
Diagnosis and semi-automatic correction of

detected design inconsistencies in source code

Sergio Castro
RELEASeD lab

Université catholique de Louvain
sergio.castro@uclouvain.be

Advisor: Kim Mens

1

1Monday 31 August 2009

mailto:sergio.castro@uclouvain.be
mailto:sergio.castro@uclouvain.be
mailto:sergio.castro@uclouvain.be
mailto:sergio.castro@uclouvain.be

An inconsistency example

AbstractAction

- (abstract) perform
- isUndoable

 ^false.

- perform
- isUndoable

^true.

- perform
- undoAction

- perform
- undoAction
- isUndoable

 ^aBlock value.

- perform
- undoAction
- isUndoable

^true.

2

Dummy

Action

Experimental

Action

DrawAction QueryAction

2Monday 31 August 2009

An inconsistency example

AbstractAction

- (abstract) perform
- isUndoable

 ^false.

- perform
- isUndoable

^true.

- perform
- undoAction

- perform
- undoAction
- isUndoable

 ^aBlock value.

- perform
- undoAction
- isUndoable

^true.

2

Dummy

Action

Experimental

Action

DrawAction QueryAction

The command design pattern

2Monday 31 August 2009

An inconsistency example

AbstractAction

- (abstract) perform
- isUndoable

 ^false.

- perform
- isUndoable

^true.

- perform
- undoAction

- perform
- undoAction
- isUndoable

 ^aBlock value.

- perform
- undoAction
- isUndoable

^true.

2

Consistency property:
! Action, an undoAction method should be provided

⇔ the isUndoable method returns true

Dummy

Action

Experimental

Action

DrawAction QueryAction

The command design pattern

2Monday 31 August 2009

An inconsistency example

AbstractAction

- (abstract) perform
- isUndoable

 ^false.

- perform
- isUndoable

^true.

- perform
- undoAction

- perform
- undoAction
- isUndoable

 ^aBlock value.

- perform
- undoAction
- isUndoable

^true.

2

Consistency property:
! Action, an undoAction method should be provided

⇔ the isUndoable method returns true

Dummy

Action

Experimental

Action

DrawAction QueryAction

The command design pattern

2Monday 31 August 2009

An inconsistency example

AbstractAction

- (abstract) perform
- isUndoable

 ^false.

- perform
- isUndoable

^true.

- perform
- undoAction

- perform
- undoAction
- isUndoable

 ^aBlock value.

- perform
- undoAction
- isUndoable

^true.

2

Consistency property:
! Action, an undoAction method should be provided

⇔ the isUndoable method returns true

Dummy

Action

Experimental

Action

DrawAction QueryAction

- isUndoable
^true.

The command design pattern

2Monday 31 August 2009

An inconsistency example

AbstractAction

- (abstract) perform
- isUndoable

 ^false.

- perform
- isUndoable

^true.

- perform
- undoAction

- perform
- undoAction
- isUndoable

 ^aBlock value.

- perform
- undoAction
- isUndoable

^true.

2

Consistency property:
! Action, an undoAction method should be provided

⇔ the isUndoable method returns true

Dummy

Action

Experimental

Action

DrawAction QueryAction

- isUndoable
^true.

- undoAction

The command design pattern

2Monday 31 August 2009

An inconsistency example

AbstractAction

- (abstract) perform
- isUndoable

 ^false.

- perform
- isUndoable

^true.

- perform
- undoAction

- perform
- undoAction
- isUndoable

 ^aBlock value.?
- perform
- undoAction
- isUndoable

^true.

2

Consistency property:
! Action, an undoAction method should be provided

⇔ the isUndoable method returns true

Dummy

Action

Experimental

Action

DrawAction QueryAction

- isUndoable
^true.

- undoAction

The command design pattern

2Monday 31 August 2009

Consistency property:
! Action, an undoAction method should be provided

⇔ the isUndoable method returns true

User-defined
consistency

An inconsistency example
The command design pattern

3

3Monday 31 August 2009

Inconsistency management
activities

Predefined
consistency
definitions

Inconsistency
detection

Diagnosing

Correcting

Many tools offering support for
management of predefined

consistencies.

Such as Lint,
CheckStyle, etc

4

4Monday 31 August 2009

Inconsistency management
activities

User-defined
consistency
definitions

Inconsistency
detection

Diagnosing

Correcting

We propose a general
approach for the management of
user-defined consistencies.

5

5Monday 31 August 2009

Inconsistency management
activities

Inconsistency
detection

Diagnosing

Correcting

} IntensiVE

} Corrective
framework

Explaining
abnormal observations and

suggesting corrective actions

Defining and verifying
consistency rules

6

Already used for inconsistency
management in other areas of SE (e.g.,

requirements engineering, UML
modelling, data bases)

User-defined
consistency
definitions

6Monday 31 August 2009

Inconsistency management
activities

Inconsistency
detection

Diagnosing

Correcting

} IntensiVE

} Corrective
framework

Explaining
abnormal observations and

suggesting corrective actions

Defining and verifying
consistency rules

6

Already used for inconsistency
management in other areas of SE (e.g.,

requirements engineering, UML
modelling, data bases)

(http://www.intensive.be)

User-defined
consistency
definitions

6Monday 31 August 2009

http://www.intensive.be
http://www.intensive.be

7

IntensiVE

(http://www.intensive.be)

Inconsistency
detection

User-defined
consistency
definitions

7Monday 31 August 2009

http://www.intensive.be
http://www.intensive.be

Defining and verifying
constraints using IntensiVE

• Many kind of checks.

• Defined as relationships among sets
of source code elements.

• Sets are intensionally defined and
referred as Intensional Views.

8

with queries
over source code

8Monday 31 August 2009

View with
classes returning

true in the
isUndoable

method

View with
classes

implementing the
undoAction

method

Verification of the Undoable Actions
constraint

9

Consistency property:
! Action, an undoAction method should be provided

⇔ the isUndoable method returns true

9Monday 31 August 2009

View with
classes returning

true in the
isUndoable

method

View with
classes

implementing the
undoAction

method

Verification of the Undoable Actions
constraintQUERY:

classChainReallyUnderstandsMethodWith
Name(?class,?method,isUndoable),

 methodReturnsBoolean(?method,[true])

9

Consistency property:
! Action, an undoAction method should be provided

⇔ the isUndoable method returns true

9Monday 31 August 2009

View with
classes returning

true in the
isUndoable

method

View with
classes

implementing the
undoAction

method

Verification of the Undoable Actions
constraintQUERY:

classChainReallyUnderstandsMethodWith
Name(?class,?method,isUndoable),

 methodReturnsBoolean(?method,[true])

QUERY:
classChainReallyUnderstandsMethodWith

Name(?class,?,undoAction)

9

Consistency property:
! Action, an undoAction method should be provided

⇔ the isUndoable method returns true

9Monday 31 August 2009

View with
classes returning

true in the
isUndoable

method

View with
classes

implementing the
undoAction

method

If consistent, any class in the
first view should be also in the

second, and vice versa

Verification of the Undoable Actions
constraintQUERY:

classChainReallyUnderstandsMethodWith
Name(?class,?method,isUndoable),

 methodReturnsBoolean(?method,[true])

QUERY:
classChainReallyUnderstandsMethodWith

Name(?class,?,undoAction)

9

Consistency property:
! Action, an undoAction method should be provided

⇔ the isUndoable method returns true

9Monday 31 August 2009

Verification of alternative views

AbstractAddAction

AddClassificationAction

ExperimentalAction

View with classes
returning true in the
isUndoable method

View with classes
implementing the

undoAction method

AbstractAddAction

AddClassificationAction

QUERY:
classChainReallyUnderstandsMethodWith

Name(?class,?method,isUndoable),
 methodReturnsBoolean(?method,[true])

QUERY:
classChainReallyUnderstandsMethodWith

Name(?class,?,undoAction)

10

Consistency property:
! Action, an undoAction method should be provided

⇔ the isUndoable method returns true

10Monday 31 August 2009

Verification of alternative views

AbstractAddAction

AddClassificationAction

ExperimentalAction

View with classes
returning true in the
isUndoable method

View with classes
implementing the

undoAction method

AbstractAddAction

AddClassificationAction

?

QUERY:
classChainReallyUnderstandsMethodWith

Name(?class,?method,isUndoable),
 methodReturnsBoolean(?method,[true])

QUERY:
classChainReallyUnderstandsMethodWith

Name(?class,?,undoAction)

10

Consistency property:
! Action, an undoAction method should be provided

⇔ the isUndoable method returns true

10Monday 31 August 2009

IntensiVE
(consistency checking)

11

11Monday 31 August 2009

IntensiVE
(consistency checking)

{

11

Classes that
return true in the
isUndoable method

11Monday 31 August 2009

IntensiVE
(consistency checking)

{ {

11

Classes that
return true in the
isUndoable method

Classes that
implement the

undoAction method

11Monday 31 August 2009

IntensiVE
(consistency checking)

12

This class does
not return true at the

isUndoable method

But implements an
undoAction method

12Monday 31 August 2009

IntensiVE
(consistency checking)

12

This class does
not return true at the

isUndoable method

But implements an
undoAction method

ExperimentalAction

12Monday 31 August 2009

IntensiVE
(diagnosing inconsistencies)

13

Why
ExperimentalAction is

not a result of the query
defining this set?

OR: Why
ExperimentalAction is a
result of the query defining

this set?

ExperimentalAction

13Monday 31 August 2009

Inconsistency management
activities

Inconsistency
detection

Diagnosing

Correcting

} IntensiVE

} Corrective
framework

Explaining
abnormal observations and

suggesting corrective actions

Defining and verifying
consistency rules

14

Already used for inconsistency
management in other areas of SE (e.g.,

requirements engineering, UML
modelling, data bases)

(http://www.intensive.be)

User-defined
consistency
definitions

14Monday 31 August 2009

http://www.intensive.be
http://www.intensive.be

Corrective
framework

15

Diagnosing

Correcting

15Monday 31 August 2009

What is diagnosis?

16

Generating
hypotheses
explaining
abnormal

observations

Abductive
reasoning

16Monday 31 August 2009

What is diagnosis?

16

Generating
hypotheses
explaining
abnormal

observations

Abductive
reasoning

16Monday 31 August 2009

What is diagnosis?

16

Generating
hypotheses
explaining
abnormal

observations

Abductive
reasoning

one of the
fundamental forms of

human reasoning
according to Pierce

16Monday 31 August 2009

Abduction is suitable for

• Generating hypotheses
that would explain an
evidence.

• Explanations expressed in
terms of certain
predicates, declared before
hand as abducibles.

17

17Monday 31 August 2009

Abduction is suitable for

• Generating hypotheses
that would explain an
evidence.

• Explanations expressed in
terms of certain
predicates, declared before
hand as abducibles.

17

False
predicates

that could be
true

17Monday 31 August 2009

Abduction is suitable for

• Generating hypotheses
that would explain an
evidence.

• Explanations expressed in
terms of certain
predicates, declared before
hand as abducibles.

17

True
predicates

that could be
false

False
predicates

that could be
true

17Monday 31 August 2009

Abducibles

Abduction is suitable for

• Generating hypotheses
that would explain an
evidence.

• Explanations expressed in
terms of certain
predicates, declared before
hand as abducibles.

17

True
predicates

that could be
false

False
predicates

that could be
true

We can think in
“Abducibles” as
“Correctables”

17Monday 31 August 2009

Abducibles

bird(?x).

broken-wing(?x).

An example of abduction

Theory:

flies(?x) if bird(?x), not (ab(?x))

ab(?x) if broken-wing(?x)

18

18Monday 31 August 2009

Abducibles

bird(?x).

broken-wing(?x).

An example of abduction

Theory:

flies(?x) if bird(?x), not (ab(?x))

ab(?x) if broken-wing(?x)

18

Observation:

flies(opus)

18Monday 31 August 2009

Abducibles

bird(?x).

broken-wing(?x).

An example of abduction

Theory:

flies(?x) if bird(?x), not (ab(?x))

ab(?x) if broken-wing(?x)

18

Observation:

flies(opus)

failing

18Monday 31 August 2009

Abducibles

bird(?x).

broken-wing(?x).

An example of abduction

Theory:

flies(?x) if bird(?x), not (ab(?x))

ab(?x) if broken-wing(?x)

18

Observation:

flies(opus)

bird(opus)
added to

our theory

failing

18Monday 31 August 2009

Abducibles

bird(?x).

broken-wing(?x).

An example of abduction

Theory:

flies(?x) if bird(?x), not (ab(?x))

ab(?x) if broken-wing(?x)

18

Observation:

flies(opus)

bird(opus)
added to

our theory

succeeding

18Monday 31 August 2009

Abducibles

bird(?x).

broken-wing(?x).

An example of abduction

Theory:

flies(?x) if bird(?x), not (ab(?x))

ab(?x) if broken-wing(?x)

bird(tweety)

broken-wing(tweety)

19

19Monday 31 August 2009

Abducibles

bird(?x).

broken-wing(?x).

An example of abduction

Theory:

flies(?x) if bird(?x), not (ab(?x))

ab(?x) if broken-wing(?x)

bird(tweety)

broken-wing(tweety)

19

Observation:

flies(tweety)

19Monday 31 August 2009

Abducibles

bird(?x).

broken-wing(?x).

An example of abduction

Theory:

flies(?x) if bird(?x), not (ab(?x))

ab(?x) if broken-wing(?x)

bird(tweety)

broken-wing(tweety)

19

Observation:

flies(tweety)

failing

19Monday 31 August 2009

Abducibles

bird(?x).

broken-wing(?x).

An example of abduction

Theory:

flies(?x) if bird(?x), not (ab(?x))

ab(?x) if broken-wing(?x)

bird(tweety)

broken-wing(tweety)

19

Observation:

flies(tweety)

retracted from
our theory

failing

19Monday 31 August 2009

Abducibles

bird(?x).

broken-wing(?x).

An example of abduction

Theory:

flies(?x) if bird(?x), not (ab(?x))

ab(?x) if broken-wing(?x)

bird(tweety)

broken-wing(tweety)

19

Observation:

flies(tweety)

retracted from
our theory

succeeding

19Monday 31 August 2009

How to choose abducible
predicates

?-classChainReallyUnderstandMethodWithName(ExperimentalAction, ?m, undoAction),

methodWithBooleanReturnStatement(?m, true)

:-superclassOf(?s, ExperimentalAction),

classChainReallyUnderstandMethodWithName(?s, ?m, undoAction),

methodWithBooleanReturnStatement(?m, true)

:-methodWithNameInClass(?m, undoAction, ExperimentalAction),

methodWithBooleanReturnStatement(?m, true)

20

- predicates that denote
basic structural
relationships
- we know for sure that
they will be evaluated as
part of the resolution
process of the query

20Monday 31 August 2009

How to choose abducible
predicates

?-classChainReallyUnderstandMethodWithName(ExperimentalAction, ?m, undoAction),

methodWithBooleanReturnStatement(?m, true)

:-superclassOf(?s, ExperimentalAction),

classChainReallyUnderstandMethodWithName(?s, ?m, undoAction),

methodWithBooleanReturnStatement(?m, true)

:-methodWithNameInClass(?m, undoAction, ExperimentalAction),

methodWithBooleanReturnStatement(?m, true)

20

Primitive predicates that can be corrected

- predicates that denote
basic structural
relationships
- we know for sure that
they will be evaluated as
part of the resolution
process of the query

20Monday 31 August 2009

?-classChainReallyUnderstandMethodWithName(ExperimentalAction, ?m, undoAction),

methodWithBooleanReturnStatement(?m, true)

:-superclassOf(?s, ExperimentalAction),

classChainReallyUnderstandMethodWithName(?s, ?m, undoAction),

methodWithBooleanReturnStatement(?m, true)

:-methodWithNameInClass(?m, undoAction, ExperimentalAction),

methodWithBooleanReturnStatement(?m, true)

21

Primitive predicates that can be corrected

How to choose abducible
predicates

21Monday 31 August 2009

?-classChainReallyUnderstandMethodWithName(ExperimentalAction, ?m, undoAction),

methodWithBooleanReturnStatement(?m, true)

:-superclassOf(?s, ExperimentalAction),

classChainReallyUnderstandMethodWithName(?s, ?m, undoAction),

methodWithBooleanReturnStatement(?m, true)

:-methodWithNameInClass(?m, undoAction, ExperimentalAction),

methodWithBooleanReturnStatement(?m, true)

21

Primitive predicates that can be corrected

How to choose abducible
predicates

21Monday 31 August 2009

Our framework allows ...

• The definition of abducible predicates.

• Declaration of multiple corrective actions.

• Generation of hypotheses explaining
inconsistencies.

• Semi-automatic execution of corrective
actions.

22

22Monday 31 August 2009

Defining positive explanations
(new facts will be added to the theory)

23

23Monday 31 August 2009

Defining positive explanations
(new facts will be added to the theory)

23

Abducible predicate:
in(methodWithBooleanReturnStatement(+?

method,+?boolean))

23Monday 31 August 2009

Defining positive explanations
(new facts will be added to the theory)

24

24Monday 31 August 2009

Defining positive explanations
(new facts will be added to the theory)

24

Corrective action:
[[?class compile: (?selector asString, ‘^’,?boolean

asString)]]

24Monday 31 August 2009

Correcting inconsistencies

25

25Monday 31 August 2009

Correcting inconsistencies

25

Correct

25Monday 31 August 2009

The corrective browser

26

26Monday 31 August 2009

The corrective browser

26

Corrective
action name

26Monday 31 August 2009

The corrective browser

26

Corrective
action name

Textual description

26Monday 31 August 2009

The corrective browser

26

Corrective
action name

Textual description

Visualization in the proof
three of where the

corrective action was found

26Monday 31 August 2009

Visualisation of the nodes with
corrective actions

27

Color code:
•Red filling means failure.

•Thick green border means
availability of corrective

actions.

27Monday 31 August 2009

Visualisation of the nodes with
corrective actions

27

Color code:
•Red filling means failure.

•Thick green border means
availability of corrective

actions.

27Monday 31 August 2009

Future work

• How to choose among different solutions.

• Detect solutions that could cause new
inconsistencies.

28

28Monday 31 August 2009

Conclusions

• We can infer solutions from the rules that
define consistencies.

• A library of “primitive” solutions to small
problems should be provided.

• These solutions can be composed and
reused across distinct problems.

29

29Monday 31 August 2009

Many Thanks !

Questions and feedback are welcomed

30

30Monday 31 August 2009

