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An inconsistency example

AbstractAction

- (abstract) perform
- isUndoable 

  ^false.
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- perform
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  ^aBlock value.

- perform
- undoAction
- isUndoable

^true.
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Consistency property:
! Action, an undoAction method should be provided 

⇔ the isUndoable method returns true

User-defined 
consistency

An inconsistency example
The command design pattern
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Inconsistency management 
activities

Predefined 
consistency
definitions

Inconsistency 
detection

Diagnosing

Correcting

Many tools offering support for 
management of predefined 

consistencies.

Such as Lint, 
CheckStyle, etc
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Inconsistency management 
activities

User-defined
consistency 
definitions

Inconsistency 
detection

Diagnosing

Correcting

We propose a general 
approach for the management of 
user-defined consistencies.

5

5Monday 31 August 2009



Inconsistency management 
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detection
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Correcting

} IntensiVE

} Corrective 
framework

Explaining 
abnormal observations and 

suggesting corrective actions 

Defining and verifying 
consistency rules
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IntensiVE

( http://www.intensive.be )

Inconsistency 
detection

User-defined
consistency 
definitions
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Defining and verifying 
constraints using IntensiVE

• Many kind of checks.

• Defined as relationships among sets 
of source code elements.

• Sets are intensionally defined and 
referred as Intensional Views.

8

with queries 
over source code
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View with 
classes returning 

true in the 
isUndoable 

method

View with 
classes 

implementing the 
undoAction 

method

Verification of the Undoable Actions 
constraint
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Consistency property:
! Action, an undoAction method should be provided 

⇔ the isUndoable method returns true
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Verification of alternative views

AbstractAddAction

AddClassificationAction

ExperimentalAction

View with classes 
returning true in the 
isUndoable method

View with classes 
implementing the 

undoAction method

AbstractAddAction

AddClassificationAction

QUERY:
classChainReallyUnderstandsMethodWith

Name(?class,?method,isUndoable),
 methodReturnsBoolean(?method,[true])

QUERY:
classChainReallyUnderstandsMethodWith

Name(?class,?,undoAction)
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IntensiVE
(consistency checking)
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IntensiVE
(consistency checking)
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But implements an 
undoAction method
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IntensiVE
(diagnosing inconsistencies)

13

Why 
ExperimentalAction is 

not a result of the query 
defining this set?

OR: Why 
ExperimentalAction is a 
result of the query defining 

this set?

ExperimentalAction
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Inconsistency management 
activities

Inconsistency 
detection
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Correcting
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Corrective 
framework
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Diagnosing

Correcting
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What is diagnosis?

16

Generating 
hypotheses 
explaining 
abnormal 

observations

Abductive 
reasoning
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What is diagnosis?

16

Generating 
hypotheses 
explaining 
abnormal 

observations

Abductive 
reasoning

one of the 
fundamental forms of 

human reasoning 
according to Pierce
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Abduction is suitable for

• Generating hypotheses 
that would explain an 
evidence.

• Explanations expressed in 
terms of certain 
predicates, declared before 
hand as abducibles.
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Abducibles

Abduction is suitable for

• Generating hypotheses 
that would explain an 
evidence.

• Explanations expressed in 
terms of certain 
predicates, declared before 
hand as abducibles.

17

True 
predicates 

that could be 
false

False 
predicates 

that could be 
true

We can think in 
“Abducibles” as 
“Correctables”
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Abducibles

bird(?x).

broken-wing(?x).

An example of abduction

Theory:

flies(?x) if bird(?x), not (ab(?x))

ab(?x) if broken-wing(?x)

18
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How to choose abducible 
predicates

?-classChainReallyUnderstandMethodWithName(ExperimentalAction, ?m, undoAction), 

methodWithBooleanReturnStatement(?m, true)

:-superclassOf(?s, ExperimentalAction), 

classChainReallyUnderstandMethodWithName(?s, ?m, undoAction), 

methodWithBooleanReturnStatement(?m, true)

:-methodWithNameInClass(?m, undoAction, ExperimentalAction),

methodWithBooleanReturnStatement(?m, true)

20

- predicates that denote 
basic structural 
relationships
- we know for sure that 
they will be evaluated as 
part of the resolution 
process of the query
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Our framework allows ...

• The definition of abducible predicates.

• Declaration of multiple corrective actions.

• Generation of hypotheses explaining 
inconsistencies.

• Semi-automatic execution of corrective 
actions.

22
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Defining positive explanations
(new facts will be added to the theory)
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Abducible predicate:
in(methodWithBooleanReturnStatement(+?

method,+?boolean))
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Defining positive explanations
(new facts will be added to the theory)
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Defining positive explanations
(new facts will be added to the theory)
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Corrective action:
[[?class compile: (?selector asString, ‘^’,?boolean 

asString)]]
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Correcting inconsistencies
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Correcting inconsistencies
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Correct
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The corrective browser

26

26Monday 31 August 2009



The corrective browser
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The corrective browser
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The corrective browser
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Corrective 
action name

Textual description

Visualization in the proof 
three of where the 

corrective action was found
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Visualisation of the nodes with 
corrective actions

27

Color code:
•Red filling means failure.

•Thick green border means 
availability of corrective 

actions.
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Future work

• How to choose among different solutions.

• Detect solutions that could cause new 
inconsistencies.
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Conclusions

• We can infer solutions from the rules that 
define consistencies.

• A library of “primitive” solutions to small 
problems should be provided.

• These solutions can be composed and 
reused across distinct problems.
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Many Thanks !

Questions and feedback are welcomed
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