
Traditional Smalltalk Playing Well With Others Performance Etoile

Étoilé
Pragmatic Smalltalk

David Chisnall

August 25, 2011

http://gnustep.org
http://etoileos.com
http://clang.llvm.org

Traditional Smalltalk Playing Well With Others Performance Etoile

Smalltalk is Awesome!

• Pure object-oriented system

• Clean, simple syntax

• Automatic persistence and many other great features

Traditional Smalltalk Playing Well With Others Performance Etoile

...but no one cares

• TIOBE ranks Smalltalk somewhere in the #51-100 range.

• In the same range as Io, Dylan, Eiffel, Inform...

• Behind Haskell (#34), Go (#24), Logo (#21)

• A long way behind Smalltalk-derivatives Ruby (#12),
Objective-C (#6), and Java (#1)

Traditional Smalltalk Playing Well With Others Performance Etoile

Why?

• What do other languages have that Smalltalk doesn’t?

• Large commercial backer, writing huge amounts of library
code (e.g. Java)

• Easy interoperability with other languages

Traditional Smalltalk Playing Well With Others Performance Etoile

Language Report Cards

Smalltalk:

Very bright student. Excels in most subjects. Doesn’t
play well with others.

Python:

Very friendly student. Always actively participates in
group activities. May have undiagnosed learning
difficulties.

Traditional Smalltalk Playing Well With Others Performance Etoile

Heresy

• Smalltalk is not always the best tool for the job

• Try writing a video CODEC in Smalltalk

• It’s possible, but you’re fighting the language every step of the
way

Traditional Smalltalk Playing Well With Others Performance Etoile

Smalltalk is a High-level Language

• High-level abstractions

• Good for most tasks

• Bad when you need close access to the hardware (e.g. SIMD)

Traditional Smalltalk Playing Well With Others Performance Etoile

Objective-C: C in Smalltalk Objects

• Created by Brad Cox and Tom Love in 1986 to package C
libraries in Smalltalk-like classes

• Smalltalk object model

• C code in methods, message passing between objects

• Rich set of standard class libraries

Traditional Smalltalk Playing Well With Others Performance Etoile

The Compiler and the Runtime

• The compiler generates calls to functions in the runtime library

• All Smalltalk-like features are implemented by runtime calls

• Calls to C libraries have the same cost as calling them from C

• Can incrementally deploy Objective-C code with C/C++
libraries

Traditional Smalltalk Playing Well With Others Performance Etoile

Pragmatic Smalltalk

• Dialect of Smalltalk used by Étoilé

• Implements Smalltalk-80 language, but not the standard
libraries

• Compiles to native code (JIT or static compiler)

• Emits code ABI-compatible with Objective-C

Traditional Smalltalk Playing Well With Others Performance Etoile

Compiler Architecture

LanguageKit

Smalltalk Parser

EScript Parser

Interpreter

LLVM Optimiser JIT

Clang (Objective-C)

LLVM Optimiser

LLVM Linker / Optimiser Native Linker

Executable

Traditional Smalltalk Playing Well With Others Performance Etoile

Execution Architecture

Kernel

libc

C/C++ Libraries

X11

libobjc

GNUstep Foundation

GNUstep AppKit

ObjC Frameworks

GNUstep AppKit

ObjC ApplicationsSmalltalk Applications

SmalltalkSupport

LanguageKitRuntime

Traditional Smalltalk Playing Well With Others Performance Etoile

LanguageKit

• AST for representing Smalltalk-like languages

• Interpreter for directly executing the AST

• LLVM-based code generation back end for compiling

• Written in Objective-C

Traditional Smalltalk Playing Well With Others Performance Etoile

Compiling Smalltalk: The Hard Bits

• Small integers

• Blocks

• Non-local returns

• Memory management

Traditional Smalltalk Playing Well With Others Performance Etoile

Small Objects

• Objects hidden in pointers (e.g. small integers)

• Very common operations implemented as (hand optimised) C
functions

• Inlined during compilation

• Objective-C runtime modified to allow sending messages to
small objects

• Totally interoperable with Objective-C: small integers are just
NSSmallInt instances, can be used anywhere NSNumber is
expected

• Very fast: almost the same speed as C integer arithmetic -
Fibonacci benchmark ran the same speed as GCC 4.2.1

Traditional Smalltalk Playing Well With Others Performance Etoile

Blocks

• Objective-C now supports blocks

• LanguageKit uses the same ABI

• Smalltalk and Objective-C blocks can be used interchangeably.

Traditional Smalltalk Playing Well With Others Performance Etoile

Non-Local Returns

• Returns from blocks

• Ugly feature, should never have been allowed in the language

• Implemented using same mechanism as exceptions (DWARF
stack unwinding)

Traditional Smalltalk Playing Well With Others Performance Etoile

Memory Management

• Objective-C can use tracing GC or reference counting

• LanguageKit supports GC or automatic reference counting
(ARC)

• Optimisation passes remove redundant retain / release
operations in ARC mode.

Traditional Smalltalk Playing Well With Others Performance Etoile

Objective-C[++] is our Foreign Function Interface

• Objective-C and Smalltalk classes are the same

• Categories can be written in either language

• Methods written in Smalltalk and Objective-C are
indistinguishable

• Calling C++ from Objective-C++ is trivial

Traditional Smalltalk Playing Well With Others Performance Etoile

Sending Messages to C

Writing a method just to call a C function is cumbersome (and
slow!)�
"Smalltalk code:"

C sqrt: 42.

C fdim: {60. 12}.

C NSLocation: l InRange: r. 	� �
Generates exactly the same code as:�
// C code

sqrt (42);

fdim(60, 12);

NSLocationInRange(l, r); 	� �
No bridging code, no custom wrappers, just native function calls in
the compiled code.

Traditional Smalltalk Playing Well With Others Performance Etoile

Smalltalk in the Terminal

$./br "viewSpace: (Shapeways ringBlopperPath:

(env objectForKey:’BLOPPER’)

order: 1

ringSize: 10

thickness: 3.0

height: 15.0)"

Traditional Smalltalk Playing Well With Others Performance Etoile

In Shell Scripts

$ cat foo.st

#!/Local/Tools/edlc -f

NSObject subclass: SmalltalkTool [

run [| info |

info := NSProcessInfo processInfo.

ETTranscript show: ’Hello, world?’ ; cr;

show: ’sqrt(2): ’; show: (C sqrt: 2) ; cr;

show: ’Arguments: ’ ; show: (info arguments); cr.

]

]

$./foo.st This is a shell script

Hello, world?

sqrt(2): 1.414214

Arguments: ("/Local/Tools/edlc", "-f", "./foo.st", This,

is, a, shell, script)

Traditional Smalltalk Playing Well With Others Performance Etoile

Compiled Shell Scripts

$ edlc -c -f foo.st

$ llc foo.bc

$ clang -fobjc-nonfragile-abi run.m foo.s

-lEtoileFoundation -lLanguageKitRuntime

$./a.out this is the same shell script

Hello, world?

sqrt(2): 1.414214

Arguments: ("./a.out", this, is, the, same, shell,

script)

$ edlc -i -f foo.st In the interpreter

Hello, world?

sqrt(2): 1.414214

Arguments: (edlc, "-i", "-f", "foo.st", In, the,

interpreter)

Traditional Smalltalk Playing Well With Others Performance Etoile

Or in the GUI...

Traditional Smalltalk Playing Well With Others Performance Etoile

What Makes Things Slow?

• Small integer arithmetic

• Boxing

• Dynamic message lookup

• Memory management operations

Traditional Smalltalk Playing Well With Others Performance Etoile

Small Objects Support in Libobjc

• Allows Smalltalk SmallInts to be returned to ObjC code (no
boxing required)

• Removes the need for LanguageKit to add conditionals around
every message send

• Approximately 40% reduction in code size

• Smaller code means better instruction cache usage

Traditional Smalltalk Playing Well With Others Performance Etoile

Lookup Caching

• New lookup function returns a pointer to a structure

• Structure contains a version

• Version incremented if the method is replaced

• Safe automatic caching now possible

• Optimisation pass caches all lookups in loops and to classes

• Optimisations shared between Objective-C and Smalltalk

Author's Note
Comment
Idea shamelessly stolen from Self, although the implementation differs - it's much easier to do in a VM. The biggest win for this is in a loop optimisation pass, where we can do a single lookup and cache the result on the stack. Polymorphic inline caching is rarely worthwhile - the cost of 2-3 cache checks is more than the cost of a real method lookup.

Traditional Smalltalk Playing Well With Others Performance Etoile

Speculative Inlining

• C can insert copies of functions where they are used

• Objective-C message sends may map to different methods

• But we can guess one...

• ...inline it...

• ...and wrap it in a test to see if we guessed right

Author's Note
Comment
Inlining is a big performance win for C (and for C++). Saving the call overhead is nice, but it also allows a lot of extra optimisations, like constant propagation and common subexpression elimination, to reduce code that is in multiple functions. With Objective-C, we can't inline methods, because we can't know exactly which method will actually be called for a given messages send. It turns out, however, that we can quite often guess correctly (with profiling, it's easy to guess correctly most times) and can then do speculative inlining. We bracket the inlined call with a test that checks if we've really done the correct thing.

Traditional Smalltalk Playing Well With Others Performance Etoile

A Microbenchmark

• Simple message sends in a loop.

• Target: using C function calls takes 3 seconds

• Infinitely fast lookup function would therefore take 6 seconds

Optimisation Time (s)

None 10
Standard LLVM Opts 8

Auto-Caching 4.6
Auto-Caching + LLVM Opts 3.5

Auto-Caching + Speculative Inlining 2

Are we ‘fast enough’ yet?

Author's Note
Comment
Performance is so close to C that it's not clear whether it's worth optimising more. We can probably do better, but we're well past 'fast enough' for most things at this point. Most of the time, it's actually not worth bothering with these extra optimisations - code that doesn't do them is more than fast enough already. Even without these, it's rare to see a CPU-bound Objective-C application - most of the time I/O or the user's brain is the bottleneck.

Traditional Smalltalk Playing Well With Others Performance Etoile

Don’t Trust Microbenchmarks
(Including the last slide!)

• Algorithmic improvements make much a more noticeable
difference to performance

• Loose coupling makes specialisation easier.

• Case study: Integrating with libicu

• The problem: libicu uses its own (very efficient) unicode
string representation

Author's Note
Comment
A great algorithm in interpreted Ruby will beat a stupid algorithm in C, with inline assembly microoptimisations, and an optimising C compiler. As a simple example, the linear-scan Fibonacci algorithm running in LanguageKit's interpreter mode is faster than the statically compiled recursive version in C after very small values of n. Having a language that encourages good algorithms is a much bigger win than having a language that encourages microoptimisation, in most cases (not for things like video decoding, image processing, and so on).

Traditional Smalltalk Playing Well With Others Performance Etoile

ICU Strings in C++

• std::string is the standard string class

• Non-virtual methods for speed

• Not flexible enough: everyone implements their own (e.g.
llvm::StringRef, qt::QString, etc.)

• Using libicu strings involves O(n) operations, copying
characters between representations

• This problem happens at every library boundary

Author's Note
Comment
It seems to be a rite of passage that every single C++ project of a certain size implements its own string class. At boundaries between libraries, you typically have to convert from one to another, and the typical way of doing this is to export one as an array of unicode characters then import it. Doing this to use a libicu regular expression on a text document can involve copying hundreds of KB of data (often twice) for each search. This single operation costs more than you save with any number of microoptimisations.

Traditional Smalltalk Playing Well With Others Performance Etoile

ICU Strings in Objective-C

• NSString is the standard string class

• Abstract superclass, (hidden) concrete subclasses

• Very flexible, used everywhere.

• Using libicu strings involves an O(1) operation, wrapping the
libicu string type in an NSString subclass.

• Objective-C wrapper can be used in Pragmatic Smalltalk
directly

Result: The ‘slower’ language encourages O(1) algorithms where
the ‘faster’ language encourages O(n) algorithms.

Author's Note
Comment
Because Objective-C code uses an abstract string class, it's trivial to plug in new implementations. In the same case, we are allocating a couple of tiny objects (a few words long) - we can pass the NSString to libicu by wrapping it as an ICU UText ADT, and then wrap the returned UText as an NSString. We've finished the regex search before C++ has even finished providing the data to the library. Additionally, the NSString implementation uses a single method to get a range of characters, so you typically only have a single message send to get 32-64 characters, which can be much faster than a lot of C++ string classes...

Traditional Smalltalk Playing Well With Others Performance Etoile

Object Planes

• GNUstep runtime takes the sender as argument to lookup
function

• Object Planes are now possible with the Objective-C runtime

• Messages intercepted when travelling between groups of
objects

• Implicit concurrency, access control, automatic serialisation...

Author's Note
Comment
Object planes group objects into arbitrary groups. Message sends between objects in the same plane behave as they do currently. Message sends between objects in different planes are intercepted and can be modified. For example, we can serialise every message entering a plane for logging, we can add each message to a queue for implicit concurrency. We can restrict access, so we can run less-trusted code in one plane and restrict which objects it can talk to. The GNUstep Objective-C runtime has experimental support for object planes, but it's not enabled by default.

Traditional Smalltalk Playing Well With Others Performance Etoile

Building on Pragmatic Smalltalk

• Etoile aims to build a modern desktop environment

• Lots of frameworks

• User-visible code coming Real Soon Now

Traditional Smalltalk Playing Well With Others Performance Etoile

EtoileFoundation

• Higher order messaging

• Traits

• Futures

• Prototypes

Traditional Smalltalk Playing Well With Others Performance Etoile

EtoileUI

• High-level UI abstraction

• Introspective UI

Traditional Smalltalk Playing Well With Others Performance Etoile

CoreObject

• Automatic persistence and versioning

• Stores objects, not files

• Handles diff and merge on object graphs

Traditional Smalltalk Playing Well With Others Performance Etoile

EtoileBehavior

• Bundle, automatically loaded by all GNUstep applications

• Loads LanguageKit bundles - Smalltalk code injected into all
running apps

Traditional Smalltalk Playing Well With Others Performance Etoile

Questions?

Gratuitous book plug!

	Traditional Smalltalk
	Playing Well With Others
	Why Interoperability Matters
	Introducing Objective-C
	LanguageKit
	Calling C Code

	Performance
	Improving Performance

	Etoile

