
Letting Smalltalk Loose

Jorge Ressia

www.scg.unibe.ch

Tuesday, August 23, 11

http://www.scg.unibe.ch
http://www.scg.unibe.ch

Computer
revolution has not

happened yet

Tuesday, August 23, 11

Computer
revolution has not

happened yet
Alan Kay

Keynote OOPSLA 1997

Tuesday, August 23, 11

improve previous
ways of thinking

Tuesday, August 23, 11

create new
ways of thinking

Tuesday, August 23, 11

Object-oriented
Programming

Tuesday, August 23, 11

Dynamic

Tuesday, August 23, 11

We still go back to
the source code

Tuesday, August 23, 11

Debugging

Tuesday, August 23, 11

}

{

}

{

}

{
}

{

}

{

Tuesday, August 23, 11

}

{

}

{

}

{
}

{

}

{

Tuesday, August 23, 11

}

{

}

{

}

{
}

{

}

{

Tuesday, August 23, 11

}

{

}

{

}

{
}

{

}

{

Tuesday, August 23, 11

}

{

}

{

}

{
}

{

}

{

Tuesday, August 23, 11

}

{

}

{

}

{
}

{

}

{

Tuesday, August 23, 11

}

{

}

{

}

{
}

{

}

{

Tuesday, August 23, 11

Profiling

Tuesday, August 23, 11

Profile

}

{

}

{

}

{
}

{

}

{

Domain-Specific Profiling 3

CPU time profiling

Mondrian [9] is an open and agile visualization engine. Mondrian describes a
visualization using a graph of (possibly nested) nodes and edges. In June 2010
a serious performance issue was raised1. Tracking down the cause of the poor
performance was not trivial. We first used a standard sample-based profiler.

Execution sampling approximates the time spent in an application’s methods
by periodically stopping a program and recording the current set of methods
under executions. Such a profiling technique is relatively accurate since it has
little impact on the overall execution. This sampling technique is used by almost
all mainstream profilers, such as JProfiler, YourKit, xprof [10], and hprof.

MessageTally, the standard sampling-based profiler in Pharo Smalltalk2, tex-
tually describes the execution in terms of CPU consumption and invocation for
each method of Mondrian:

54.8% {11501ms} MOCanvas>>drawOn:
54.8% {11501ms} MORoot(MONode)>>displayOn:
30.9% {6485ms} MONode>>displayOn:

| 18.1% {3799ms} MOEdge>>displayOn:
...

| 8.4% {1763ms} MOEdge>>displayOn:
| | 8.0% {1679ms} MOStraightLineShape>>display:on:
| | 2.6% {546ms} FormCanvas>>line:to:width:color:
...

23.4% {4911ms} MOEdge>>displayOn:
...

We can observe that the virtual machine spent about 54% of its time in
the method displayOn: defined in the class MORoot. A root is the unique non-
nested node that contains all the nodes of the edges of the visualization. This
general profiling information says that rendering nodes and edges consumes a
great share of the CPU time, but it does not help in pinpointing which nodes
and edges are responsible for the time spent. Not all graphical elements equally
consume resources.

Traditional execution sampling profilers center their result on the frames of
the execution stack and completely ignore the identity of the object that received
the method call and its arguments. As a consequence, it is hard to track down
which objects cause the slowdown. For the example above, the traditional profiler
says that we spent 30.9% in MONode>>displayOn: without saying which nodes
were actually refreshed too often.

Coverage

PetitParser is a parsing framework combining ideas from scannerless parsing,
parser combinators, parsing expression grammars and packrat parsers to model
grammars and parsers as objects that can be reconfigured dynamically [11].

1 http://forum.world.st/Mondrian-is-slow-next-step-tc2257050.html#
a2261116

2 http://www.pharo-project.org/

Tuesday, August 23, 11

Domain

Profile

}

{

}

{

}

{
}

{

}

{

Domain-Specific Profiling 3

CPU time profiling

Mondrian [9] is an open and agile visualization engine. Mondrian describes a
visualization using a graph of (possibly nested) nodes and edges. In June 2010
a serious performance issue was raised1. Tracking down the cause of the poor
performance was not trivial. We first used a standard sample-based profiler.

Execution sampling approximates the time spent in an application’s methods
by periodically stopping a program and recording the current set of methods
under executions. Such a profiling technique is relatively accurate since it has
little impact on the overall execution. This sampling technique is used by almost
all mainstream profilers, such as JProfiler, YourKit, xprof [10], and hprof.

MessageTally, the standard sampling-based profiler in Pharo Smalltalk2, tex-
tually describes the execution in terms of CPU consumption and invocation for
each method of Mondrian:

54.8% {11501ms} MOCanvas>>drawOn:
54.8% {11501ms} MORoot(MONode)>>displayOn:
30.9% {6485ms} MONode>>displayOn:

| 18.1% {3799ms} MOEdge>>displayOn:
...

| 8.4% {1763ms} MOEdge>>displayOn:
| | 8.0% {1679ms} MOStraightLineShape>>display:on:
| | 2.6% {546ms} FormCanvas>>line:to:width:color:
...

23.4% {4911ms} MOEdge>>displayOn:
...

We can observe that the virtual machine spent about 54% of its time in
the method displayOn: defined in the class MORoot. A root is the unique non-
nested node that contains all the nodes of the edges of the visualization. This
general profiling information says that rendering nodes and edges consumes a
great share of the CPU time, but it does not help in pinpointing which nodes
and edges are responsible for the time spent. Not all graphical elements equally
consume resources.

Traditional execution sampling profilers center their result on the frames of
the execution stack and completely ignore the identity of the object that received
the method call and its arguments. As a consequence, it is hard to track down
which objects cause the slowdown. For the example above, the traditional profiler
says that we spent 30.9% in MONode>>displayOn: without saying which nodes
were actually refreshed too often.

Coverage

PetitParser is a parsing framework combining ideas from scannerless parsing,
parser combinators, parsing expression grammars and packrat parsers to model
grammars and parsers as objects that can be reconfigured dynamically [11].

1 http://forum.world.st/Mondrian-is-slow-next-step-tc2257050.html#
a2261116

2 http://www.pharo-project.org/

Tuesday, August 23, 11

Mondrian

Tuesday, August 23, 11

Tuesday, August 23, 11

System Complexity
Lanza and Ducasse 2003

Tuesday, August 23, 11

Domain-Specific Profiling 3

CPU time profiling

Mondrian [9] is an open and agile visualization engine. Mondrian describes a
visualization using a graph of (possibly nested) nodes and edges. In June 2010
a serious performance issue was raised1. Tracking down the cause of the poor
performance was not trivial. We first used a standard sample-based profiler.

Execution sampling approximates the time spent in an application’s methods
by periodically stopping a program and recording the current set of methods
under executions. Such a profiling technique is relatively accurate since it has
little impact on the overall execution. This sampling technique is used by almost
all mainstream profilers, such as JProfiler, YourKit, xprof [10], and hprof.

MessageTally, the standard sampling-based profiler in Pharo Smalltalk2, tex-
tually describes the execution in terms of CPU consumption and invocation for
each method of Mondrian:

54.8% {11501ms} MOCanvas>>drawOn:
54.8% {11501ms} MORoot(MONode)>>displayOn:
30.9% {6485ms} MONode>>displayOn:

| 18.1% {3799ms} MOEdge>>displayOn:
...

| 8.4% {1763ms} MOEdge>>displayOn:
| | 8.0% {1679ms} MOStraightLineShape>>display:on:
| | 2.6% {546ms} FormCanvas>>line:to:width:color:
...

23.4% {4911ms} MOEdge>>displayOn:
...

We can observe that the virtual machine spent about 54% of its time in
the method displayOn: defined in the class MORoot. A root is the unique non-
nested node that contains all the nodes of the edges of the visualization. This
general profiling information says that rendering nodes and edges consumes a
great share of the CPU time, but it does not help in pinpointing which nodes
and edges are responsible for the time spent. Not all graphical elements equally
consume resources.

Traditional execution sampling profilers center their result on the frames of
the execution stack and completely ignore the identity of the object that received
the method call and its arguments. As a consequence, it is hard to track down
which objects cause the slowdown. For the example above, the traditional profiler
says that we spent 30.9% in MONode>>displayOn: without saying which nodes
were actually refreshed too often.

Coverage

PetitParser is a parsing framework combining ideas from scannerless parsing,
parser combinators, parsing expression grammars and packrat parsers to model
grammars and parsers as objects that can be reconfigured dynamically [11].

1 http://forum.world.st/Mondrian-is-slow-next-step-tc2257050.html#
a2261116

2 http://www.pharo-project.org/

Tuesday, August 23, 11

Which is the relationship?
Domain-Specific Profiling 3

CPU time profiling

Mondrian [9] is an open and agile visualization engine. Mondrian describes a
visualization using a graph of (possibly nested) nodes and edges. In June 2010
a serious performance issue was raised1. Tracking down the cause of the poor
performance was not trivial. We first used a standard sample-based profiler.

Execution sampling approximates the time spent in an application’s methods
by periodically stopping a program and recording the current set of methods
under executions. Such a profiling technique is relatively accurate since it has
little impact on the overall execution. This sampling technique is used by almost
all mainstream profilers, such as JProfiler, YourKit, xprof [10], and hprof.

MessageTally, the standard sampling-based profiler in Pharo Smalltalk2, tex-
tually describes the execution in terms of CPU consumption and invocation for
each method of Mondrian:

54.8% {11501ms} MOCanvas>>drawOn:
54.8% {11501ms} MORoot(MONode)>>displayOn:
30.9% {6485ms} MONode>>displayOn:

| 18.1% {3799ms} MOEdge>>displayOn:
...

| 8.4% {1763ms} MOEdge>>displayOn:
| | 8.0% {1679ms} MOStraightLineShape>>display:on:
| | 2.6% {546ms} FormCanvas>>line:to:width:color:
...

23.4% {4911ms} MOEdge>>displayOn:
...

We can observe that the virtual machine spent about 54% of its time in
the method displayOn: defined in the class MORoot. A root is the unique non-
nested node that contains all the nodes of the edges of the visualization. This
general profiling information says that rendering nodes and edges consumes a
great share of the CPU time, but it does not help in pinpointing which nodes
and edges are responsible for the time spent. Not all graphical elements equally
consume resources.

Traditional execution sampling profilers center their result on the frames of
the execution stack and completely ignore the identity of the object that received
the method call and its arguments. As a consequence, it is hard to track down
which objects cause the slowdown. For the example above, the traditional profiler
says that we spent 30.9% in MONode>>displayOn: without saying which nodes
were actually refreshed too often.

Coverage

PetitParser is a parsing framework combining ideas from scannerless parsing,
parser combinators, parsing expression grammars and packrat parsers to model
grammars and parsers as objects that can be reconfigured dynamically [11].

1 http://forum.world.st/Mondrian-is-slow-next-step-tc2257050.html#
a2261116

2 http://www.pharo-project.org/

?

Tuesday, August 23, 11

What is the
problem?

Tuesday, August 23, 11

Fixed Object Model

Tuesday, August 23, 11

Most of the time
this is good

Tuesday, August 23, 11

Restricts what we
can do

Tuesday, August 23, 11

Time

Tuesday, August 23, 11

Time is a very useful
concept

Tuesday, August 23, 11

considering it
absolute limit us

Tuesday, August 23, 11

absolute object
model limit us

Tuesday, August 23, 11

objects that evolve

Tuesday, August 23, 11

Why?

Tuesday, August 23, 11

Execution
Reification

Structure
Evolution

ProfilingDebugging

Tuesday, August 23, 11

Execution
Reification

Structure
Evolution

ProfilingDebugging

Tuesday, August 23, 11

}

{

}

{

}

{
}

{

}

{

Tuesday, August 23, 11

}

{

}

{

}

{
}

{

}

{

Tuesday, August 23, 11

When is the next
state written?

Tuesday, August 23, 11

Stop when the next
message is received

Tuesday, August 23, 11

Close the gap

Tuesday, August 23, 11

Object Debugger

Tuesday, August 23, 11

Execution
Reification

Structure
Evolution

Debugging Profiling

Tuesday, August 23, 11

MetaSpy

Tuesday, August 23, 11

MetaSpy

TOOLS 2011
Bergel etal.

Tuesday, August 23, 11

Mondrian Profiler

Tuesday, August 23, 11

Tuesday, August 23, 11

System Complexity
Lanza, Ducasse 2003

Tuesday, August 23, 11

Tuesday, August 23, 11

Profiling

Structure
Evolution

Debugging

Execution
Reification

Tuesday, August 23, 11

What if we do not
know what to evolve?

Tuesday, August 23, 11

Tuesday, August 23, 11

?
Tuesday, August 23, 11

Prisma

Tuesday, August 23, 11

Scarring
Tuesday, August 23, 11

Tuesday, August 23, 11

Tuesday, August 23, 11

Tuesday, August 23, 11

Tuesday, August 23, 11

Scanning
Tuesday, August 23, 11

Tuesday, August 23, 11

Tuesday, August 23, 11

Tuesday, August 23, 11

Tuesday, August 23, 11

Tuesday, August 23, 11

Tuesday, August 23, 11

Tuesday, August 23, 11

Back in time
Debugger

Tuesday, August 23, 11

Back in time
Debugger

Object Flow Debugger

Lienhard etal. ECOOP 2008

Tuesday, August 23, 11

Instance variable
history

Tuesday, August 23, 11

:Person field-write@t2

field-write@t3

init@t1

'Doe'

person := Person new t1
...
name := 'Doe' t2
...
name := 'Smith' t3

'Smith'

null
predecessor

predecessor

value

value

value

name

name

name

Tuesday, August 23, 11

Profiling

Execution
Reification

Debugging

Structure
Evolution

Tuesday, August 23, 11

Talents

scg.unibe.ch/research/talents

Tuesday, August 23, 11

Talents

scg.unibe.ch/research/talents

IWST 2011
J. Ressia, T. Gîrba, O. Nierstrasz, F. Perin and

L. Renggli

Tuesday, August 23, 11

Dynamically
composable units of

reuse

Tuesday, August 23, 11

moosetechnology.org

Tuesday, August 23, 11

aFAMIXClass
 isTestClass

Key
instance-of
message send
lookup

FAMIXEntity

FAMIXType

isTestClass
FAMIXClass

aFAMIXClass

1

2

3

self inheritsFrom: 'TestCase'

MooseEntity

...

Tuesday, August 23, 11

aFAMIXClass
 isTestClass

FAMIXClass

aFAMIXClass

1

2

4

aFAMIXClass
 inheritsFrom: 'TestCase'

aJeeClassTalent

Key
instance-of
message send
lookup
acquire

3
aJeeClassTalent
 talent isTestClass

FAMIXEntity

FAMIXType

MooseEntity

...

Tuesday, August 23, 11

•@ alias

•- exclusion

•, composition

Operators

Tuesday, August 23, 11

Flattening

Tuesday, August 23, 11

Scoping

Tuesday, August 23, 11

Evolution friendly
Object Model

Tuesday, August 23, 11

Tuesday, August 23, 11

Organize the
Meta-level

Tuesday, August 23, 11

Explicit
Meta-objects

Tuesday, August 23, 11

Object

Meta-object

Class

Tuesday, August 23, 11

Object

Meta-object

Class

Tuesday, August 23, 11

Evolved Object

Meta-object

Class

Tuesday, August 23, 11

Object>>haltAtNextMessage
	 | aMetaObject |
	 aMetaObject := BFBehavioralMetaObject new.
	 aMetaObject
	 	 when: (BFMessageReceiveEvent new)
	 	 do: [self metaObject unbindFrom: self.

 TransparentBreakpoint signal].
	 aMetaObject bindTo: self

Tuesday, August 23, 11

We let Smalltalk
loose

Tuesday, August 23, 11

Object
Debugger Prisma

Subjectopia MetaSpy

Talents Chameleon

Tuesday, August 23, 11

scg.unibe.ch/jenkins/

Tuesday, August 23, 11

http://www.scg.unibe.ch/jenkins/
http://www.scg.unibe.ch/jenkins/

scg.unibe.ch/research/bifrost

Tuesday, August 23, 11

