Memoization Aspects: a Case Study

Santiago A. Vidal'? Claudia A. Marcos! Alexandre Bergel®
Gabriela Arévalo®*

1ISISTAN Research Institute, Faculty of Sciences,
UNICEN University, Argentina

2CONICET (National Scientific and Technical Research Council)

3PLEIAD Lab, Department of Computer Science (DCC),
University of Chile, Chile

4Universidad Nacional de Quilmes, Argentina,

International Workshop on Smalltalk Technologies (ESUG 2011)

S. Vidal, C. Marcos, A. Bergel, G. Arévalo Memoization Aspects: a Case Study

Motivation First Approach

Mondrian

@ Mondrian is an agile visualization engine implemented in
Pharo, and has been used in more than a dozen projects

x -0 Mondrian Easel >
Mondrian « EXport w Previous seripts + Examples vJ (-]
CharacterSet Bag SequenceableCollection WeakRegistry Matrix

COOODDODODODDOOOOOOOOOO
(o o o o o
(o o o o o
(o o o o o o
(o o o o o o
(o o o o o o
(o o o o o o
(o o o o o o
(o o o o o o
(o o o o o
CODDDDDDD00DOOOCD NEE
AN

MaiDendrogram MalMapping Malstopwerds MeossGroupSterage MeoseQueryResult OrderPrese
v

< >

| classes d |
d :=IdentityDictionary new.

classes = Collection withallSubclasses

classes do: [aClass | aClass methods do: [m | d at:m put m getSource lineCount 1
)

view shape rectangle withoutBorder.
view nodes: classes forEach: [each |
view shane label

Generate View

C. Marcos, A. Bergel, G. Arévalo Memoization Aspects: a Case S

Motivation Fir >ach A

Dealing with Mondrian Evolution

@ Mondrian has several caches
@ Each unpredictable usage led to a performance problem that
has been solved using a new memoization.

x -0 Klotz Easel =

Klotz + Export w Previous scripts » Examples vJ =43 12D

a

< >

| subclasses | subclasses ;= KLEaselCommand subclasses.
view nodes: subclasses. view applyLayout: (KLSphereLayout
new)

view node: KLEaselCommand using: (KLCube new fillColor:
Color green)

view edges: subclasses from: #yourself to: #superclass

Generate View

S. Vidal, C. Marcos, A. Bergel, G. Arévalo Memoization Aspects: a Case Study

Motivation First Approach Aspect-based Refactoring

Mondrian Computations

Memoization

An optimization technique used to speed up an application by
making calls that avoid repeating the similar previous computation

Mondrian caches are instances of the memoization technique

MOGraphElement>>absoluteBounds
absoluteBoundsCache
ifNotNil: [~ absoluteBoundsCache].
~ absoluteBoundsCache:= self shape absoluteBoundsFor: self

S. Vidal, C. Marcos, A. Bergel, G. Arévalo Memoization Aspects: a Case Study

Motivation

Proposal

Problems

@ The caches that are used intensively when visualizing software
are not useful and may even be a source of slowdown and
complexity in other contexts.

@ The legibility of the methods with memoization has been
affected.

S. Vidal, C. Marcos, A. Bergel, G. Arévalo Memoization Aspects: a Case Study

Motivation First Approach Aspect-base factoring

Proposal

@ The caches that are used intensively when visualizing software
are not useful and may even be a source of slowdown and
complexity in other contexts.

@ The legibility of the methods with memoization has been
affected.

o |dentification of memoizing crosscutting concerns

@ Refactorization of these crosscutting concerns into modular
and pluggable aspects

A

S. Vidal, C. Marcos, A. Bergel, G. Arévalo Memoization Aspects: a Case Study

tivatio First Approach

A Naive Solution

@ General operations for accessing and resetting a cache

MOGraphElement Cache Cacheableltem
-generalCache -caches -internalCache
+absoluteBounds() +cacheAt:(key) +putElement:()
+bounds() +cacheAt:put:() +resetinternalCache()
+cacheCanvas:() +resetCaches() +getinternalCache()

+elementsToDisplay()
+resetAbsoluteBoundsCache()
+resetCache()
+resetElementsToDisplayCache()
+resetFormCacheSimply()
+resetFormCacheUpToTheRoot()
+shapeBounds()
+shapeBoundsAt:put:()
+translateAbsoluteCacheBy:()

S. Vidal, C. Marcos, A. Bergel, G. Arévalo Memoization Aspects: a Case Study

First Approach

A Naive Solution

@ General operations for accessing and resetting a cache

MOGraphElement Cache Cacheableltem
-generalCache -caches -internalCache
+absoluteBounds() +cacheAt:(key) +putElement:()
+bounds() +cacheAt:put:() +resetinternalCache()
+cacheCanvas:() +resetCaches() +getinternalCache()

+elementsToDisplay()
+resetAbsoluteBoundsCache()
+resetCache()
+resetElementsToDisplayCache()
+resetFormCacheSimply()
+resetFormCacheUpToTheRoot()
+shapeBounds()
+shapeBoundsAt:put:()
+translateAbsoluteCacheBy:()

Problem

@ Significant overhead (3 to 10 times slower)

S. Vidal, C. Marcos, A. Bergel, G. Arévalo Memoization Aspect: Case Study

lo on First Approach

Requirements for Refactoring

o All cache accesses have to be identified. This is essential to
have all the caches considered equally.

@ No cost of performance must be paid, or it defeats the whole
purpose of the work.

@ Readability must not be reduced.

¢

S. Vidal, C. Marcos, A. Bergel, G. Arévalo Memoization Aspects: a Case Study

atio

roac Aspect-based Refactoring

|dentifying caches

@ The caches are mostly identified by browsing the methods in
which the cache variables are referenced and accessed.

S. Vidal, C. Marcos, A. Bergel, G. Arévalo Memoization Aspects: a Case Study

atio

roac Aspect-based Refactoring

|dentifying caches

@ The caches are mostly identified by browsing the methods in
which the cache variables are referenced and accessed.

@ 9 caches were found.

S. Vidal, C. Marcos, A. Bergel, G. Arévalo Memoization Aspects: a Case Study

lotivatio

First / bac Aspect-based Refactoring

|dentifying cache

@ The caches are mostly identified by browsing the methods in
which the cache variables are referenced and accessed.

@ 9 caches were found.

@ The caches were grouped together based on the purpose of its
use:
o Initialize and reset the cache

o Retrieve the cache value
e Store data in the cache

S. Vidal, C. Marcos, A. Bergel, G. Arévalo Memoization Aspects: a Case Study

Aspect-based Refactoring

|dentifying caches

@ The caches are mostly identified by browsing the methods in
which the cache variables are referenced and accessed.

@ 9 caches were found.

@ The caches were grouped together based on the purpose of its
use:

o Initialize and reset the cache
o Retrieve the cache value
e Store data in the cache

These groups allow the identification of code patterns.

S. Vidal, C. Marcos, A. Bergel, G. Arévalo Memoization Aspects: a Case Study

roac Aspect-based Refactoring

Patterns identified

MOGraphElement
-cacheShapeBounds LI: lazy initialization
-cacheForm e . .
-boundsCache Cl: cache initialization
-absoluteBoundsCache .
-elementsToDisplayCache ReSC' reset CaChe
-\goklupNgdeCdache RetC: return cache
U [ooongs CL: cache loaded
elementsToDisplay
acheCanvas
rTisCachelLoaded
resetAbsoluteBoundsCacheRecursively
resetCache
ResC resetElementsToDisplayCache
resetFormCache
resetFormCacheRecursively
resetFormCacheToTheRoot
|| shapeBoundsAt:put:

RetC [shapeBounds

MOEdge MONode
-cacheFromPoint L
-cacheToPoint RetC [_caclhi:orm

LI [Tbounds TScaleBy:
CL I:=isCacheLoaded ResC translateBy:bounded:
ResC [TresetCache
cl | cacheFromPoint:
cacheToPoint:

RetC TcacheFromPoint MORoot
e cacheToPoint U
[bounds |

, G. Arévalo Memoization Aspects: a Case S

Motiva

tion First Approach Aspect-based Refactoring

Pattern description

Lazy Initialization: In some situations it is not relevant to
initialize the cache before it is actually needed.

MOEdge>>bounds
~ boundsCache ifNil:[boundsCache:= self shape
computeBoundsFor: self].

Reset Cache: A cache has to be invalidated when its content has
to be updated.

MOGraphElement>>resetCache
self resetElementsToLookup.
boundsCache := nil.
absoluteBoundsCache := nil.
cacheShapeBounds :=SmallDictionary new.
elementsToDisplayCache := nil.
self resetlMetricCaches

Results

10/17

S. Vidal, C. Marcos, A. Bergel, G. Arévalo Memoization Aspects: a Case Study

Aspect-based Refactoring

Cache Concerns as Aspects

@ The goal of the refactorization is the separation of these
patterns from the main code without changing the overall
behavior.

11/17 S. Vidal, C. Marcos, A. Bergel, G. Arévalo Memoization Aspects: a Case Study

lotivatio

Aspect-based Refactoring

Cache Concerns as Aspects

@ The goal of the refactorization is the separation of these
patterns from the main code without changing the overall
behavior.

@ Aspect weaving is achieved via a customized AOP mechanism
based on code annotation and source code manipulation.

11/17 S. Vidal, C. Marcos, A. Bergel, G. Arévalo Memoization Aspects: a Case Study

lotivation ch Aspect-based Refactoring

Cache Concerns as Aspects

@ The goal of the refactorization is the separation of these
patterns from the main code without changing the overall
behavior.

@ Aspect weaving is achieved via a customized AOP mechanism
based on code annotation and source code manipulation.

@ Refactoring strategy: for each method that involves a cache,
the part of the method that deals directly with the cache is
removed and the method is annotated.

11/17 S. Vidal, C. Marcos, A. Bergel, G. Arévalo Memoization Aspects: a Case Study

Motivation

Aspect-based Refactoring

Cache Concerns as Aspects

11/17

@ The goal of the refactorization is the separation of these
patterns from the main code without changing the overall
behavior.

@ Aspect weaving is achieved via a customized AOP mechanism
based on code annotation and source code manipulation.

@ Refactoring strategy: for each method that involves a cache,
the part of the method that deals directly with the cache is
removed and the method is annotated.

@ The annotation structure is <patternCodeName: cacheName>

e <LazylnitializationPattern: #absoluteBoundsCache>

S. Vidal, C. Marcos, A. Bergel, G. Arévalo Memoization Aspects: a Case Study

Motivation First Approach Aspect-based Refactoring

Injection Mechanism |

For every annotation a method may have, the code injector
performs the needed source code transformation to use the cache.

@ A new method is created with the same name as the method
that contains the annotation but with the prefix “compute”
plus the name of the class in which is defined.

MOEdge>>bounds
<LazyInitializationPattern: #boundsCache>
~ self shape computeBoundsFor: self.

MOEdge>>computeMOEdgeBounds

@ The code of the original method is copied into the new one.

MOEdge>>computeMOEdgeBounds
~ self shape computeBoundsFor: self.

Results

S. Vidal, C. Marcos, A. Bergel, G. Arévalo Memoization Aspects: a Case Study

lotivation First Appr Aspect-based Refactoring

Injection Mechanism Il

© The code inside the original method is replaced by the code
automatically generated according to the pattern defined in
the annotation
MOEdge>>bounds

boundsCache ifNotNil: [~ boundsCache].
~ boundsCache:= computeMOEdgeBounds

13 /17 S. Vidal, C. Marcos, A. Bergel, G. Arévalo Memoization Aspects: a Case Study

Aspect-based Refactoring

Injection Mechanism |l

CachePattern

‘#pragmaPattern

[+getPragma()
[+getMethodToAdd:()
»

: severalPragmas:()
+createMethodWith: selector: and:()

CachelnicializationPattern CacheloadedPattern GenericAOPPattern AbstractResetCachePattern
[+initialize() [+initialize() [+initialize() +createMethodWith: selector: and:()
[+createMethodWith: selector: and:() | [+createMethodWith: selector: and:() [+createMethodWith: selector: and:() | |+generateMethodWith:()

ReturnCacheWithPreconditionCheckingPattern ReturnCachePattern After n
+initialize() +initialize() +initialize() +initialize()
+createMethodWith: selector: and:() +createMethodWith: selector: and:() hodWith:() With:()

14 /17 S. Vidal, C. Marcos, A. Bergel, G. Arévalo Memoization Aspects: a Case Study

lotivat Results

Maintainability

The contribution of this approach is twofold:

© The mechanism of encapsulation and injection can be used to
refactor the current Mondrian caches improving the code reuse.

@ The code legibility is increased because the Cache Concern is
extracted from the main concern leaving a cleaner code.

15 /17 S. Vidal, C. Marcos, A. Bergel, G. Arévalo Memoization Aspects: a Case Study

| e ‘ ‘ ! 3 Results

Performance

120 200
180 B
160
140
120
100
80
60
40
20

0
100 200 300 400 500 600 700 800 900 10001600 10 20 30 40 50 60 70 80 90 100
Nodes m Before refactoring

Time in ms.

Edges
After refactoring

C. Marcos, A. Bergel, G. Arévalo Memoization Aspects: a Case S

Results

Patterns identifiad

[T Y ——— -

@ The cod

e criginal method & copeed inta the new one

~ aalt ahape compotaboendaFar: welf.

| ._|||I_f_|| | 1||||||

@7FAST

Fundacion Argentina de Smalltalk

17 /17 S. Vidal, C. Marcos, A. Bergel, G. Arévalo Memoization Aspects: a Case Study

	Motivation
	First Approach
	Aspect-based Refactoring
	Results

