depends on the scope. If the method
is only implemented and sent in customer-specific code, the
estimated probability lies in the range between 41% and 47%,
otherwise it is between 23% and 28%.

Q3 Is the tool fast enough to be used interactively?

A3 The estimated probabilities assume a time limit of one second,
which is feasible for interactive usage. If the code analyser
could not extract the type information for a specific method
within one second, increasing the time limit to ten seconds
rarely leads to success.

4.5 Threats to Validity
This subsection mentions the limitations of the evaluation approach
and of the corresponding statistical analysis. Each of the upcoming
subsections discusses in detail one of the limitations.

4.5.1 Considering Only the Lifeware Image
The evaluation and the statistical analysis presented in this section
consider only one particular VisualWork Smalltalk image, which
is the one used by Lifeware. From the company’s foundation in
1998, starting with three developers, it evolved to an image contain-
ing more than 37,000 classes, maintained by 30 developers. Even
though the image is the code base of a large scale industrial soft-
ware project, it might not be representative and, hence, potentially
inadequate to generalise statements or estimations that are based
on the analysis. The estimated probability of success might vary
significantly based on the project size, business domain, team size
and other factors. The evaluation presented in this section does not
consider those factors.

4.5.2 Not Verifying Correctness
As mentioned in Section 4.2.1, the measurement is reduced to the
decision whether for a specific method the code analyser is capa-
ble of extracting the polymorphic graph within the specified time
limit. If this is the case, the observation is considered as a success.
Because of the big sample size - four experiments, each consisting
of 2000 methods - manually verifying whether the extracted poly-
morphic graph is correct was not feasible. Consequently, the cor-
rectness of the extracted samples has not been verified. However,
more than 250 test cases verify the soundness of the extracted type
information and the corresponding polymorphic graph on selected
examples.

4.5.3 Selecting Methods Randomly
The evaluation estimated the probability of success based upon a
binomial experiment that prerequisites random selection for the
extracted sample. Consequently, the estimated probability is only
valid for random selection. However, rather than being the outcome
of a random selection, the method a programmer needs to rename
is driven by business requirements and software maintenance activ-
ities. For this reason, the probability of success during daily devel-
opment potentially differs from the estimation.

4.5.4 Assuming Stochastic Independence on Random
Generator

The necessary condition for applying the model of the binomial
distribution is that the single trials satisfy the condition of the
Bernoulli trial, i.e., the single trials need to be stochastically inde-
pendent [1, 10]. Since the random choice of the 2000 methods uses
the built-in random generator of Smalltalk, the evaluation assumes
that it satisfies this condition.

5. Conclusions
This paper addresses the challenges with respect to refactoring
automation and tool support in Smalltalk, triggered by the lack of
type information at compile-time. In particular, this paper focuses
on renaming overloaded methods that have the same name.

It proposes the usage of static code analysis to extract type
information, which can be used by refactoring tools, explained in
a detailed step-by-step manner. A prototype implementation serves
as a proof of concept of the solution’s approach. An experiment
and its statistical analysis, aimed at assessing the utility of the
prototype, estimate the success rate ranging from 23% to 47%.

5.1 Contributions
This paper presents a concrete proposal for performing type infer-
ence based on static code analysis. Using a modern hardware setup,
it proved to be feasible in terms of response time, when applying it
to a subset of methods.

This is an important result; given that, the research also reveals
that refactoring tools in Smalltalk could greatly benefit from using
type information.

Even though the evaluation demonstrates that the presented
approach is not applicable for all the cases, there is a reasonable
proportion of cases, where the prototype provides help for the
developer. For this reason, Lifeware decided to use the prototype
within the company.

5.2 Future Work
The static code analysis presented in this paper is not based on a
formal model. Formalising the underlying solution approach would
improve the safety of the type inference and, hence, make the pro-
totype more trustworthy towards potential users among developers.

Additional analysis of the failures for identifying bottlenecks
as well as optimisations for modern multi-core CPUs and use of
sophisticated caching strategies could increase the success rate,
which would make the presented refactoring tool more appealing
for developers.

Further assessments of the prototype in the context of different
projects could reveal whether the success rate depends on project-
specific factors, such as the program’s size or complexity.

Making the implemented prototype available to the Smalltalk
community could stimulate interest, and thereby potentially in-
crease the development and research resources for improving it.

References
[1] O. Anderson, W. Popp, M. Schaffranek, D. Steinmetz, and H. Stenger.

Schätzen und Testen: Eine Einführung in Wahrscheinlichkeitsrechnung
und schließende Statistik. Springer Berlin Heidelberg, 2nd edition,
Apr. 1997.

[2] K. Beck. Extreme programming explained : embrace change.
Addison-Wesley, Boston MA, 2nd edition, 2004.

[3] A. H. Borning and D. H. H. Ingalls. A type declaration and inference
system for smalltalk. In Proceedings of the 9th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages - POPL
1982, pages 133–141, Albuquerque, Mexico, 1982.

[4] G. Bracha and D. Griswold. Strongtalk. In Proceedings of the
eighth annual conference on Object-oriented programming systems,
languages, and applications - OOPSLA 1993, pages 215–230, Wash-
ington, D.C., United States, 1993.

[5] D. Campbell and M. Miller. Designing refactoring tools for develop-
ers. In Proceedings of the 2nd Workshop on Refactoring Tools - WRT
2008, pages 1–2, Nashville, Tennessee, 2008.

[6] O. J. Dahl, E. W. Dijkstra, and C. A. Hoare. Structured programming.
1972.

[7] B. Du Bois, P. Van Gorp, A. Amsel, N. Van Eetvelde, H. Stenten,
S. Demeyer, and T. Mens. A discussion of refactoring in research

and practice. Reporte Técnico. Universidad de Antwerpen, Bélgica,
2004.

[8] S. Ducasse, M. Lanza, and S. Tichelaar. Moose: an extensible
language-independent environment for reengineering object-oriented
systems. In Proceedings of the 2nd International Symposium on Con-
structing Software Engineering Tools - CoSET, 2000.

[9] P. Ebraert and Y. Vandewoude. Influence of type systems on dynamic
software evolution. In the electronic proceedings of the 21st Interna-
tional Conference on Software Maintenance - ICSM 2005, 2005.

[10] M. Eid, M. Gollwitzer, and M. Schmitt. Statistik und Forschungsmeth-
oden: Lehrbuch. Beltz Psychologie Verlags Union, 1st edition, 2010.

[11] B. Foote and R. E. Johnson. Reflective facilities in smalltalk-80. pages
327–335. ACM Press, 1989.

[12] M. Fowler. Refactoring : improving the design of existing code.
Addison-Wesley, Reading MA, 1999.

[13] E. Gamma, R. Helm, and R. E. Johnson. Design Patterns. Elements
of Reusable Object-Oriented Software. Addison-Wesley Longman,
Amsterdam, 1st edition, Oct. 1994.

[14] A. Goldberg. Smalltalk-80 : the language and its implementation.
Addison-Wesley, Reading Mass., 1983.

[15] I. Griffiths. Programming C# 4.0. Oreilly & Associates Inc, 2010.
[16] R. Johnson and W. Opdyke. Refactoring and aggregation. Object

Technologies for Advanced Software, pages 264–278, 1993.
[17] Y. Kataoka, M. Ernst, W. Griswold, and D. Notkin. Automated

support for program refactoring using invariants. pages 736–743.
IEEE Computer Society, 2001.

[18] M. Lehman. Laws of software evolution revisited. Software process
technology, page 108–124, 1996.

[19] M. Lippert and S. Roock. Refactoring in Large Software Projects:
Performing Complex Restructurings Successfully. Wiley, 2006.

[20] T. Mens and T. Tourwe. A survey of software refactoring. IEEE
Transactions on Software Engineering, 30(2):126–139, Feb. 2004.

[21] T. Mens, T. Tourwe, and F. Munoz. Beyond the refactoring browser:
advanced tool support for software refactoring. In The Proceedings of
the 6th International Workshop on Principles of Software Evolution,
IWPSE 2003., pages 39–44, Helsinki, Finland, 2003.

[22] T. Mens, A. Van Deursen, et al. Refactoring: Emerging trends and
open problems. In Proceedings First International Workshop on
REFactoring: Achievements, Challenges, Effects - REFACE. Univer-
sity of Waterloo, 2003.

[23] E. Murphy-Hill and A. P. Black. Refactoring tools: Fitness for pur-
pose. IEEE Software, 25(5):38–44, Sept. 2008.

[24] W. F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis,
University of Illinois, 1992.

[25] D. Poo. Object-oriented programming and Java. Springer, London,
2nd edition, 2008.

[26] J. Rainsberger. Use your singletons wisely. IBM developerWorks,
2001.

[27] P. Rapicault, M. Blay-Fornarino, S. Ducasse, and A. M. Dery. Dy-
namic type inference to support object-oriented reengineering in
smalltalk. Lecture Notes in Computer Science, 1543:76–77, 1998.

[28] D. Roberts and J. Brant. “Good enough” analysis for refactoring. In
European Conference on Object-Oriented Programming, page 81–82,
1998.

[29] D. Roberts and J. Brant. Tools for making impossible changes –
experiences with a tool for transforming large smalltalk programs. IEE
Proceedings - Software, 151(2):49, 2004.

[30] D. Roberts, J. Brant, and R. Johnson. A refactoring tool for smalltalk.
Theory and Practice of Object Systems, 3(4):253–263, 1997.

[31] S. Spoon and O. Shivers. Demand-driven type inference with subgoal
pruning: Trading precision for scalability. The 18th Conference on
Object-Oriented Programming - ECOOP 2004, page 485–493, 2004.

[32] F. Tip, R. M. Fuhrer, A. Kie¿un, M. D. Ernst, I. Balaban, and B. D.
Sutter. Refactoring using type constraints. ACM Transactions on
Programming Languages and Systems, 33:1–47, Apr. 2011.

[33] M. Unterholzner. Refactoring support for smalltalk using static type
inference. Master’s thesis, Free University of Bolzano, 2012.

[34] J. M. Utts and R. F. Heckard. Mind on Statistics. Duxbury, 4th edition,
Jan. 2011.

[35] J. Van Gurp and J. Bosch. Design erosion: problems and causes.
Journal of systems and software, 61(2):105–119, 2002.

[36] R. R. Wilcox. Fundamentals of modern statistical methods substan-
tially improving power and accuracy. Springer, New York, 2010.

[37] N. Wilde and R. Huitt. Maintenance support for object-oriented
programs. IEEE Transactions on Software Engineering, 18:1038–
1044, Dec. 1992.

[38] A. Wright. Type theory comes of age. Communications of the ACM,
53:16, Feb. 2010.

[39] H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit test coverage
and adequacy. ACM Computing Surveys, 29(4):366–427, Dec. 1997.

Tracking Down Software Changes Responsible for
Performance Loss

Juan Pablo Sandoval Alcocer

Department of Computer Science (DCC)
University of Chile, Santiago, Chile

ABSTRACT
Continuous software change may inadvertently introduce
a drop in performance at runtime. The longer the perfor-
mance loss remains undiscovered, the harder it is to address.
Current profilers do not efficiently support performance com-
parison across multiple software versions. As a consequence,
identifying the cause of a slow execution caused by a software
change is often carried out in an ad-hoc fashion.

We propose multidimensional profiling as a way to repeat-
edly profile a software execution by varying some variables
of the execution context. Having explicit execution variation
points is key to understanding precisely how a performance
aspect evolves along with the version history of the software.
We present the key ingredients to make multidimensional
profiling effective, and sketch the design of Rizel, an imple-
mentation in the Pharo programming language.

1. INTRODUCTION
Measuring changes in the performance of an application is

essentially realized by varying some parameters and profiling
the program execution for each variation. Identifying which
method is slower, for which argument and on which object,
is crucial to precisely understanding the reason for a slow or
fast execution. Moreover, an optimal execution is often used
as a target for not-so-optimal executions. Caches are inserted
and optimizations are implemented until the performance
of a not-so-optimal execution is close enough to the optimal
one.

This work is essentially conducted by software engineers
in an ad-hoc manner. A set of benchmarks are manually
constructed to measure the application performance for each
slight variation. Typical variations include the size of the
data input, a version of an algorithm or a particular sequence
of function executions. As surprising as it may seem, current
profilers are either unable to compare multiple executions or
only offer superficial comparison facilities.

Before going into detail about the existing profilers, con-
sider the following situation that was faced during the devel-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

opment of Mondrian1, an agile visualization engine. Mon-
drian displays an arbitrary set of data as a graph in which
each node and edge has a graphical representation shaped
with metrics and properties computed from the data.

About two years ago, an optimization was implemented
that made Mondrian 30% faster [3]. The optimization was
carefully measured with a set of benchmarks. During the last
two years, Mondrian has been in continuous development.
And as it has gained new users, new requirements have been
implemented to satisfy them. Whereas the range of offered
features has grown, the performance of Mondrian has slowly
decreased for some of the benchmarks. The optimization that
made Mondrian 30% faster seems to have somehow vanished.

Tracking down the software changes that are responsible
for this loss of performance is not easy, essentially because of
the lack of adequate tools. Consider MessageTally the stan-
dard profiler of Pharo. It reports the CPU time consumption
for each method for an application execution. The compar-
ison of two profiles to identify the difference of execution
has to be done manually, which is a tedious and laborious
task in addition to be error prone. The commonly-used Java
profilers 2. Xprof3 is built in the Java virtual machine and is
essentially used by the Just-in-time compiler. Hprof4 is the
profiler promoted by Oracle. Both Xprof and Hprof does not
provide comparison facilities. JProfile5 and YourKit6 are two
popular commercial Java profilers. Both support a compari-
son of profiles by indicating the difference in absolute and
relative CPU consumption time of each method. Although
useful to keep track of the overall performance, knowing the
difference between method execution times is often insuffi-
cient to understand the reasons for the performance variation.
In addition, a profiled call graph may significantly differ from
two profile reports, which seriously complicates the analysis.

To understand the reasons for a slow execution caused by
software evolution, we might ask:

• How can we reproduce the performance degradation?

• How can we identify the piece of code that is the re-
sponsible for the loss of performance?

1http://moosetechnology.org/tools/mondrian
2We have conducted all our experiments in the Pharo pro-
gramming language.
3http://bit.ly/xprofiler
4http://bit.ly/hprofiler
5http://www.ej-technologies.com
6http://www.yourkit.com

1

http://moosetechnology.org/tools/mondrian
http://bit.ly/xprofiler
http://bit.ly/hprofiler
http://www.ej-technologies.com
http://www.yourkit.com

When applied to our example with Mondrian, Xprof, Hprof,
JProfiler and YourKit are useless at answering any of these
questions. The reason is that the profile comparison exercised
by JProfiler and YourKit does not capture all the variables
that these questions refer to, such as the benchmarks and
software versions. Being able to profile an application along
several variables is the topic of our work.

In this article we propose multidimensional profiling as a
way to repeatedly profile a software execution. We present the
key ingredients to make multidimensional profiling effective.
We accomplish this by changing the values of some variables
of the execution context. Having explicit execution variation
points is key to precisely understand how the performance
of a particular feature evolves along the version history of
the software.

We present Rizel, a multidimensional profiler that con-
siders two dimensions: benchmarks and software versions.
Rizel provides two visualizations where the performance
degradation clearly and explicitly appears: The Performance
Comparison Matrix shows the performance of a software
in difference versions, allowing us to find a breakpoint in
performance. The Performance Evolution Blueprint allows
one to understand the performance impact of changing the
definition of a method. Finally, we employ Rizel to identify
which software changes are responsible for performance loss
in a real world application, XMLSupport.

This paper is structured as follows. Section 2 introduces
Multidimensional Profiling. Section 3 presents Rizel, our
multidimensional profiler. Section 4 describes the notion of
filtering, in order to reduce the amount of data displayed.
Section 5 employs Rizel to identify software changes respon-
sible for performance loss, in XMLSupport. Section 7 briefly
presents the related work. Section 6 discusses the experience
we gained. Section 8 concludes and sketches our future work.

2. MULTIDIMENSIONAL PROFILING
We define multidimensional profiling as the activity of

reasoning about a software execution by varying multiple
variables related to its execution. These variables could be
function inputs, benchmarks or software versions, among
others. Our objective is to gain a better understanding of
a software execution by relating different profiles obtained
from slightly different conditions. Opportunities to optimize
and to minimize resource consumption are then easier to
find.

The rationale behind multidimensional profiling is that
if a software execution is particularly fast or slow for an
identified situation (i.e., particular values for the variables),
then the situation can be exploited to improve the overall
execution.

In a nutshell.
The ingredients to accurately exercise multidimensional

profiling are:

• Definitions of the variation points of the executing en-
vironment. The variation points are defined to be a
set of variables (V1, ..., Vn). Each of these variables is
associated with a particular aspect of the execution
environment, such as a software version, benchmark,
parameters of a particular method, instances of a par-
ticular class.

• Specification the values of each variation point. Each

variable may either be set to a fixed value, or may
iterate over a range of values. Each value produces
a new profile. To better measure the impact of a
variable evolution, it is preferable to have all but one
variable fixed. These executions result in a set of profiles
P1, ...Pm.

• Stable profiles. Each execution has to be repeatable and
isolated from other executions. This means that two
profiles Pj and P ′

j produced by two identical executions
have to be “close enough” to be meaningful.

• Presentation of the results. Data must be presented
in such a way that variation performance clearly and
explicitly appears. The evolution of Vi has to be unam-
biguously represented to be able to draw a conclusion
about the performance evolution that results.

3. IMPLEMENTATION
We have prototyped Rizel 7, a multidimensional profiler.

Rizel is implemented in the Pharo Smalltalk language, and is
based on Spy [4], a flexible and open instrumentation-based
profiler framework. The set of variables that Rizel currently
considers are benchmarks and software versions. This means
that for a given software, Rizel can:

• run a particular benchmark b for each of the software
versions s1, ..., sk

• run a different benchmark b1, ..., bl for a particular
software version s

The following script uses Rizel to measure the performance
of Mondrian for four benchmarks over nine representative
versions.

1 rizel define: #input
2 named: #version
3 with: self mondrianVersions.
4 rizel define: #input
5 named: #benchmark
6 with: #(#treeLayout #manyNodes #openSimpleGraph

#subviews).
7

8 results := rizel execute: [:version :benchmark |
9 version load.

10 rizel profile: [
11 XMLSupportBenchmarks new perform: benchmark]
12 inPackagesMatching: 'XML−∗']].
13

14 rizel display: results.

Lines 1-6 define benchmarks and software versions as vari-
ation points of the executing environment. Lines 8-12 define
the code that should be executed for each variation. These
executions results in a set of profiles.

Our profiler measures the number of sent messages by
each method. Bergel has shown [2] that counting message
accurately estimates the execution time without the incon-
veniences usually associated to time measurement and exe-
cution sampling. For example, counting messages is signifi-
cantly more stable than directly measuring the time: profiling
the same execution twice results in two very close profiles.

Rizel presents the result with two visualizations: Perfor-
mance Comparison Matrix, to detect which version intro-
duces the performance degradation and for which benchmark,
7http://users.dcc.uchile.cl/~jsandova/rizel/

2

http://users.dcc.uchile.cl/~jsandova/rizel/

20*10^8

20,75*10^8

21,5*10^8

22,25*10^8

23*10^8

2.
68

2.
78

2.
88

2.
98

2.
10

8

2.
11

8

2.
12

8

2.
13

8

2.
14

8

Number of Messages

Software versions

Figure 1: Performance degradation of the #open-
SimpleGraph benchmark of Mondrian

and Performance Evolution blueprint, to identify methods
that change the source code and understand the impact of
those changes in the performance.

Performance Comparison Matrix.
The Performance Comparison Matrix shows the perfor-

mance evolution of a number of benchmarks across software
revisions. Figure 2 shows the evolution of the benchmarks
against the versions of Mondrian.

Each row of the matrix corresponds to a single benchmark
performance evolution. A color is assigned to each cell in
the row; white is associated to the lowest execution time
and black to the highest execution time across all versions.
For example, the third row correspond to the benchmark of
#openSimpleGraph across nine Mondrian versions (Figure 1),
where the version 2.78 has the lowest execution time (white
box) and the version 2.128 has the highest execution time
(black box).

We see that each benchmark indicates a progressive degra-
dation of the performance of Mondrian. Each of these bench-
marks corresponds to a particular feature. Each feature is
getting slower, not at the same pace, e.g., #openSimple-
Graph and #treeLayout are consuming much more time
after Version 2.98. Execution time of #subviews increases
after Version 2.88.

Performance Evolution blueprint.
The Performance evolution blueprint helps compare two

profiles in order to identify the piece of code that introduces
the loss of performance. It is graphically rendered as a poly-
metric view [5] an example is show in Figure 3. A polymetric
view is a lightweight software visualization enriched with
software metrics. We consider that two profiles capture the
performance degradation. When the profiles correspond to
different software versions, and the old version profile is faster
than the new version profile.

Nodes represent methods and edges represent method
invocations (upper methods invoke lower ones). Each node
in the call graph has the following associated metrics:

• Width is proportional to the difference between num-
ber of executions of the newest version and older version
in logarithmic scale. If the difference is negative, the
width is five pixels as default. If the method node is
wider, it means the method is executed more times
than previous version.

• Height is proportional to the difference between the
number of sent messages of the newest version and older
version in logarithmic scale. Only positive values are
meaningfully represented. The larger the height, the
slower the new method version. In case the new version
is faster, the height has a minimum of five pixels. The
motivation behind this is to favor the identification of
slowdown.

• Node Color is assigned with the following criteria:
Green: method sends less messages before (i.e., the
new method version is faster); Light Red : method
sends more messages than before, and it is executed
the same amount of times as before; Red : method
sends more messages than before, and it is executed
more than before;Yellow : method was not implemented
in previous version; White: method number of sent
messages is identical.

• Border Color is assigned with the following criteria:
Red : method definition has been redefined (the method
source code has changed between the two version);
Black : the method source code has not changed.

For example, Figure 3 shows the call graph that compares
profile [#treeLayout ; 1.38] and profile [#treeLayout ; 1.48]
of Mondrian. The complete call graph involves 2 246 nodes.
Scalability is therefore an issue. Figure 3 shows the partial
call graph that highlights differences. In the following section
we illustrate how this graph was reduced.

Of the thirteen changed methods (boxes with red bor-
der) shown in Figure 3 only two impact the performance:
MOAnnouncer >>popupText:delay: changed and the new
version of it sends more messages than in its previous ver-
sion; this change impacts the unchanged MOAnnouncer
>>popupView:delay:, but it sent more messages than before
too. And MOAnnouncer>> popupView:delay:zoomedInBy:
changed and sent more messages and is executed more times
than in the previous version.

The other eleven boxes with a red border are modified
methods that do not impact the performances: their number
of sent messages and their number of executions are identical
than previous version that is why they are small and do not
have any relationship.

4. REDUCING CALL GRAPH
A common problem in visualizing runtime information is

the scalability, since a simple execution can generate a vast
amount of information. For example, a simple execution of a
Mondrian benchmark executes about two thousand different
methods. However, we are only interested in the methods
whose the source code has changed and the impact of this
change in the other methods.

Consider the call graph in Figure 4. The method m4 is not
important for understanding the reason of a slow execution,
because it has the same number of messages and the number
of executions as before. This means that the change does
not impact this method. The method m2 is not important
for two reasons: (1) it has no relation with the method m3
that change in the of source code. (2) m2, like the method
m4, has the same number of messages as before.

Method m1 is not important either, even if it sends more
messages than before. Because, to calculate the number of
sent messages of m1, we consider all classes and methods

3

Figure 2: The Performance Comparison Matrix shows the performance evolution of 4 benchmarks over 9
versions of Mondrian. We can see the performance of some of the benchmarks that have slowly decreased
over the different versions.

MOAnnouncer>>popupText:delay:

MOAnnouncer>>popupView:delay:zoomedInBy:

node
color

∆ number of executions

∆ number
of

messages

source code
 red: change
 black: do not change

green: # messages < than before

light red: # messages > than before
 and
 # executions <= than before

red: # messages > than before
 and
 # executions > than before

white: # messages = than before

yellow: this method did not exist before

Legend for methods

m1

m2
m1 invokes m2

MOAnnouncer>>popupView:delay:

Figure 3: The Performance Evolution Blueprint compares the profiles [#treeLayout ; 2.138] and [#treeLayout
; 2.148]; showing the methods that have had source code changes (boxes with red border) and the impact of
such changes in the performance (red and large boxes).

4

m3

m1

m2

m4

m3

Figure 4: Hiding unnecessary methods to under-
stand why we have a slower execution, in order to
reduce the call graph.

involved in the execution, including calls made by m2 and
m3. And the only reason that m1 sent more messages is
because m3 sent more messages than before.

We define two simple rules to determine if a method is
relevant to understand the reason for a slow execution or
not, to reduce the call graph.

• A method is relevant if it’s source code has changed.

• A method is relevant if it sends different number of
messages than previous version and it was invoked by
an relevant method.

Note that the second rule excludes methods that have
a different number of executions, because if a method has
a different number of executions it should send a different
number of messages.

5. CASE STUDY
We used Rizel to analyze XMLSupport, a library for pack-

ages that parse, manipulate and generate XML documents
in Pharo smalltalk.

We write a few lines of Pharo code to exercise multidimen-
sional profiling with Rizel. We need to review only the five
last software versions to find a performance degradation in
XMLSupport.

Figure 5 shows that all benchmarks have a performance
degradation in version 1.1.7. At this point we know how
to reproduce the performance failure. And we only need to
compare a profile from 1.1.6 and 1.1.7 versions of any bench-
mark. To confirm this, we use MessageTally, the sampling
profiler for Pharo smalltalk to calculate the execution time
of the benchmark #xmlDomParser for the version 1.1.6 and
1.1.7, changing the version manually and getting the same
results as Rizel. There is a variation of 10% in the execution
time between versions.

Figure 6 shows the performance evolution blueprint that
compare profile [#xmlDomParser ; 1.1.6] and profile [
#xmlDomParser ; 1.1.7].

Consider the particular case of the method XMLTokenizer
>>nextName that sends many more messages than before.
Furthermore, this method is responsible for the fact that
XMLNestedStreamReader>>atEnd is executed more times
and is sending more messages than before. The opposite

Figure 5: The Performance Comparison Matrix
shows that all benchmarks in XMLSupport have had
performance degradation since version 1.1.7.

happens with the other methods shown with red border.
These have no impact in their outgoing methods.

The methods with white boxes whose code changed but
have the same number of sent messages and executions as
before. The yellow boxes are methods that do not exist in
the previous version. All of these methods have no impact
on their outgoing methods like XMLTokenizer >>nextName.
The green methods have less sent messages than before.

We found that in the version 1.1.6, XML names are
matched heuristically; the tokenizer would read characters
until it encountered one of a few that it knew could not
rightfully be part of an XML name.

1 XMLTokenizer>>nextName
2 | nextChar |
3 ˆ streamWriter writeWith: [:writeStream |
4 [(nextChar := streamReader peek) isNil
5 or: [NameDelimiters includes: nextChar]]
6 whileFalse: [writeStream nextPut: streamReader

next].
7 writeStream position > 0
8 ifFalse: [self errorExpected: 'name'].
9 writeStream stringContents]

And in the version 1.1.7 the the method XMLTokenizer
>>nextName was changed. The XML name properly matches
the entire range for the first character of a name and for
subsequent characters, as specified by the XML specification.

1 XMLTokenizer>>nextName
2 | nextChar |
3 ˆ streamWriter writeWith: [:writeStream |
4 (NameStartChars includes: (nextChar :=

streamReader next))
5 ifFalse: [self errorExpected: 'name'].
6 writeStream nextPut: nextChar.
7 [streamReader atEnd not

5

XMLTokenizer>>nextName

XMLNestedStreamReader>>atEnd

node
color

∆ number of executions

∆ number
of

messages

source code
 red: change
 black: do not change

green: # messages < than before

light red: # messages > than before
 and
 # executions <= than before

red: # messages > than before
 and
 # executions > than before

white: # messages = than before

yellow: this method did not exist before

Legend for methods

m1

m2
m1 invokes m2

Figure 6: The Performance Evolution Blueprint comparing profiles [#xmlDomParser ; 1.1.6] and [#xml-
DomParser ; 1.1.7].

8 and: [(NameStartChars includes: (nextChar :=
streamReader peek))

9 or: [AdditionalNameChars includes: nextChar]]]
10 whileTrue: [writeStream nextPut: streamReader next].

11 writeStream stringContents]

6. DISCUSSION
We discuss a number of points about Rizel.

Assumptions – There are a number of assumptions behind
Rizel. First, we know in advance that our application is
slower than before. Second, we know that software versions
are stable and the benchmarks that represents features of
software can be executed in most of the versions, without
throwing an exception.

Scalability – In the Section 4 we proposed a way to fil-
ter the call graph. We experiment with small and medium
sized applications. Comparing nearby versions that have few
changes between versions, small and intuitive visualizations.
We have no evidence if our approach does not scale since
we have not a Pharo application that is sufficiently large to
produce an excessive visualization found.

Using Rizel after each commit can be a good way to ad-
dress these points, and could have a number of advantages.
For example, a performance failure could be detected earlier
and the developer only has to compare the new version with
the previous one.

7. RELATED WORK
Comparing program elements between two executions pro-

vides a means for developers to better understand a program’s
performance variation. There are a number of techniques for
dynamically comparing two program executions.

Zhuang et al. [8] propose PerfDiff a framework for analyz-
ing performance across multiple runs of a program, possibly
in a dramatically different execution environment. Their
framework is based on a lightweight instrumentation tech-
nique for building a calling context tree (CCT) of methods at
runtime. Mostafa and Krints [7] present PARCS, an offline
analysis tool that automatically identifies differences between
the execution behavior of two revisions of an application.
PARCS collects program behavior and performance charac-
teristics via profiling and generation of calling context trees.
Both comparing CCTs identifying performance-attribute (e.g
execution time, invocation count) and topological differences
(e.g. added, deleted, modified, and renamed methods). Like-
wise, we compare the number of messages and number of
executions using a Call Graph, also detecting modified and
new methods.

Adamoli et al. present Trevis, an extensible framework for
visualizing, comparing, clustering, and intersecting CCTs [1].
To scale their tree visualization, they use calling context tree
ring charts (CCRC) and just reduce the thickness of a ring
segment, which leads to a reduction of the diameter of the
visualization [6]. In our approach we use a call graph and
provide a simple mechanism to display only the important
methods for the analysis.

Performance Evolution blueprint is based on a behavioral
evolution blueprint presented by Bergel [3]. The main dif-
ference with our blueprint is that we use different metrics,

6

for example, we use the number of sent messages to estimate
the execution time in order to get replicable results. Another
difference is that in behavioral evolution blueprint the width
is determined by the number of executions. In our case, the
width is the difference of the number of executions in order to
know if a method is executed more times than the previous
versions. This helps us to know whether or not a method
spends more time because it is executed more times than
before.

Our approach compares multiple profiles obtained even
under slightly different conditions, counting messages to esti-
mate the execution time and comparing the profiles. It allows
one to determine which versions, and in which benchmark
the performance failure should be executed to reproduce.
And finally, it compares two executions, visualizing metrics
like the number of sent messages and number of executions
to detect and understand the possible cause of a drop in
performance.

8. CONCLUSION AND FUTURE WORK
Multidimensional profiling is an innovative approach to

measure software performance: crystalizing the performance
of each software feature into a set of dedicated benchmarks
makes it possible to precisely monitor the global performance
of a software against different versions.

We present Rizel, a multidimensional profiler that considers
two dimensions: benchmarks and software versions. Rizel
provides visualizations where the performance degradation
clearly and explicitly appears. We use Rizel to analyze two
Pharo applications, to get to the root cause of a slowdown
by identifying the method revision responsible for slower
performance.

We will then concentrate on identifying patterns to describe
the evolution of feature performance across multiple software
versions. As far as we are aware, all of these points have not
been researched extensively by the research community on
software performance.

9. REFERENCES
[1] Andrea Adamoli and Matthias Hauswirth. Trevis: a

context tree visualization & analysis framework and its
use for classifying performance failure reports. In
Proceedings of the 5th international symposium on
Software visualization, SOFTVIS ’10, pages 73–82, New
York, NY, USA, 2010. ACM.

[2] Alexandre Bergel. Counting messages as a proxy for
average execution time in pharo. In Proceedings of the
25th European Conference on Object-Oriented
Programming (ECOOP’11), LNCS, pages 533–557.
Springer-Verlag, July 2011.

[3] Alexandre Bergel, Felipe Bañados, Romain Robbes, and
Walter Binder. Execution profiling blueprints. Software:
Practice and Experience, August 2011.

[4] Alexandre Bergel, Felipe Bañados, Romain Robbes, and
David Röthlisberger. Spy: A flexible code profiling
framework. Journal of Computer Languages, Systems
and Structures, 38(1), December 2011.

[5] Michele Lanza and Stéphane Ducasse. Polymetric
views—a lightweight visual approach to reverse
engineering. Transactions on Software Engineering
(TSE), 29(9):782–795, September 2003.

[6] Philippe Moret, Walter Binder, Alex Villazón, and
Danilo Ansaloni. Exploring large profiles with calling
context ring charts. In Proceedings of the first joint
WOSP/SIPEW international conference on Performance
engineering, WOSP/SIPEW ’10, pages 63–68, New York,
NY, USA, 2010. ACM.

[7] Nagy Mostafa and Chandra Krintz. Tracking
performance across software revisions. In PPPJ ’09:
Proceedings of the 7th International Conference on
Principles and Practice of Programming in Java, pages
162–171, New York, NY, USA, 2009. ACM.

[8] Xiaotong Zhuang, Suhyun Kim, Mauri io Serrano, and
Jong-Deok Choi. Perfdiff: a framework for performance
difference analysis in a virtual machine environment. In
CGO ’08: Proceedings of the 6th annual IEEE/ACM
international symposium on Code generation and
optimization, pages 4–13, New York, NY, USA, 2008.
ACM.

7

Spec
A Framework for the Specification and Reuse of UIs and their Models

Benjamin Van Ryseghem
RMoD, Inria Lille – Nord Europe

benjamin.van_ryseghem@inria.fr

Stéphane Ducasse
RMoD, Inria Lille – Nord Europe

stephane.ducasse@inria.fr

Johan Fabry
PLEIAD Lab – Computer Science

Department (DCC)
University of Chile
jfabry@dcc.uchile.cl

Abstract
Implementing UIs is often a tedious task. To address this,
UI Builders have been proposed to support the description
of widgets, their location, and their logic. A missing aspect
of UI Builders is however the ability to reuse and compose
widget logic. In our experience, this leads to a significant
amount of duplication in UI code. To address this issue, we
built Spec: a UIBuilder for Pharo with a focus on reuse.
With Spec, widget properties are defined declaratively and
attached to specific classes known as composable classes. A
composable class defines its own widget description as well
as the model-widget bridge and widget interaction logic.
This paper presents Spec, showing how it enables seamless
reuse of widgets and how these can be customized. After
presenting Spec and its implementation, we discuss how its
use in Pharo 2.0 has cut in half the amount of lines of code of
six of its tools, mostly through reuse. This shows that Spec
meets its goals of allowing reuse and composition of widget
logic.

1. Introduction
Building user interfaces is a notoriously time-consuming
task. To help developers in their tasks, several approaches
have been proposed previously. The basic principle of de-
coupling the model from its view: MVC [5] was first pro-
posed in Smalltalk-80. This principle was later evolved to
Model View Presenter (MVP) [10] by the Taligent project.
In MVP, the presenter assumes part of the functionality of
the controller and is the sole responsible for coordinating
how the UI manipulates the underlying model. The view is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
IWST ’12 August 28th, 2012, Gent, Belgium.
Copyright c© 2012 ACM [to be supplied]. . . $10.00

now also responsible for handling UI events, which used to
be the controller’s responsibility.

Orthogonally to these concepts, UI builders were devel-
oped as tools to facilitate the design and building of UIs.
The goals of UI builders are often twofold: firstly to sup-
port the description of widgets (location, size, color) and
their logic, and secondly the composition and reuse of ex-
isting component logic. VisualWorks [4, 9] was a pioneer of
this approach. Its builder is based on application classes that
glue widgets and domain objects together, based on a literal
description of widget properties.

Important issues with UI builders stem from the fact that
their working is often based on direct code generation from
the UIBuilder visual pane. As a first consequence the sim-
ple fact of reloading a UI description in the builder for edit-
ing, arguably a common occurrence, is already a compli-
cated process. This complication arises because the UI de-
scription code has to be interpreted differently from a nor-
mal execution, since the normal execution opens the UI
for use. Secondly, there is still the challenge of reusing
widgets and their interaction logic. In our experience with
Pharo, the use of UI builders there has led to a significant
amount of code duplication which can be avoided. For ex-
ample, the Senders/Implementors tool shows a list of meth-
ods and displays their source code. Pharo also provides the
VersionBrowser, which displays methods as a list and their
source code. Furthermore the ProtocolBrowser displays all
the methods of a class and their source code. These three
tools are mostly duplicated code, essentially implementing
three times the same behavior and the same UI, with some
superficial differences. In our opinion this code duplication
arises because the widgets are not generic enough to be
reused while also being able to be adapted to cope with (sub-
tle) variations.

To address the above issues, two underlying design
choices need to be taken: (1) how do we define UI descrip-
tions and (2) how do we compose the logic of UIs. We assert
that there is a need for a declarative way to specify UIs that
also allows for seamless composition and reuse of the UI
declaration and logic. In line with this assertion we have de-

veloped Spec, a UI builder for Pharo, and we present it in
this article.

With Spec, widget properties are defined declaratively
and attached to specific classes known as composable classes.
These composable classes also act as presenters by defining
the bridge to the underlying model, in addition to the widget
interaction logic. Spec reuse includes these presenters, i.e.
Spec allows for the reuse of widget logic and their compo-
sition as well as their connection to the underlying model.
This support for reuse is not only novel but we also con-
sider it the most important contribution of Spec, as its use
removed a high amount of code duplication in Pharo 2.0.

This paper is structured as follows: we next detail the
issues that emerge from the current UI builder approach.
This is followed, in Section 3, by an introduction of Spec that
builds a number of UIs highlighting reuse. Section 4 gives
an overview of the more salient points of its implementation
and, in Section 5, we provide a more formal description of
the different elements used in the example. Spec is currently
used in Pharo, and we talk about this in Section 6. Related
work is discussed in Section 7, and Section 8 concludes.

To avoid any ambiguities in this text due to issues with
terminology, we first define three terms briefly, since these
typically have overloaded meanings.

UI Element: an interactive graphical element displayed as
part of the Graphical User Interface.

UI Model: an object that contains the state and behavior of
one or several UI elements.

Widget: the union of a UI Element and its UI model.

2. UI Builder Challenges
A UI builder is a tool used to generate user interfaces. Such
builders help the developers by providing a framework for
UI construction on top of the UI libraries provided by the
language. They may also provide a UI for graphically build-
ing a UI. Put differently, a UI builder is not necessarily a tool
with a UI although it may provide a UI to interactively place
widgets on a canvas.

To be able to help the developers in creating UIs, UI
builders usually provide support for:

• the description of widgets (color, size, visual effect, spe-
cific behavior,...)

• the description of their placement
• the definition of the widget behavior, e.g., how it reacts

to certain events.

However in our experience the above is not enough. This
is because developing UIs is not only about widget genera-
tion, but also about the reuse of the logic between widgets.
As Pharo maintainers we have seen that most of the UIs of
the tools present in Pharo were written from scratch. This
even if a lot of tools are essentially manipulating the same
objects and rendering them more or less the same way. This

lack of reuse makes the system harder to maintain and slows
down enhancements to the UIs of these tools. To address
these problems, UI builders should also support the reuse of
widget logic and composition. We have seen that the logic
of one widget is often based on the wiring of the logic of
adjacent or nested widgets. Hence being able to compose
and reuse existing behavior is central to be able to build new
widgets.

The goal of reusability however brings a new problem.
Indeed, if the widgets must be reusable it means that on
one hand the widgets must be generic enough to be used
in different scenarios and on the other hand they should be
parametrizable enough to fit these new scenarios.

To enable the reuse in the process of building and main-
taining the UIs of Pharo, we have built Spec. Spec is a new
UI builder whose goal is to support UI interface building and
seamless reuse of widgets. Spec is based on two core ideas:
first the declarative specification of the visual behavior of
widgets and their logic, and second inherent composability
of widgets, based on explicit variation points.

Figure 1 shows the principles of Spec: a UI is built from
composed widgets that are glued together using ports and
whose visual characteristics are defined using a declarative
specification that are reused over composition.

(CompositeLayout
 (Layout
 (columns 2))
 (Size 600@400)
 (List (singleSelection))
 (ReuseSpecification
 (MethodsBrowser default)))

(CompositeLayout
 (Layout
 (rows 2))
 (Size 600@400)
 (List singleSelection)

Port

Event flow

Widget
specification

Figure 1. Spec principles

3. Spec by Example
In this section we introduce Spec and its key points by
showing an example of the typical use of Spec. Note that
we only focus here on the logic of the building process, the
discussion of a graphical tool to compose widgets based on
Spec is out of the scope of the paper.

The example we develop in this section starts with show-
ing how basic widgets are composed to build a simple UI and
continues with illustrating how these composed widgets can
be reused and adapted to build more substantial UIs. In total
we build three UIs: a Method List that shows a collection of

methods, in Section 3.1, a Method Browser that reuses the
list and adds a pane showing the source code of the method,
in Section 3.2, and lastly a Class Browser, reusing and adapt-
ing the Method Browser, in Section 3.3.

3.1 Methods List
In this section, we present how to build a method list in five
steps:

1. the creation of the class;

2. the implementation of the initialize process;

3. the implementation of the getters;

4. the specification of a layout;

5. the window title.

We will now present these five steps in more detail.

Class Creation. First we need to create a class named
MethodsList.

ComposableModel subclass: #MethodsList
instanceVariableNames: ’list’
classVariableNames: ’’
poolDictionaries: ’’
category: ’IWST12-Spec’

Here we can see two things:

• the superclass is ComposableModel: this class is the root
of the Spec UI model hierarchy.

• the instance variable list: an instance variable needs to be
defined for holding the UI model that will represent our
methods list.

Initialization. Second, the initialization. The initialization
of a UI is done in three different methods:

1. initializeWidgets: to set the instance variables which hold
sub models and their associated widgets and to configure
these sub UI models;

2. initializePresenter: to wire sub UI models together;

3. initialize: to initialize remaining state of the UI.

In this example, only the widget instantiation has to be
done in the initializeModels method of the MethodsList class,
such that it sets the list instance variable to contain a List-
ComposableModel with its associated list UI element.

MethodsList>>initializeWidgets
self instantiateModels: { #list -> #ListComposableModel }.

The code above shows how the model for the list is in-
stantiated, in a declarative fashion. The method instantiate-
Models: allows one to provide a collection of associations
where the key is the instance variable name and the value
is a UI model class. Hence the code above creates a new
instance of ListComposableModel (and its associated list UI
element) and stores it in the instance variable list.

Accessors. Third the accessor to the instance variable has
to be implemented, such that the Spec infrastructure can
obtain this list instance when required.

MethodsList>>getList
^ list

Layout Specification. Fourth we specify a layout: the ob-
ject that is used to describe and represent the layout of the
UI elements. This is done by implementing a method that
returns it on the class side of the UI model. For our ex-
ample, we implement MethodsList class»myFirstSpec on the
class side of MethodsList as follows:

MethodsList class>>myFirstSpec
<spec: #default>

^ SpecLayout composed
add: #getList;
yourself.

Since multiple layouts per UI model can be present, there is
a mechanism to set the layout to use by default. There are
two ways to define the default specification to be used:

1. pragma: all specifications are tagged with a pragma
<spec:> allowing the spec infrastructure to correctly
retrieve the corresponding method. In addition, the key-
word default can be used in the pragma to specify that this
layout has to be used by default.

2. method name: if there is no <spec: #default> tag, the
method named defaultSpec is used.

The code above uses a pragma and simply returns the
layout object for this UI. Sending the message composed
to the SpecLayout class yields a composed layout, which
allows one to compose the different models that are part
of Spec. To this composed layout, the add: message is sent,
adding the argument to the layout. In this case we provide
the symbol getList, the selector of the getter of the model we
want to include into the methods list. Note that, in general,
this argument may be a SpecLayout as well, allowing for the
reuse of high level composed models, as we shall show later.

Executing the following snippet displays the generated
widget embedded in a window using the above, default,
specification.

MethodsList new openWithSpec.

To populate the list, the message items: has to be sent
to the instance variable list with a collection of items to
be shown as argument. In our example this would be a
collection of methods, e.g., the methods of the class Object
as shown below:

(MethodsList new
openWithSpec;
yourself)
getList items: Object methods

By default, the method printString is sent to each item to
produce the string used to display the item in the list. Often
the default behavior displays to much information, or is not
accurate enough. To address this, a block can be used to
specify how to generate the display string. This is achieved
by sending the message displayBlock: to the list widget. The
following code provides an example of how to specify a
display block in the initializeWidgets method such that the
displayed string follows the form class name»selector.

MethodsList>>initializeWidgets
self instantiateModels: { #list -> #ListComposableModel }.
list displayBlock: [:method || name |

name := method methodClass name.
name, ’>>#’, method selector].

When the window is opened, each item is displayed as
shown in Figure 2.

Figure 2. The methods list with a specific display

Window Title. Fifth and last, we show how to change the
window title according to the current list selection. By con-
vention, the window title is determined by the return value
of the method named title.

MethodsList>>title
^ list selectedItem

ifNil: [’Methods list’]
ifNotNil: [:method | method selector].

The code above returns the selector of the selected method,
or the string ’Methods List’ if no item is selected.

In order to update the title each time the selected item
of the list has changed, we must relate the selection action
in the methods list to the updating of the window title.
This hence needs to be implemented in the initializePresenter
method, and is as follows:

MethodsList>>initializePresenter
list whenSelectedItemChanged: [self updateTitle].

The code of the method states that the title of the window
should be updated when the selected item in the list changes.
In Figure 3 we show the result of these changes: a window
where the title is the selector of the selected item.

Figure 3. The methods list with a dynamic title

Public API. This completes the construction of the UI
model. However if we want this UI model to be reused and
embedded we must provide a public API for it. In our exam-
ple, we want to have the API of MethodsList polymorphic
to the core protocol of the embedded list. Hence for each
method of the API we forward the message to the list in-
stance variable, as shown below:

MethodsList>>items: aCollection
list items: aCollection

MethodsList>>displayBlock: aBlock
list displayBlock: aBlock

MethodsList>>whenSelectedItemChanged: aBlock
list whenSelectedItemChanged: aBlock

MethodsList>>resetSelection
list resetSelection

MethodsList>>selectedItem
list selectedItem

Those methods will be used in the following section when
defining its public API, which is used in our last example (in
Section 3.3).

3.2 Methods Browser
To show how Spec allows for the reuse of existing models,
the next step of our example builds a message browser which
reuses the method list we just constructed. We will follow the
same five steps as previously:

1. the creation of the class;

2. the implementation of the initialize method;

3. the implementation of the getters;

4. the specification of a layout;

5. the window title.

These steps will now be presented in more details.

Class Creation. First we define a class, this time named
MethodsBrowser.

ComposableModel subclass: #MethodsBrowser
instanceVariableNames: ’methodsList text’
classVariableNames: ’’
poolDictionaries: ’’
category: ’IWST12-Spec’

The class has two instance variables:

• methodsList: the list for displaying the methods. It will
be an instance of the MethodsList class we defined in
Section 3.1, i.e., we reuse the methods list we defined
previously.

• text: the text zone used to display the source code. It will
be an instance of TextModel.

Initialization. Second, in the initialize process, we have to
instantiate the value for each instance variable.

MethodsBrowser>>initializeWidgets
self instantiateModels:

{ #methodsList -> #MethodsList.
#text -> #TextModel }

The above code shows that a model that is being instanti-
ated can be a standard class of Spec as well as any UI model
class that has been defined using Spec. This is the key feature
that allows for seamless reuse of models in Spec.

Next, we specify the overall behavior of the UI, linking
the two widgets together. When an item from the list is
selected, the text area should display its source code.

MethodsBrowser>>initializePresenter
methodsList whenSelectedItemChanged: [:method |

text text: (method
ifNil: [’’]
ifNotNil: [method sourceCode])]

The initializePresenter method above specifies the overall
behavior of the UI. It links the list to the text field by stating
that when a item in the list is selected the text of the text zone
is set to:

• an empty string if no item is selected
• the source code of the selected item otherwise.

Accessors. Third we implement the getters needed by the
layout.

MethodsBrowser>>methodsList
^ methodsList

MethodsBrowser>>text
^ text

Layout Specification. Fourth we specify a presentation, by
defining a method at the class side.

MethodsBrowser class>>spec
<spec: #default>
^ SpecLayout composed

add: #methodsList origin: 0@0 corner: 1@0.5;
add: #text origin: 0@0.5 corner: 1@1;
yourself

In addition of showing that the reuse of a Spec model is
transparent with regard to the layout, the above method also
shows that a position can be specified for each sub-model.
Here, methodsList will be displayed in the top-most half
of the generated widget while text will be displayed in the
bottom-most half of the generated widget.

Since most of the UI elements can be expressed in terms
of rows and columns, a simpler way to describe UI ele-
ments is also available. The following code produces the ex-
act same layout as previously, in a more concise and more
readable way.

MethodsBrowser class>>spec
<spec: #default>
^ SpecLayout composed

newColumn: [:c |
c

add: #methodsList;
add: #text];

yourself

The following snippet opens the widget and populates the
list with the methods of Object:

(MethodsBrowser new
openWithSpec;
yourself)
methodsList items: Object methods

Figure 4 shows the result of executing the above code.

Window Title. When an item is selected the title is not
updated as it used to be in MethodsList. This is addressed
by implementing a title method, and slightly modifying the
initializePresenter method as follows:

MethodsBrowser>>title
^ methodsList title

MethodsBrowser>>initializePresenter
methodsList whenSelectedItemChanged: [:method |

self updateTitle.
text text: (method

ifNil: [’’]
ifNotNil: [method sourceCode])]

This gives us a dynamic title, as shown in Figure 5.

Figure 4. The methods browser

Figure 5. The methods browser with the dynamic title back

Public API. Recall that to have a reusable model, we need
to define its public API. We will reuse this model in our last
example, therefore below we show the methods of the public
API for our MethodsBrowser. As these are straightforward
we do not discuss them in more detail.

MethodsBrowser>>items: aCollection
methodsList items: aCollection

MethodsBrowser>>displayBlock: aBlock
methodsList displayBlock: aBlock

MethodsBrowser>>resetSelection
methodsList resetSelection

MethodsBrowser>>selectedItem
methodsList selectedItem

Note that the methods we invoke here are part of the
public API we defined at the end of section 3.1.

Conclusion. This concludes the construction of our meth-
ods browser. In the construction of this browser we have
shown how we can straightforwardly reuse existing models
and how a selection in one widget can be used to update
the display in another widget, effectively linking widgets to-
gether.

3.3 Classes Browser
The last example we provide shows how to parametrize
the reuse of models, and how a UI communicates with the
underlying model. We do this by illustrating how to build a
simple class browser that reuses the MethodsBrowser. Being
able to deeply parametrize models allows for extended reuse
possibilities of the models since they can be more generic.

The five construction steps essentially are still the same,
therefore we first only show a overview of the browser con-
struction process. We will instead focus on how the reuse of
user interface specifications can be parametrized. Second we
modify the behavior of the reused UI model, and third mod-
ify the layout of the reused models. Fourth and last we show
how to connect the browser to the class structure, i.e. to its
model.

Basic Reuse. The class for the browser is called Classes-
Browser and it has two instance variables: classes for the list
of classes, and methodsBrowser for the list of methods and
the text zone, i.e. the methods browser we constructed above.
The layout specification below shows how the two are laid
out.

ClassesBrowser class>>defaultSpec
<spec>
^ SpecLayout composed

newRow: [:r |
r

add: #classes;
add: #methodsBrowser];

yourself.

For brevity, we omit the methods that set the title, the
accessors and the initialization methods that instantiate the
widgets and link them together. The below snippet pops up
the window shown in Figure 6 and populates it with all the
classes of the system.

(ClassesBrowser new
openWithSpec;
yourself)
classes items: Smalltalk allClasses

UI Parametrization. We now present how to parametrize
the behavior of reused UI models. When reusing a UI model,
the reusing UI model can override all parametrization pa-
rameters, e.g., the displayBlock, of the reused UI model. This
is done by simply providing a new parameter for the reused
UI model. It overrides any parametrization made inside of
the reused UI model.

Figure 6. Classes browser

In our example, when a class is selected in the classes
browser, its methods are displayed. But they are displayed
following the form class name»selector, where the class
name is redundant as it is already given by the list selec-
tion. Also, the title shown is not correct: it displays the de-
fault title, ‘Untitled window’, even when items in the method
list are selected. To perform these two parametrizations, we
modify the initialization methods of ClassesBrowser to over-
ride the behavior specified in MethodsBrowser. The modifi-
cations consist in adding one line to the method, as shown
below.

ClassesBrowser>>initializeWidgets

"... omitting code for behavior shown previously ..."
methodsBrowser displayBlock: [:method | method selector].

ClassesBrowser>>initializePresenter

"... omitting code for behavior shown previously ..."
methodsBrowser whenSelectedItemChanged: [self updateTi-

tle].

Recall that these methods we are calling are part of the API
we defined at the end of Section 3.2.

The default behavior of Spec is to ignore the window
title logic of reused models, hence the presence of the de-
fault title. The last line above configures the reused method
browser to update the title on a list (de)selection, using the ti-
tle method defined in the classes browser. We therefore also
have to implement ClassesBrowser»title. The following im-
plementation inspects the selection of method browser to
return the appropriate value. It returns ‘Classes Browser’
if nothing is selected, or the selected class name if only a
class is selected, or class name »selector if both a class and a
method are selected.

ClassesBrowser>>title

^ classes selectedItem
ifNil: [’Classes Browser’]
ifNotNil: [:class | methodsBrowser selectedItem

ifNil: [class name]
ifNotNil: [:method | class name, ’>> #’, method se-

lector]].

As shown in Figure 7, the methods are now displayed
using only their selector and the title follows the form class
name »selector, since a method is selected.

Figure 7. Classes browser with methods displayed using
their selector

Layout Specification. The current layout of the Classes-
Browser view is somewhat unusual. The classic layout for
such a tool is to have the two lists in a row in the top-most
half and the text zone in the bottom-most half. To do this, a
new layout is provided by implementing a new spec method,
and set as the default spec:

ClassesBrowser class >>moreClassicalSpec
<spec: #default>

^ SpecLayout composed
newColumn: [:c |

c
newRow: [:r |

r
add: #classes;
add: #(methodsBrowser methodsList)];

add: #(methodsBrowser text)];
yourself

In the above code, instead of using the methodsBrowser
layout we define precisely how we want the sub-widgets to
be rendered.

The result is the widget shown in Figure 8: a classes
browser with the two lists in the upper part and the text zone
in the lower part.

List (basic widget)

Text (basic widget)

MethodsList

MethodsBrowser

ClassesBrowser

List (basic widget)

Figure 9. The three levels of layers composing the ClassesBrowser UI

Figure 8. Classes browser with a classic layout

Figure 9 exposes a view of the different layers comprising
the ClassesBrowser UI.

Connecting the UI to the Underlying Model. As is, the UI
we built is disconnected from the model it is representing:
after we pass it an initial list of classes we are not able
to modify it, e.g., by editing methods, and it is not aware
of any modifications made to its model by other browsers.
We now show how to connect the UI to the underlying
model, by specifying menu actions to enable the former, and
subscribing to announcements to implement the latter. As
this behavior belongs in the methods browser, we specify it
there, and it will automatically also be present in the classes
browser.

The text widget present in the methods browser provides
for a standard code editing menu, where we can specify the
action to take whenever the code is saved or accepted. This

is performed by providing an accept block, as illustrated
below:

MethodsBrowser>>initializePresenter
"... omitting code for behavior shown previously ..."
self text acceptBlock: [:text :notifier | ... compile the text ...].

The code obtains the text field from the methods browser
and specified that the code, contained in the text parameter
should be compiled. (We do not include the compilation
code as it is not pertinent to this discussion.)

Lastly, to have the browser to react to changes in the un-
derlying class structure, we use the system announcements
mechanism to refresh its contents when needed. We rely on
the fact that when such changes occur, the system raises an
announcement, and subscribe to these announcements, for
example using the code below the browser becomes aware
of methods being added, adding them to the list of methods
shown.

MethodsBrowser>>initializePresenter
"... omitting code for behavior shown previously ..."
SystemAnnouncer announcer weak

on: MethodAdded send: #methodAdded: to: self.

MethodsBrowser>>methodAdded: anAnnouncement
| sel text it |
text := self text pendingText.
sel := self methodsList selectedItem.
it := anAnnouncement item.
self items: (self methodsList: listItems add: it; yourself).
self methodsList setSelectedItem: sel.
self textModel pendingText: text.

The methodAdded: method first keeps a copy of the text
being shown in the text field, as it may contain edits that
have not been saved. It then obtains the selected item in the

methods list, and adds the new method to the list. As the
change in list items may change the selection in the list, it
then sets the selected item to the previously stored value.
Lastly, it sets the text being shown in the text field to the
value stored in the first step.

Conclusion. This concludes the construction of our last
example: a methods browser. In this section we have seen
how it is possible to parametrize both the behavior and
layout of UI models that are being reused. This allows for
more generic models to be reused and customized further
when needed, increasing their reuse possibility. We have also
shown how to connect the user interface to an underlying
model, yielding a fully functional UI.

4. The Implementation of Spec
The implementation of Spec is based on two pillars: the
presence of a SpecLayout and the use of value holders. The
SpecLayout is used to describe how the graphical elements
are positioned inside the generated UI, by using either basic
widgets or by reusing composed widgets. The value holders
are used to store the variation points of the model and to react
precisely to one of these changes. This way the UI updates
are less frequent and more precise, and hence faster.

In this section we will discuss these two points in more
detail, firstly talking about SpecLayout and secondly dis-
cussing the value holders.

4.1 SpecLayout and its Interpreter
The SpecLayout describes and represents the layout of the
UI elements in Spec. More details about how to manipulate
SpecLayout objets will be provided in Section 3.1. A Spec
interpreter is used to build a UI widget from this layout.
To have a static structure which can be easily used by the
interpreter, the SpecLayout object is converted to an array
before it is passed to the interpreter.

We have only seen here the composed layout, consisting
of an aggregation of different Spec widgets. However there
are additional kinds of layouts provided: one kind for each
type of widget. This allows one to attach specific behavior
to each spec type, e.g., the class of the UI element specific to
this kind of layout. The array representation of a spec has as
first element an identifier of its type.

By using a spec type, default behavior can be defined
and shared among all the widgets. It means that all the
widgets produced by a defined spec type can be changed by
modifying the spec type itself. Types also allow the creation
of a data structure representing the tree of sub-widgets and
to use a visitor pattern to build tools on top of specs, e.g.,
like a UI builder.

The remainder of the array representation of a spec can
be seen as a stack: each time a selector is read, as many
arguments as needed by the selector are popped and ana-
lyzed. The spec interpreter iterates over a SpecLayout array

and builds each part of the widget by recursively interpreting
each element.

A SpecLayout allows one to specify where to position
a widget’s sub-widgets, and also allows one to position the
sub-widgets of sub-widgets. This provides a way to reuse
generic widgets while being able to customize them suffi-
ciently to make them conform to a new usage scenario.

4.2 Value Holder
A value holder is a simple object which wraps a value and
raises an announcement when this value is changed. Thanks
to this mechanism we can use value holders as wrappers
around model values and make the UI react at specific
changes to the model. As such, we provide an event based
structure that allows one to react to only to value change of
interest.

The above means that, for example, the selection index of
a list is stored in a value holder. When a new item is selected,
the index changes, and the corresponding value holder raises
an announcement. The basic widgets of Spec provide as part
of their API event registration methods, which allow a user-
defined object to react to this change if needed.

Moreover, having a value holder for each model data
allows one to update the UI only for the data which has
changed, without having to examine this change to estab-
lish its relevance as the DependencyTransformer in Vi-
sualWorks. This is in contrast to classical MVC [5] and
MVP [10]. Here, when the observable object has changed,
it sends an update: message to all observer objects with the
changed value as argument. Then in the update: method, the
observer has to examine the argument to react in accordance
with the change. In Spec, the observer registers to each ob-
servables’ value holder it is interested in, and for each value
holder specifies a method to invoke when the value holder is
changed. Hence the examination of the updated value is no
longer necessary and the dispatch to the appropriate update
logic is done naturally without any switch case.

In addition, since the whole event flow is controlled and
propagated through value holders, Spec does ensure that
there are no event loops due to circular event sends.

Note that since every object can register to a value holder
changes, this means that a model can register itself to any of
it sub-widgets value holders, or any sub-widgets sub-widgets
value holder. Thanks to this, a model can add new behavior
for its sub-widgets. This provides a way to reuse generic
widgets while being able to parametrize them enough to
make them correspond to a new scenario.

5. The spec of Spec
In this section we summarize the specification of the public
APIs of the relevant building blocks for a user of Spec: the
basic widgets and SpecLayout.

Selector Result
displayBlock: set the block used to produce the string for displaying items
items: set the contents of the list
resetSelection unselect selected items
selectedItem return the last selected item
whenSelectedItemChanged: set the block performed when the selected item changed

Table 1. ListComposableModel public API

Selector Result
accept force the text zone to accept the pending text
acceptBlock: set the block to perform when the pending text is accepted (saved)
text: set the text of the widget to the value provided as argument
whenTextIsAccepted: set a block to perform when the text is accepted
whenTextChanged: set a block to perform when the text has changed

Table 2. TextModel public API

5.1 Models public API
To build a UI the user combines basic UI models and existing
Spec models as required. For Spec there is however no
distinction between these two, as basic UI models are reified
as Spec models. Put differently, these basic UI models are
Spec models that simply wrap the widgets that are provided
by the GUI framework.

Due to lack of space, we do not provide a complete spec-
ification of the public API of all models provided by Spec
(11 models, in total 228 methods). The complete API for all
models is provided as part of a tech report about Spec [12].
We restrict ourselves here to the public API methods of
the basic models used in this paper: ListComposableModel,
shown in Table 1, and TextModel, shown in Table 2.

5.2 SpecLayout
A SpecLayout is an object used to describe the layout of the
UI elements of a widget.

The SpecLayout class provides a small API (only 10 meth-
ods), shown in table 3. The add methods and the newRow
and newColumn methods cover the bulk of the use cases:
adding elements to the layout. Indeed, as we have seen in
Section 3 they are the only methods used when the layout is
a composed layout.

The remaining two send methods are required to be able
to interact with basic widgets. Since the Spec reification
of basic UI models provides a bridge between Spec and a
graphical library, the class of the UI element nor its API can
be predicted. Hence we need to be able to send any message
to those classes through the SpecLayout. To allow for this,
the SpecLayout provides for the send methods, which enable
performing any selector with the corresponding arguments.
Thanks to these methods we ensure that a bridge can be built
between Spec and any graphical library.

As an example use of the send:withArguments: method,
the following code is the implementation of TextModel
class»defaultSpec, which defines the binding between Spec
and the Morphic UI framework for the TextModel widget.
(Due to the low-level nature of this code we do not explain
its functionality in detail.)

defaultSpec
<spec>
^ SpecLayout text

send: #on:text:accept:readSelection:menu:
withArguments: #(model getText accept:notifying: read-

Selection codePaneMenu:shifted:);
send: #classOrMetaClass: withArguments: #(model behavior);

send: #enabled: withArguments: #(model enabled);
send: #eventHandler: withArguments: #(Even-

tHandler on:send:to: keyStroke keyStroke:fromMorph: model);
send: #vSpaceFill;
send: #hSpaceFill;
yourself

6. Spec in Pharo
Spec has been introduced in Pharo 2.0 with the goal to be
used for rewriting all the tools. For now, six different widgets
have been implemented:

1. MessageBrowser: a tool made for browsing messages
(similar to the MethodsBrowser made in section 3.2);

2. Senders/Implementers: a tool to browse the senders or the
implementors of a given selector;

3. ProtocolBrowser: a tool to browse all the methods that a
given class can understand;

4. VersionBrowser: a tool used to browse the different ver-
sions of a provided method;

Selector Result
add: add the object provided as argument. This object can be the selec-

tor of a getter to an instance variable storing a ComposableModel
or another layout.

add:origin:corner: add the object provided as argument and specify its position as
fractions.

add:origin:corner:offsetOrigin:offsetCorner: add the object provided as argument and specify its position as
fractions and offsets.

add:withSpec: add the model provided as first argument using the selector pro-
vided as second argument for retrieving the spec. The first argu-
ment can be the selector of a method that returns a Composable-
Model or a collection of such selectors.

add:withSpec:origin:corner: add the model provided as first argument using the selector pro-
vided as second argument for retrieving the spec. and specify its
position as fractions.

add:withSpec:origin:corner:offsetOrigin:offsetCorner: add the model provided as first argument using the selector pro-
vided as second argument for retrieving the spec. and specify its
position as fractions and offsets.

newColumn: add to the current layout a column created using the block pro-
vided as argument

newRow: add to the current layout a row created using the block provided
as argument

send: send the message with selector specified as first argument to the
underlying widget

send:withArguments: send the message with selector specified as first argument and
arguments specified as second argument to the underlying widget.

Table 3. SpecLayout public API

Tool Pharo 1.4 Pharo 2.0 Percentage of reduction

MessageBrowser MessageSet MessageBrowser 33%488 329

Senders/Implementers FlatMessageListBrowser MessageBrowser 99%463 + 4

ProtocolBrowser ProtocolBrowser MessageBrowser 47%49 + 20

VersionBrowser VersionsBrowser NewVersionBrowser 82%312 57

ChangeSorter

ChangeSorter (970) ChangeSorterApplication (410)

41%+ +
DualChangeSorter (39) DualChangeSorterApplication (186)

1009 596
Total 2321 1006 57%

Table 4. Comparison between tools in Pharo 1.4 and Pharo 2.0

5. ChangeSorter: a tool made for managing the changes of
the system;

6. DualChangeSorter: a second tool for managing changes,
with focus on the transfer from one change sorter to
another.

As a testament to the possibilities of reuse the Message-
Browser is used for the Senders/Implementors, and the Pro-
tocolBrowser. Moreover the DualChangeSorter is made of
two ChangeSorter linked together and specialized to add
functionality involving the interactions between the two
change sorters.

Table 4 shows the difference in the number of lines of
code (LOC) used to implement those tools before the use of
Spec (Pharo 1.4) and after (Pharo 2.0). The purpose of this
table is to emphasize the reduction of code duplication. The
table follows the form:

• in the first column the name of the tool which is being
compared;

• in the second column the name of the class used to imple-
ment this tool in Pharo 1.4 and the number of LOC used
to implement it;

• in the third column the name of the class used to imple-
ment this tool in Pharo 2.0 and the number of LOC used
to implement it;

• the ratio in LOC reduction.

We will now explain the difference for each line in more
details.

MessageBrowser. MessageSet is used in Pharo 1.4 to
browse a collection of method references. MessageBrowser
from Pharo 2.0 covers all the functionalities of MessageSet
and even add new features like a topological sort or a up-
date mechanism and the support for methods in addition of
method references. Yet MessageBrowser is still smaller be-
cause thanks to widget reuse, some data of the UI itself is
managed by widgets that are being reused, e.g., index selec-
tion management.

Senders/Implementers. FlatMessageListBrowser is used
in Pharo 1.4 to browse the senders or implementers of a
selector. In Pharo 2.0 we have decided to reuse Message-
Browser since senders and implementers are also a collec-
tion of method references. MessageBrowser already covers
all the FlatMessageListBrowser functionalities, and more-
over adds the topological sort and the update mechanism as
well. Only a trivial modification needed to be made to Mes-
sageBrowser. Hence the Senders/Implementers browser is
actually a MessageBrowser, where we implemented the re-
quired API to open the corresponding list of messages. This
explains why the number of line for this tool in Pharo 2.0 is
so small.

ProtocolBrowser. ProtocolBrowser is used in Pharo 1.4 to
browse all the methods that the provided class can under-
stand. Again, MessageBrowser covers all the features of Pro-
tocolBrowser and still adds the topological sort and the up-
date mechanism. As above, MessageBrowser is reused, by
adding the logic specific to the ProtocolBrowser. These 20
LOC are the algorithm to collect the relevant methods.

VersionBrowser. NewVersionBrowser provides a new tool
in Pharo 2.0 that covers all the functionality of the previ-
ous tool. Implemented as its own class, it reuses Message-
Browser for the UI and beyond that only contains version
retrieval methods and UI specialization methods. This leads
to a low number of LOC.

ChangeSorter. The two tools have been grouped since the
implementation in Pharo 1.4 moved the logic of the Du-
alChangeSorter into the ChangeSorter class. ChangeSorter
instances are aware of belonging to a DualChangeSorter or
not and act accordingly.

In Pharo 2.0 the ChangeSorterApplication class is smaller
than the ChangeSorter class because it only knows about
itself. It doesn’t contain any information about being part
of a DualChangeSorterApplication or not. This is because
the DualChangeSorterApplication class knows how to reuse
ChangeSorterApplication and what logic to add, and as a
result is bigger than the DualChangeSorter class.

But when summing up both applications, the Spec im-
plementation is smaller even while covering all the origi-
nal functionalities. This is for two reasons: firstly because
checking ubiquitously for being part of a dual change sorter
is expensive in term of lines of code. Secondly for the same
reason than for the use of MessageBrowser, relocating UI el-
ement management to a sub-widget allows the reusing code
to be concise.

Conclusion. In this section we have seen how the reuse
provided by Spec is used in Pharo and how this reuse can
reduced the number of lines of code (and the code duplica-
tion) by almost half. This confirms our assertion that there
is a need for a declarative way to specify UIs that also al-
lows for seamless composition and reuse of the UI declara-
tion and logic. Moreover this shows that Spec is an effective
tool to address this need. As a consequence of this observa-
tion, rewriting all the tools using Spec is a goal for the next
version of Pharo.

7. Related Work
Spec is inspired by the VisualWorks [8][11] UI framework,
and like it is based on static specifications i.e., the SpecLay-
out instances at class side. In VisualWorks all the specifi-
cations are performed in terms of low level widgets which
means that no composed widget can be reused. In contrast,
Spec allows the reuse of high level widgets and as a result,
the specifications are simpler. Thanks to this fact the UIs can
be composed of smaller widgets that make the system more
modular and easier to maintain.

Spec also follows the lead of Glamour [1] in favoring an
event-based flow through the widgets. However, Spec can
be used for every kinds of UI while Glamour is restricted to
browsers. Spec widgets also explicitly declare a public API
instead of heavily relying on blocks, as Glamour does.

For the UI generation part, Spec is different from tools
like NetBeans [7] or WindowBuilder [3] in the sense that
they both only provide graphical tools for generating user
interfaces while Spec is based on a text based description of
the UI. Furthermore, where NetBeans and WindowBuilder
generate java code, Spec uses an object and relies on this
object for describing the user interface. Instead NetBeans or
WindowBuilder use an XML file or parse Java source code.

The disadvantage of this is that if the XML file is edited by
hand or if some parts of the generated Java code is refactored
these tools are not always able to handle these changes.

In addition of the UI code Spec also provides a framework
for the model behavior when NetBeans or WindowBuilder
only provide UI elements generation source code. Indeed,
Spec can be used to define (and reuse) the logic links be-
tween widgets where NetBeans or WindowBuilder can only
be used to generate UI elements.

XUL [6] is an XML based language used for describing
and reuse widgets through overlays. While a group of wid-
gets can be reused, unlike Spec XUL doesn’t allow for lo-
cally changing the inner logical links. SWUL [2] is a DSL
based on the strategy transformation framework that pro-
poses a more declarative syntax for expressing widgets de-
scription in Swing. SWUL behaves like XUL in the sense
of not being able to locally redefine the behavior of a sub-
widget.

8. Conclusion
In this paper we presented Spec, a UI builder whose goal
is to support UI interface building and seamless reuse of
widgets. Spec is based on two core ideas: first the declarative
specification of the visual behavior of widgets and their
logic, and second inherent composability of widgets, based
on explicit variation points.

In our experience maintaining Pharo, we have seen that
there is a nontrivial amount of code duplication in UI code
which can be avoided and that the logic of one widget is
often based on the wiring of the logic of adjacent or nested
widgets. Hence being able to compose and reuse existing
behavior is central to be able to build new widgets.

We have shown how Spec can be used, by providing three
example UIs that highlight the reuse and parametrization
features of Spec. This was followed by a more formal spec-
ification of the APIs used in the example and an overview
of the most relevant points of the implementation. We then
showed how Spec enabled a 57% of code reduction in the re-
implementation of six UIs of Pharo, thanks to a high amount
of reuse of widgets.

The latter shows that Spec provides ample support for
reuse of widgets and is an appropriate tool to address the
problem of code duplication in UI code. As a consequence it
will be the standard UI builder for Pharo 2.0 and all UI tools
in Pharo will be rewritten using Spec.

Availability
Spec is part as standard of Pharo 2.0 and is also avail-
able in Pharo 1.4, its Metacello configuration is called Con-
figurationOfSpec and is available from SqueakSource3 (http:

//ss3.gemstone.com/).

Acknowledgments
This work was performed in the context of the INRIA Asso-
ciated Team PLOMO (2012).

References
[1] P. Bunge. Scripting Browsers with Glamour. Master’s the-

sis, Fakultät der Universität Bern, April 2009. Available
at: http://scg.unibe.ch/archive/masters/Bung09a.pdf.

[2] R. de Groot. Implementation of the Java-Swul lan-
guage: a domain-specific language for the SWING API
embedded in Java. Master’s thesis, Faculty of Sci-
ence, Utrecht University, January 2005. Available at:
http://strategoxt.org/pub/Stratego/Java-Swul/swul-article.pdf.

[3] Eclipse Technology. Windowbuilder user guide.
Technical report, Google, 2011. Available at:
http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.
wb.doc.user%2Fhtml%2Findex.html.

[4] T. Howard. The Smalltalk Developer’s Guide to VisualWorks.
SIGS Books, 1995. ISBN 1-884842-11-9.

[5] G. E. Krasner and S. T. Pope. A cookbook for using the
model-view-controller user interface paradigm in Smalltalk-
80. Journal of Object-Oriented Programming, 1(3):26–49,
Aug. 1988.

[6] Mozilla Developer Network. XUL - MDN, 2012. Available
at https://developer.mozilla.org/en/XUL.

[7] NetBeans. Netbeans IDE. http://www.netbeans.org, archived
at http://www.webcitation.org/5p1qB6hNt, 2010. URL http:
//www.netbeans.org.

[8] ParcPlace-Digitalk. VisualWorks cookbook, October
1995. Available at: http://www.esug.org/data/Old/vw-
tutorials/vw25/cb25.pdf.

[9] ParcPlace89. Parcplace systems, Objectworks Reference
Guide, Smalltalk-80, version 2.5, chapter 36, 1989. ParcPlace
Systems.

[10] M. Potel. MVP: Model-View-Presenter. the Tali-
gent programming model for C++ and Java. Tech-
nical report, Taligent, Inc., 1996. Available at:
http://www.wildcrest.com/Potel/Portfolio/mvp.pdf.

[11] I. Tomek. The Joy of Smalltalk, September 2000. Available
at: http://stephane.ducasse.free.fr/FreeBooks/Joy/6.pdf.

[12] B. Van Ryseghem. Spec – Technical Report. Technical
report, Inria – Lille Nord Europe - RMoD, 2012. Available
at: http://hal.inria.fr/docs/00/70/80/67/PDF/SpecTechReport.pdf.

http://ss3.gemstone.com/
http://ss3.gemstone.com/
http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.wb.doc.user%2Fhtml%2Findex.html
http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.wb.doc.user%2Fhtml%2Findex.html
http://www.netbeans.org
http://www.netbeans.org
http://hal.inria.fr/docs/00/70/80/67/PDF/SpecTechReport.pdf

	Introduction
	Problem Description
	stx:libjava
	In a Nutshell
	Architecture of stx:libjava

	Class Access
	Dynamic Proxy Methods
	Selector Mismatch
	Method Resolution
	Method Overloading
	Protocol Mismatch
	Field Accessing
	Intercepting the Message Send

	Mixed Exception-Handling
	Synchronization
	Synchronized blocks
	Synchronized methods

	stx:libjava at Work
	Related Work
	JavaConnect and JNIPort
	IBM VisualAge
	Redline Smalltalk

	Conclusion And Future Work
	Introduction
	Goals
	Design Overview
	Example 1: Using a C Library
	The Object Model and Reflection
	Message Sending
	Memory Management
	Blocks
	Outside the Box
	Performance
	Example 2: Scripting with Smalltalk
	Example 3: The CodeMonkey IDE
	Future Work
	Related Work
	Conclusion
	Acknowledgements
	Introduction
	Multidimensional Profiling
	Implementation
	Reducing Call Graph
	Case Study
	Discussion
	Related Work
	Conclusion and Future Work
	References
	Introduction
	UI Builder Challenges
	Spec by Example
	Methods List
	Methods Browser
	Classes Browser

	The Implementation of Spec
	SpecLayout and its Interpreter
	Value Holder

	The spec of Spec
	Models public API
	SpecLayout

	Spec in Pharo
	Related Work
	Conclusion

