
Motivation First Approach Aspect-based Refactoring Results

Memoization Aspects: a Case Study

Santiago A. Vidal1,2 Claudia A. Marcos1 Alexandre Bergel3

Gabriela Arévalo2,4

1ISISTAN Research Institute, Faculty of Sciences,
UNICEN University, Argentina

2CONICET (National Scienti�c and Technical Research Council)

3PLEIAD Lab, Department of Computer Science (DCC),
University of Chile, Chile

4Universidad Nacional de Quilmes, Argentina,

International Workshop on Smalltalk Technologies (ESUG 2011)

1 / 17 S. Vidal, C. Marcos, A. Bergel, G. Arévalo Memoization Aspects: a Case Study

Motivation First Approach Aspect-based Refactoring Results

Mondrian

Mondrian is an agile visualization engine implemented in

Pharo, and has been used in more than a dozen projects

2 / 17 S. Vidal, C. Marcos, A. Bergel, G. Arévalo Memoization Aspects: a Case Study

Motivation First Approach Aspect-based Refactoring Results

Dealing with Mondrian Evolution

Mondrian has several caches

Each unpredictable usage led to a performance problem that

has been solved using a new memoization.

3 / 17 S. Vidal, C. Marcos, A. Bergel, G. Arévalo Memoization Aspects: a Case Study

Motivation First Approach Aspect-based Refactoring Results

Mondrian Computations

Memoization

An optimization technique used to speed up an application by

making calls that avoid repeating the similar previous computation

Mondrian caches are instances of the memoization technique

MOGraphElement>>absoluteBounds

absoluteBoundsCache

ifNotNil: [^ absoluteBoundsCache].

^ absoluteBoundsCache:= self shape absoluteBoundsFor: self

4 / 17 S. Vidal, C. Marcos, A. Bergel, G. Arévalo Memoization Aspects: a Case Study

Motivation First Approach Aspect-based Refactoring Results

Proposal

Problems

The caches that are used intensively when visualizing software

are not useful and may even be a source of slowdown and

complexity in other contexts.

The legibility of the methods with memoization has been

a�ected.

Goals

Identi�cation of memoizing crosscutting concerns

Refactorization of these crosscutting concerns into modular

and pluggable aspects

5 / 17 S. Vidal, C. Marcos, A. Bergel, G. Arévalo Memoization Aspects: a Case Study

Motivation First Approach Aspect-based Refactoring Results

Proposal

Problems

The caches that are used intensively when visualizing software

are not useful and may even be a source of slowdown and

complexity in other contexts.

The legibility of the methods with memoization has been

a�ected.

Goals

Identi�cation of memoizing crosscutting concerns

Refactorization of these crosscutting concerns into modular

and pluggable aspects

5 / 17 S. Vidal, C. Marcos, A. Bergel, G. Arévalo Memoization Aspects: a Case Study

Motivation First Approach Aspect-based Refactoring Results

A Naive Solution

General operations for accessing and resetting a cache

Problem

Signi�cant overhead (3 to 10 times slower)

6 / 17 S. Vidal, C. Marcos, A. Bergel, G. Arévalo Memoization Aspects: a Case Study

Motivation First Approach Aspect-based Refactoring Results

A Naive Solution

General operations for accessing and resetting a cache

Problem

Signi�cant overhead (3 to 10 times slower)

6 / 17 S. Vidal, C. Marcos, A. Bergel, G. Arévalo Memoization Aspects: a Case Study

Motivation First Approach Aspect-based Refactoring Results

Requirements for Refactoring

All cache accesses have to be identi�ed. This is essential to

have all the caches considered equally.

No cost of performance must be paid, or it defeats the whole

purpose of the work.

Readability must not be reduced.

7 / 17 S. Vidal, C. Marcos, A. Bergel, G. Arévalo Memoization Aspects: a Case Study

Motivation First Approach Aspect-based Refactoring Results

Identifying caches

The caches are mostly identi�ed by browsing the methods in

which the cache variables are referenced and accessed.

9 caches were found.

The caches were grouped together based on the purpose of its

use:

Initialize and reset the cache

Retrieve the cache value

Store data in the cache

These groups allow the identi�cation of code patterns.

8 / 17 S. Vidal, C. Marcos, A. Bergel, G. Arévalo Memoization Aspects: a Case Study

Motivation First Approach Aspect-based Refactoring Results

Identifying caches

The caches are mostly identi�ed by browsing the methods in

which the cache variables are referenced and accessed.

9 caches were found.

The caches were grouped together based on the purpose of its

use:

Initialize and reset the cache

Retrieve the cache value

Store data in the cache

These groups allow the identi�cation of code patterns.

8 / 17 S. Vidal, C. Marcos, A. Bergel, G. Arévalo Memoization Aspects: a Case Study

Motivation First Approach Aspect-based Refactoring Results

Identifying caches

The caches are mostly identi�ed by browsing the methods in

which the cache variables are referenced and accessed.

9 caches were found.

The caches were grouped together based on the purpose of its

use:

Initialize and reset the cache

Retrieve the cache value

Store data in the cache

These groups allow the identi�cation of code patterns.

8 / 17 S. Vidal, C. Marcos, A. Bergel, G. Arévalo Memoization Aspects: a Case Study

Motivation First Approach Aspect-based Refactoring Results

Identifying caches

The caches are mostly identi�ed by browsing the methods in

which the cache variables are referenced and accessed.

9 caches were found.

The caches were grouped together based on the purpose of its

use:

Initialize and reset the cache

Retrieve the cache value

Store data in the cache

These groups allow the identi�cation of code patterns.

8 / 17 S. Vidal, C. Marcos, A. Bergel, G. Arévalo Memoization Aspects: a Case Study

Motivation First Approach Aspect-based Refactoring Results

Patterns identi�ed

absoluteBounds
bounds
elementsToDisplay
cacheCanvas
isCacheLoaded
resetAbsoluteBoundsCacheRecursively
resetCache
resetElementsToDisplayCache
resetFormCache
resetFormCacheRecursively
resetFormCacheToTheRoot
shapeBoundsAt:put:
shapeBounds

-cacheShapeBounds
-cacheForm
-boundsCache
-absoluteBoundsCache
-elementsToDisplayCache
-lookupNodeCache

MOGraphElement

bounds
isCacheLoaded
resetCache
cacheFromPoint:
cacheToPoint:
cacheFromPoint
cacheToPoint

-cacheFromPoint
-cacheToPoint

MOEdge

cacheForm
scaleBy:
translateBy:bounded:

MONode

bounds
-cacheBounds

MORoot

LI

CI

ResC

RetC

LI
CL

ResC
CI

RetC

RetC
ResC

LI

LI: lazy initialization
CI: cache initialization
ResC: reset cache
RetC: return cache
CL: cache loaded

9 / 17 S. Vidal, C. Marcos, A. Bergel, G. Arévalo Memoization Aspects: a Case Study

Motivation First Approach Aspect-based Refactoring Results

Pattern description

Lazy Initialization: In some situations it is not relevant to

initialize the cache before it is actually needed.

MOEdge>>bounds

^ boundsCache ifNil:[boundsCache:= self shape

computeBoundsFor: self].

Reset Cache: A cache has to be invalidated when its content has

to be updated.

MOGraphElement>>resetCache

self resetElementsToLookup.

boundsCache := nil.

absoluteBoundsCache := nil.

cacheShapeBounds :=SmallDictionary new.

elementsToDisplayCache := nil.

self resetMetricCaches

10 / 17 S. Vidal, C. Marcos, A. Bergel, G. Arévalo Memoization Aspects: a Case Study

Motivation First Approach Aspect-based Refactoring Results

Cache Concerns as Aspects

The goal of the refactorization is the separation of these

patterns from the main code without changing the overall

behavior.

Aspect weaving is achieved via a customized AOP mechanism

based on code annotation and source code manipulation.

Refactoring strategy: for each method that involves a cache,

the part of the method that deals directly with the cache is

removed and the method is annotated.

The annotation structure is <patternCodeName: cacheName>

<LazyInitializationPattern: #absoluteBoundsCache>

11 / 17 S. Vidal, C. Marcos, A. Bergel, G. Arévalo Memoization Aspects: a Case Study

Motivation First Approach Aspect-based Refactoring Results

Cache Concerns as Aspects

The goal of the refactorization is the separation of these

patterns from the main code without changing the overall

behavior.

Aspect weaving is achieved via a customized AOP mechanism

based on code annotation and source code manipulation.

Refactoring strategy: for each method that involves a cache,

the part of the method that deals directly with the cache is

removed and the method is annotated.

The annotation structure is <patternCodeName: cacheName>

<LazyInitializationPattern: #absoluteBoundsCache>

11 / 17 S. Vidal, C. Marcos, A. Bergel, G. Arévalo Memoization Aspects: a Case Study

Motivation First Approach Aspect-based Refactoring Results

Cache Concerns as Aspects

The goal of the refactorization is the separation of these

patterns from the main code without changing the overall

behavior.

Aspect weaving is achieved via a customized AOP mechanism

based on code annotation and source code manipulation.

Refactoring strategy: for each method that involves a cache,

the part of the method that deals directly with the cache is

removed and the method is annotated.

The annotation structure is <patternCodeName: cacheName>

<LazyInitializationPattern: #absoluteBoundsCache>

11 / 17 S. Vidal, C. Marcos, A. Bergel, G. Arévalo Memoization Aspects: a Case Study

Motivation First Approach Aspect-based Refactoring Results

Cache Concerns as Aspects

The goal of the refactorization is the separation of these

patterns from the main code without changing the overall

behavior.

Aspect weaving is achieved via a customized AOP mechanism

based on code annotation and source code manipulation.

Refactoring strategy: for each method that involves a cache,

the part of the method that deals directly with the cache is

removed and the method is annotated.

The annotation structure is <patternCodeName: cacheName>

<LazyInitializationPattern: #absoluteBoundsCache>

11 / 17 S. Vidal, C. Marcos, A. Bergel, G. Arévalo Memoization Aspects: a Case Study

Motivation First Approach Aspect-based Refactoring Results

Injection Mechanism I

For every annotation a method may have, the code injector

performs the needed source code transformation to use the cache.

1 A new method is created with the same name as the method

that contains the annotation but with the pre�x �compute�

plus the name of the class in which is de�ned.

MOEdge>>bounds

<LazyInitializationPattern: #boundsCache>

^ self shape computeBoundsFor: self.

MOEdge>>computeMOEdgeBounds

2 The code of the original method is copied into the new one.

MOEdge>>computeMOEdgeBounds

^ self shape computeBoundsFor: self.

12 / 17 S. Vidal, C. Marcos, A. Bergel, G. Arévalo Memoization Aspects: a Case Study

Motivation First Approach Aspect-based Refactoring Results

Injection Mechanism II

3 The code inside the original method is replaced by the code

automatically generated according to the pattern de�ned in

the annotation

MOEdge>>bounds

boundsCache ifNotNil: [^ boundsCache].

^ boundsCache:= computeMOEdgeBounds

13 / 17 S. Vidal, C. Marcos, A. Bergel, G. Arévalo Memoization Aspects: a Case Study

Motivation First Approach Aspect-based Refactoring Results

Injection Mechanism III

14 / 17 S. Vidal, C. Marcos, A. Bergel, G. Arévalo Memoization Aspects: a Case Study

Motivation First Approach Aspect-based Refactoring Results

Maintainability

The contribution of this approach is twofold:

1 The mechanism of encapsulation and injection can be used to

refactor the current Mondrian caches improving the code reuse.

2 The code legibility is increased because the Cache Concern is

extracted from the main concern leaving a cleaner code.

15 / 17 S. Vidal, C. Marcos, A. Bergel, G. Arévalo Memoization Aspects: a Case Study

Motivation First Approach Aspect-based Refactoring Results

Performance

�����
����������

��� ��� ��� ��� ��� ��� 	�� ���
�� ���� ����
�����������

����� ��
������
���������
������
���������������
��������������������

�� �� �� �� �� �� 	� ��
� ��������
16 / 17 S. Vidal, C. Marcos, A. Bergel, G. Arévalo Memoization Aspects: a Case Study

Motivation First Approach Aspect-based Refactoring Results

17 / 17 S. Vidal, C. Marcos, A. Bergel, G. Arévalo Memoization Aspects: a Case Study

	Motivation
	First Approach
	Aspect-based Refactoring
	Results

