What we are doing?
00
:

Component-based programming Scl Exil
[}

Summarize
000000

4
¥ %;L‘
v 9
A Smalltalk implementation of EXIL, a Component-based

Programming Language

Petr Spacek

in cooperation with
Christophe Dony, Chouki Tibermacine and Luc Fabresse

LIRMM,
University of Montpellier 2
petr.spacek@lirmm. fr

23rd of August, 2011

What we are doing?

o0

[©]

Component-based programming

Scl

Exil

Summarize

000000

WHAT WE ARE

DOING?

MOTIVATION

ublic class CParser implements IAST, BindingControlier {
private ITokenStream scanner;

Token currentToken:

1/ Fractal Bndingonirolerimplementation
1/ configuraton concern
bl St {1t e Sl Ccamnr)
public Object lookupFe (String N

T iharme sqsaetocamnar) (e scannor)

else rotum null

i
public void bindFo(String itfName, Object tValue) {
it {scanner =

ICompile

)
public void unbindFc(Sting fName)(
i (tiName.equals(‘scanner’) { scanner = nul:

Itunctional concern

public AST-Node getRoot {
return oxpression();

Compiler

ICharacterSiream

cParser :Parser

eScaner : Scamer

£

]

» Combine a modeling (architecture description) language
and a programming language

What we are doing? Component-based programming Scl Exil Summarize

o0 [©] 00 000000
:

WHAT WE ARE DOING? - APPROACH

» Our approach: components

» Applying component-paradigm into a programming
language

» With such a language:

» design components - design for reuse
» design applications using components - design by reuse

“A software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. A
software component can be deployed independently and is subject to

composition by third parties”
Szyperski C. Component software: beyond object-oriented programming. 2nd ed., Reading, MA: Addison-Wesley;
2002

What we are doing? Component-based programming Scl Exil Summarize
00 ° 00 000000
|

IN GENERAL

[
e nelio()}

| service hello() {] .
| CHellloer sayiello. | ExilHelloerApp $:|

helloer

cPrinter : ExilTranscriptPrinter
cHelloer : ExilHelloer E " Ea

printer

~{service print(s) { |
Transcript show: s; cr.

| service sayHello() {
/ printer print: #('Hello World').
,,,,,,,,,,,, A 1

| service clear() {
,,,,,,,,,,,,,,,,,,,,, i Transcript clear.

[SEEEREE

» Explicit external contract with an environment

» requirements - what is demanded from the environment
» provisions - what is offered to the environment

» Explicit architecture

What we are doing? Component-based programming Scl Exil Summarize

00 [©] [1e] 000000
:

SCL - OVERVIEW 1

» Scl - Simple Component-oriented language
» Invented by Luc Fabresse (presented in ESUG’06)
» EXIL extends Scl towards to a modeling language

(SclBuilder new: #SclHelloer
category: 'Scl-Examples-HelloWorld')
requiredPorts: #(#Printer);
providedPorts: {(#Helloer->#(#sayHello))}

What we are doing? Component-based programming Scl Exil Summarize

00 [©] (el J 000000
:

SCL - OVERVIEW 2

» Component
» Black box
» Ports described by interfaces
» Provides and requires services
Port
» Unidirectional interaction point
» Plug

v

Service

» Functionality
» Like a method or a set of methods

v

Interface

» Describes the valid uses of a port
» Service signatures sets, protocols, contracts, ...

v

What we are doing? Component-based programming Scl Exil Summarize
00 [} [e]e) @00000

EXIL- OVERVIEW

» Component = instance of tatartace Tcomle {
descriptor ’

component descriptor Parser extends AbstractParser {...}

» Reusable interfaces component descriptor Conpiler {
provide {
» Ports ettt
}
» described by list of services require { }
or by interfaces internalconponents {
CcVG->CodeGenerator;
» roles charser-sharsers

cScanner->Scanner;

» provided

> required internalConnections {

connect cParser.scanner to cScanner.tokens;
connect cVG.ast to cParser.ast;

» Connection !

service compile(source) {
(cScanner port: source) setSource: source.
» Internal components (cVG port: main) getcode.
}
}

What we are doing? Component-based programming Scl Exil Summarize
00 [} [e]e) 000000

EXIL- NEW FEATURES

to support modeling

» Explicit architecture interface Tcompile {
compile(source)
» extracting architecture from ’
the COde component descriptor Parser extends AbstractParser {...}

component descriptor Compiler {

s provide {
» Inheritance maines sconpile(sounce)}
//or main->ICompile

» sub-descriptors: a descriptor

may extend an another reauire {3
descriptor e sCodebenarators
. . q. . cParser->Parser;
» extension and specialization | cscomen->Scamer;
of:

internalConnections {
> P connect cParser.scanner to cScanner.tokens;
orts connect cVG.ast to cParser.ast;

.)
» Services
service compile(source) {
» Internal components & (cScanner port: source) setsource: source.

. (cVG port: main) getCode.
Connections)

What we are doing?

Component-based programming Scl Exil Summarize
00 [} [e]e) 00@000

EXIL- INHERITANCE

problem with additional requirements & substitution

Person

def service1
def service2

Brain

heart->Heart

ff’l"f‘ltrc
=

Person

def servicel
def service2

OverclockedBrain

What we are doing? Component-based programming Scl Exil Summarize

00 [©] 00 000@00
:

EXIL- IMPLEMENTATION

» EXIL parser uses PetitParser framework and PetitSmalltalk
parser
» Compiler - visitor pattern
» Core
» ExilComponent class
» ExilInterface class
» image can be downloaded here:
http:/ /www.lirmm.fr/“spacek/exil (source codes -
SqueakSource download is coming)

What we are doing? Component-based programming Scl Exil Summarize
00 [} [e]e) 000080

EXIL- LIVE EXAMPLE

| service hello() {

£

cellloer sayHello. i ExilHelloerApp E

fosivice print(string) |

iservice clear() _____. i
helloer /
cPrinter : ExilTranscriptPrinter
cHelloer : ExilHelloer =] " g]
printer
. ~.J service print(s) {
service sayHello() {] Transcript show:
printer print: #('Hello World'). | }
- } |
P . ! service clear() {
| servic §
[Transcript clear.
)

u]

]
I

w
i

b

What we are doing? Component-based programming Scl Exil
00 [} 00000e
:

Summarize

EXIL- FUTURE WORK

» Reflexivity level - goal = write model analysis and
transformations in EXIL

» Architecture constrains

» Visual development

What we are doing?

Component-based programming Scl Exil Summarize
00 [} [e]e) 000000
:
SUMMARIZE
EXIL

» is a component-oriented language

» which merges modeling and programming
users

» and brings component-paradigm closer to the Smalltalk

What we are doing? Component-based programming Scl Exil Summarize
00 [} [e]e) 000000
:

SUMMARIZE

EXIL
» is a component-oriented language
» which merges modeling and programming

» and brings component-paradigm closer to the Smalltalk
users

Thank you

	What we are doing?
	Motivation
	Approach

	Component-based programming
	Component-based programming

	Scl
	Overview 1
	Overview 2

	Exil
	Overview
	New Features
	Inheritance
	Implementation
	Live example
	Future work

	Summarize

