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Domain-Specific Profiling 3

CPU time profiling

Mondrian [9] is an open and agile visualization engine. Mondrian describes a
visualization using a graph of (possibly nested) nodes and edges. In June 2010
a serious performance issue was raised1. Tracking down the cause of the poor
performance was not trivial. We first used a standard sample-based profiler.

Execution sampling approximates the time spent in an application’s methods
by periodically stopping a program and recording the current set of methods
under executions. Such a profiling technique is relatively accurate since it has
little impact on the overall execution. This sampling technique is used by almost
all mainstream profilers, such as JProfiler, YourKit, xprof [10], and hprof.

MessageTally, the standard sampling-based profiler in Pharo Smalltalk2, tex-
tually describes the execution in terms of CPU consumption and invocation for
each method of Mondrian:

54.8% {11501ms} MOCanvas>>drawOn:
54.8% {11501ms} MORoot(MONode)>>displayOn:
30.9% {6485ms} MONode>>displayOn:

| 18.1% {3799ms} MOEdge>>displayOn:
...

| 8.4% {1763ms} MOEdge>>displayOn:
| | 8.0% {1679ms} MOStraightLineShape>>display:on:
| | 2.6% {546ms} FormCanvas>>line:to:width:color:
...

23.4% {4911ms} MOEdge>>displayOn:
...

We can observe that the virtual machine spent about 54% of its time in
the method displayOn: defined in the class MORoot. A root is the unique non-
nested node that contains all the nodes of the edges of the visualization. This
general profiling information says that rendering nodes and edges consumes a
great share of the CPU time, but it does not help in pinpointing which nodes
and edges are responsible for the time spent. Not all graphical elements equally
consume resources.

Traditional execution sampling profilers center their result on the frames of
the execution stack and completely ignore the identity of the object that received
the method call and its arguments. As a consequence, it is hard to track down
which objects cause the slowdown. For the example above, the traditional profiler
says that we spent 30.9% in MONode>>displayOn: without saying which nodes
were actually refreshed too often.

Coverage

PetitParser is a parsing framework combining ideas from scannerless parsing,
parser combinators, parsing expression grammars and packrat parsers to model
grammars and parsers as objects that can be reconfigured dynamically [11].

1 http://forum.world.st/Mondrian-is-slow-next-step-tc2257050.html#
a2261116

2 http://www.pharo-project.org/
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Domain-Specific Profiling 3
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:Person field-write@t2

field-write@t3

init@t1

'Doe'

person := Person new t1
...
name := 'Doe'         t2
...
name := 'Smith'                 t3

'Smith'

null
predecessor

predecessor

value

value

value

name

name

name
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self inheritsFrom: 'TestCase' 
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Object>>haltAtNextMessage
	 | aMetaObject |
	 aMetaObject := BFBehavioralMetaObject new.
	 aMetaObject 
	 	 when: (BFMessageReceiveEvent new) 
	 	 do: [ self metaObject unbindFrom: self. 

       TransparentBreakpoint signal ].
	 aMetaObject bindTo: self 
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