
Object-Relational Mapping with SqueakSave

Thomas Kowark Robert Hirschfeld Michael Haupt
Hasso-Plattner-Institut für Softwaresystemtechnik, Universität Potsdam

{firstname.lastname}@hpi.uni-potsdam.de

Abstract
Object persistence is an important aspect of application ar-
chitectures and development processes. Different solutions
in this field evolved over the last decades and new ap-
proaches are still subject to research. While object-oriented
databases become increasingly popular, the usage of rela-
tional databases through an object-relational mapping layer
is still one of the most widely adopted techniques. However,
most object-relational frameworks require a considerable
amount of mapping descriptions between object models and
relational database schemas. This additional layer has to be
maintained by developers along with the object model itself.

In this paper, we present an approach to object-relational
mapping that utilizes the introspection and intercession fea-
tures of Smalltalk to free developers from manually creating
those mapping descriptions. The presented framework ana-
lyzes the existing models and automatically deduces suitable
database schemas. Thus, it aids development processes by
neglecting the need for a separate mapping layer.

A detailed introduction of the programming interface is
followed by a description of the framework’s internal im-
plementation details. Additionally, the performance of the
framework is evaluated through a comparison against a com-
parable system for the same programming environment.

Categories and Subject Descriptors D.2 [Software En-
gineering]: D.2.2 Design Tools and Techniques Object-
Oriented Design methods D.2.11 Software Architectures
Data abstraction

General Terms Design, Experimentation

Keywords Object-relational mapping, impedance mismatch,
automatic schema creation

[Copyright notice will appear here once ’preprint’ option is removed.]

1. Introduction
Maintaining application data in persistent storage spaces is
an inherent requirement of most applications. Especially
the web applications that have evolved over the past few
years need to handle steadily growing and evolving data
schemes. While this requirement obviously has an impact on
the complexity and execution speed of applications, it also
influences their development processes.

One of the main criteria for the choice of a suitable
persistence strategy is project scope. Enterprise applica-
tions rely on robustness, execution speed and scalability [3],
whereas smaller projects additionally focus on the flexibility
to quickly adapt to changes in the object model [2]. Thus,
development teams need a persistence solution that does not
impede their development process, but allows them to imple-
ment new features in a simple and straightforward manner.

In addition to project scope, decisions regarding the de-
velopment environment and language also influence the
choice between available persistence strategies. Especially
dynamically-typed languages like Smalltalk vastly reduce
turn-around and implementation times by offering a pro-
gramming paradigm that embraces change of existing imple-
mentations [29] and strong meta-programming and reflective
features. The latter, however, impose non-trivial challenges
for the implementation of persistence management systems.

Today many persistence strategies are available [5, 11,
18, 24, 28]. Their underlying data storage technologies cover
a wide spectrum, ranging from purely relational databases
over relational databases enriched with object-oriented tech-
niques, to completely object-oriented implementations. The
ease-of-integration of those solutions into dynamic object-
oriented applications differs strongly [15] as the mismatch
between the paradigms founding the application develop-
ment and the persistence framework varies in its extent [2].

A widely adopted solution within this field is the usage of
relational databases along with an object-relational mapping
(O/R mapping) layer that bridges the gap between an appli-
cation’s object model and the relational schema of the under-
lying database [1]. Generic O/R mapping frameworks cover
a variety of aspects reaching from basic CRUD1 function-
ality to more elaborate features like transaction processing.

1 Create, Read, Update, Delete

Object-Relational Mapping with SqueakSave 1 2009/9/8

However, most available systems require extensive meta-
description of the object model in order to be able to perform
the aforementioned tasks.

Such descriptions impose a considerable burden on ap-
plication development. Each change of the object model im-
plies an alteration of the description layer [21, 22]. Seamless
integration of O/R mapping frameworks into applications is
moreover influenced by the degree of intrusiveness into the
existing object and programming model. A high degree of
transparency of the underlying database structures and sys-
tems is desirable [20]. Still, existing implementations vastly
differ in the extent of implementation detail exposure to the
user. This includes query APIs that are not integrated into
the chosen programming language as well as the need to al-
ter inheritance hierarchies or even object layouts in order to
store objects in relational databases.

Within this paper, we present a framework that uses
the strong introspection and intercession capabilities of
Smalltalk in order to free developers from the creation of
extensive object model meta-description. Based on the ob-
jects created during application runtime the framework au-
tomatically deduces suitable database schemas that are also
adopted whenever developers change their object models.
The entire framework thereby remains non-intrusive in a
sense that no changes to existing object models have to be
performed and queries on the data space can be carried out
by using the well know semantics of the Smalltalk collec-
tion protocol. By that, the system combines the technique
of object-relational mapping with Smalltalk development
paradigms and provides an object-oriented database like be-
havior within a relational-database access layer.

Squeak2, an open-source Smalltalk dialect, has been cho-
sen as the development environment for the implementation
of the framework due to its focus on educational purposes
and the availability on a variety of platforms. The proposed
framework is named SqueakSave3.

The first part of the paper presents the workflow of the
integration of SqueakSave into an application. Following
those usage descriptions, the architecture of the framework
is discussed with a focus on implementation details of the
main workflows. After the performance of the system is
compared against a popular O/R mapping solution available
for Squeak, the paper concludes with remarks about related
work within the field of O/R mapping in dynamically-typed
object oriented environments and an outlook about future ex-
tensions that could further improve the usability and perfor-
mance of the framework.

2. SqueakSave
In the following, an introduction to the basic usage patterns
of the SqueakSave O/R mapper is provided. A simple we-
blog example application accompanies the description in or-

2 http://www.squeak.org
3 http://www.hpi-web.de/swa/squeaksource/SqueakSave.html

-email : string

-username : string

-password : string

User

Admin

Author

-tit le : string

-lastUpdate : dateTime

Blog

-tit le : string

-text : string

BlogPost

-author : string

-tit le : string

-text : string

Comment

1

1

+b log

0..*

1..*

+administeredBlogs

0..*

1

+comments

1

0..* +followers

0..*

1

+blogPosts

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 1. Class Structure of the Example Application.

SqsConfig subclass: #BlogExampleSqsConfig
instanceVariableNames: ’’
classVariableNames: ’’
poolDictionaries: ’’
category: ’BlogExample’

BlogExampleSqsConfig class>>#connectionSpecification
↑ SqsMySQLConnectionSpecification

user: ’admin’
password: ’password’
database: ’blog_example_db’

Listing 1. Configuration Set-Up.

der to ease the understanding of basic features as well as
more elaborated techniques, such as transactions or custom
mapping descriptions.

The class structure of the sample application is depicted
in the UML class diagram [23] in Figure 1. It exhibits the
most common structural challenges that O/R mappers have
to handle within applications [13]: inheritance relationships
and to-one or to-many associations. While the current sec-
tion presents the integration of SqueakSave into the weblog
application, the mapping of those structural details is the
topic of Section 3.

2.1 Basic Persistence Mechanisms
A main requirement for SqueakSave is to provide straight-
forward persistence mechanisms in a very simple manner.
Below, we present the steps that are required in order to set-
up and use the framework for most basic purposes. This in-
cludes means to store objects within the chosen RDBMS and
query for objects based on certain attribute values.

Initial Setup and Configuration. For each class of ob-
jects that need to be persisted, developers have to set-up an
instance of SqsConfiguration . Configuration objects in-
clude numerous properties that determine the behavior of the
framework for the classes they apply to.

In order to register a configuration for the application
classes, it is necessary to create a subclass of SqsConfig .
The name of this subclass has to follow specific conventions
to be recognized by the framework as being valid for a
certain set of classes. To create a configuration for the entire

Object-Relational Mapping with SqueakSave 2 2009/9/8

application, the first part of the class category, which is
normally subdivided by ‘-’ characters [4], has to be the first
part of the class name followed by the suffix SqsConfig.

In the simple use case of the blog example, only the class-
side method connectionSpecification has to be imple-
mented to return valid server access credentials. It deter-
mines which RDBMS is used as target storage for the respec-
tive objects. For each supported system, the framework pro-
vides a specialized SqsConnectionSpecification sub-
class. It provides standard values for port and hostname of
common RDMBS server implementations such as MySQL
or PostgreSQL. The only mandatory data are username,
password, and the name of the target database. It is important
that the user account provided for accessing the database has
the privileges to create, alter, and drop tables, since Squeak-
Save constantly reorganizes the table structure according to
changes within the application classes. The complete con-
figuration class for the example configuration is depicted in
Listing 1.

Following the aforementioned naming conventions, it
is also possible to create different configurations for sub-
categories of the application by extending the category spe-
cific part of the class name prefix.

If the configuration itself has to be altered, it is possible to
re-implement the configuration method on the class side
of the configuration class. Additionally, the configuration
method can be implemented on the class side of each appli-
cation class, thereby providing the most fine-grained way of
setting up configurations.

While it would be more compliant with object-oriented,
and especially Smalltalk, principles to directly connect the
class category with its configuration [17], this is not possible
within Squeak, since the category is only identified as a
string and not accessible as a first class object.

Persisting Objects. Convention-based setup of configura-
tion classes is essential to enable simple storing of objects.
By extending the Object class, methods have been intro-
duced that implement the data-modifying CRUD operations:
creating, updating, and deleting objects. As a consequence
of this ‘monkey-patching’4 any object, whose class is a sub-
class of Object , within the application can be stored and
updated by sending it the save message. Since no database
session or connection specification is passed as a parame-
ter, this method relies on the previously set-up configuration
objects and will trigger an exception if no configuration is
available for the corresponding class.

Listing 2 presents the creation of an author object along
with the associated blog. The save method will store the
author object itself and the blog within the database and also
create the one-to-one relationship between them.

Removing objects from persistent storage is possible by
using the destroy method. It will remove the database rows

4 http://en.wikipedia.org/wiki/Monkey_patch

author := Author new
password: ’password’;
username: ’testuser ’;
email: ’user@example.org’.

author blog:
(Blog new title: ’My Blog’).

author save.

Listing 2. Basic Object Storage.

(SqsSearch for: User) detect: [:aUser |
aUser username = ’testuser’]

(SqsSearch for: Author) select: [:anAuthor |
anAuthor blog blogPosts size > 10]

(SqsSearch for: Blog) anySatisfy: [:aBlog |
aBlog blogPosts noneSatisfy: [:aBlogPost |

aBlogPost comments isEmpty]]

Listing 3. Query Examples - Emulated Collection Protocol.

corresponding to an object, and all references from other
database tables to that object. Accordingly, destroying a
user object within the sample application will also lead to
a removal of the user from each followers collection it has
been part of. While the database entries will be removed by
the framework, the object itself remains unchanged.

Object Query Interface. In addition to the modifying
CRUD operations, a persistence framework has to offer
means to perform queries on the persistent space. Since
SqueakSave is built upon a relational database foundation,
those queries have to be carried out as SQL statements. In-
tegrating queries in such a way that standard language con-
structs can be used is an important feature with regards to
the usability of an O/R mapper [9]. SqueakSave provides
a query interface that does not rely on string-based query
encoding, but instead emulates the Smalltalk collection pro-
tocol [8].

Object queries are usually sent to instances of SqsSearch .
These objects must be initialized with a class; instances of
this class and its subclasses will be returned by the query.
Queries can be performed on each class residing within an
image; however, a valid configuration for this class must be
available.

Within the sample application, this behavior can be uti-
lized to distinguish between authors and administrators. If
searches are performed on the User class, they will return
instances of Admin as well as Author . Performing searches
on either of those classes individually, however, will only
return their particular instances.

Object-Relational Mapping with SqueakSave 3 2009/9/8

Listing 3 presents example queries that could be used
within the blog example application. The first query per-
forms a search for the user with the username ‘testuser’.
According to the Smalltalk collection protocol, the detect
method will only return the first user that is found within the
database and trigger an exception if no such entry exists.

Query number two uses the aforementioned mechanism
to narrow the set of possible search results down to special
subclasses. The presented select method will find all au-
thors that have a blog with more than ten blog posts.

The last query determines whether any object within a
collection fulfills a given constraint. In this particular case
the query will only return true if at least one blog exists
where all blog posts have been commented at least once.

The messages sent to the query objects, such as aBlog or
aUser are limited to accessor methods that are named ex-
actly like the corresponding instance variables. Subsequent
method invocations on the return values, such as collections,
integers, or strings must be implemented within the respec-
tive classes of the SqueakSave framework (see Section 3.5).

In addition to the collection protocol emulation, Squeak-
Save offers convention-based dynamic query methods sim-
ilar to those in other dynamic-language object-relational
mappers such as GORM [28] for Grails5 or ActiveRecord
for Ruby on Rails [12].

(SqsSearch for: Blog) findByTitle: ’testblog’

(SqsSearch for: Comment)
findByAuthor: ’author’ andTitle: ’comment’.

Listing 4. Query Examples - Convention-Based Dynamic
Finders.

The first query presented in Listing 4 depicts a simple
use-case where instances of the Blog class have to be found
by an exact match between the given argument and the cur-
rent value of the title instance variable. The second search
is an example for the concatenation of constraints. Con-
catenation keywords (i.e. ‘and’) adhere to SQL terminology.
Thus, ‘or’ can be used as well within dynamic finders.

The aforementioned object-relational mappers allow for
calling the dynamic finder methods directly on a class. In or-
der to achieve the same behavior in Squeak, it would be nec-
essary to either overwrite the doesNotUnderstand method
within Class , or provide a means for application develop-
ers to integrate this implementation only within their model
classes. This fine-grained integration could be achieved by
providing an abstract base class that application classes have
to inherit from. However, this kind of intrusion into the in-
heritance structure would not comply with the requirement
to provide persistence as an aspect added to the applica-
tion instead of being an integral part of it. A less intrusive
technique is the usage of traits. They have been introduced
in the Self programming language [30], and later been ap-

5 http://www.grails.org/

Blog findByTitle: ’testblog’

Comment findByAuthor: ’author’ andTitle: ’comment’.

Listing 5. Query Examples - Convention-Based Dynamic
Finders on Classes.

plied to Squeak [10] to provide a more fine-grained mecha-
nism for reusing existing implementation details. By adding
the TSqsSearch trait to any application object model class,
queries can be performed as depicted in Listing 5.

2.2 Customization
Utilization of the presented techniques to store and query
for objects is sufficient to perform basic CRUD operations
on application data. However, extensions are required for
customizing the O/R mapping framework behavior, and for
optimizing aspects of performance and robustness.

Custom Configuration. The configuration object includes
properties that define standard values for certain fields of the
resulting database schema as well as architecture patterns
that are used for the mapping of object-oriented structures to
relational constructs.

Specialized configurations for subcategories and single
classes are possible by implementing a configuration
method in the respective configuration classes. The config-
uration object is available within those methods by calling
super configuration. Attributes of objects referring to
field names can be changed, e. g., to adhere to naming con-
ventions of other O/R mappers, or to solve naming conflicts.

Altering the configuration can also be used to fine-tune
framework behavior. It is possible to define whether instance
variable accessor methods or object introspection mecha-
nisms should be used to access instance variable values by
setting useInstVarAccessor to either true or false.

While the framework by default alters table structures
and association types only after developers confirmed those
changes, the warnOnAlteration attribute can be set-up to
disable the according warning dialogs.

When the object model is finalized and mapping update
functionality is no longer required, the introspection behav-
ior should be disabled in order to improve the overall perfor-
mance of basic persistence operations. The environment
attribute of the configuration can therefore be set to the value
‘#production’ instead of its default value ‘#development’.

Session Usage. While the implementation of SqueakSave
frees users from the need to utilize an explicit session ob-
ject to store, retrieve, and delete objects, some more ad-
vanced functionality is available only by using instances of
SqsSession . Session objects can be retrieved from the sin-
gleton instance of the SqsConnectionManager . It caches
the sessions on a per-thread basis. Thus, requesting a session
for a certain configuration, class, or category will always re-
turn the same object within a single thread of control. The

Object-Relational Mapping with SqueakSave 4 2009/9/8

sessionManager := SqsConnectionManager getInstance.
session := sessionManager

sessionForClass: Blog.
session := sessionManager

sessionForCategory: ’BlogExample’.
session := sessionManager

sessionForConfiguration: aCustomConfiguration.

Listing 6. Possible Ways to Retrieve Session Objects.

transactionalBlock := [
testuser email: ’newmail@example.org’.
testuser save: session.
testuser password: ’newPassword’.
testuser save: session.

].

session
inTransactionDo: transactionalBlock
ifError: [testuser rollback].

"alternatively"
session startTransaction.
transactionalBlock value.
session commitTransactionIfError: [testuser rollback].

Listing 7. Transactions within Sessions.

different possibilities to get the current session for the sam-
ple application are depicted in Listing 6.

With the session object, it is possible to perform trans-
actions and define the intended behavior upon transaction
failures. If the SqueakSave session is, for example, stored
within a Seaside6 session object, and all data manipulation
operations are performed by passing the session as an ex-
plicit parameter, transactions can even span the entire life
cycle of web application usage by a single user. Transactions
do not have to be performed by defining a block-closure for
the transactional behavior and one for the rollback case, but
it is possible to explicitly start and commit them via the re-
spective methods of the session protocol.

Listing 7 depicts the two possibilities by using an explicit
session object that has been retrieved like shown in Listing
6. The rollback method will set the instance variable of the
user object back to the pre-transaction state.

Performance Optimization. The database schemas cre-
ated by SqueakSave follow the basic patterns described by
Fowler et. al [13] - single, concrete, and class table inheri-
tance. However, not all of those patterns may be suitable for
each object model. Especially deep inheritance hierarchies
can create performance problems, if they are mapped to a
single table. Additionally, an abstract base class for all ap-
plication classes should be ignored for persistence purposes,
since each subclass instance has to be saved within the base
class table, as well (class table inheritance), or all applica-

6 http://www.seaside.st

newBlog := Blog new;
title: ’New Blog’.

newPost := BlogPost new;
title: ’New BlogPost’.

newComment := Comment new
title: ’New Comment’.

newPost comments add: newComment.
newBlog comments add: newPost.
testuser blog: newBlog.

testuser flatSave.
testuser save.
testuser saveToLevel: 2.
testuser deepSave.

Listing 8. Different Save Levels of SqueakSave.

tion objects will reside within the same table (single table
inheritance).

SqueakSave also offers means to control the object graph
traversal depth required to store or update objects. Within
the example that is presented in Listing 8, the consecutive
usage of the different methods that enable this behavior will
gradually store more associated objects of the user object.
While flatSave only stores direct attributes, save also in-
cludes the blog of the user into to storing process. With
saveToLevel:2 the blog post is considered, since two ref-
erences have to be followed from the user to those objects.
The final call of deepSave stores every object reachable
from the user object and only stops upon cyclic dependen-
cies or if no further references are detected.

Custom O/R Mapping Descriptions. While SqueakSave
mostly hides the creation and handling of O/R mapping de-
scriptions, they are not only kept in memory during persis-
tence operations but are also stored within the image for
later usage. The format of this persistence is defined by the
chosen description handler class. This can be altered within
the configuration object itself. The standard description han-
dlers utilize the internal format of the meta-descriptions and
simply serialize the corresponding objects. However, custom
mapping descriptions, such as pragmas or XML documents
can be generated as well, if the corresponding description
handler classes have been implemented. Due to this fact, the
techniques to mark descriptions, or parts of it, as being man-
ually maintained, differ between the description handler im-
plementations.

Regarding the standard description handler, each descrip-
tion includes a manuallyMaintained flag that indicates
whether it is maintained by users or not. If this flag is set,
automatic updates will not alter the particular description.
However, if the custom description requires changes to the
database schema, they will be carried out by the framework.

A variety of options can be altered within the mapping
description for particular instance variables. This includes
trivial values, such as the column name or the SQL type of

Object-Relational Mapping with SqueakSave 5 2009/9/8

AccountData class>>#sqsDescrUsername
↑ SqsColumn new

manuallyMaintained: true;
columnName: ’name’;
sqlType: #varchar:20;
linkedAttribute: #username.

Listing 9. Custom Mapping Description.

SqsBase

Object

SqsConnection

Class

SqsStorage

SqsClassInfo

SqsDescriptionHandler

SqsTableStructureHandler

SqsSession

SqsDatabaseAdapter

SqsDatabaseConnection

SqsProxy

SqsConnectionManager

1

1

tableStructureHandler

1

0..* +classInfo

0..1

0..*

connection

1

0..* class

1

0..*
+session

0..*

1

instVarValue

1

1

currentClass

1

1

storedObject

1

1

dbAdapter

1

1

descriptionHandler

< < u s e > >

< < u s e > >

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 2. Overview of SqueakSave System Classes

the column, but also more advanced features like foreign-
key constraints. Additionally, it is possible to alter the name
of the table, that is created for each class. Listing 9 depicts
a custom configuration for the username field of the account
data.

2.3 Summary
The preceding presentation of the usage workflow of Squeak-
Save has demonstrated, that the requirements regarding sim-
plicity of usage as well as customizability as a means to
increase interoperability, have been fulfilled. It becomes ap-
parent that only minimal configuration is necessary, in order
to add persistence in a very transparent manner to an existing
application. While the API of SqueakSave may not comply
with every other available solution, and thus changes to the
source code might have to be carried out, this does not nec-
essarily decrease the ease-of-integration. It is generally ad-
vised to encapsulate database access functionality in a sepa-
rate layer between the application and the persistence frame-
work. Within this layer the presented CRUD-functionality
can be implemented in a very intuitive manner.

3. Framework Architecture
The usage workflow described in the preceding chapter is
realized by the core classes of the SqueakSave framework.
They are depicted in a simplified manner in Figure 2, i.e.,
without the inclusion of concrete subclass implementations.

3.1 Storage Wrapper Class
Enriching objects with capabilities that have not been imple-
mented within their respective class definitions can be real-
ized by utilizing a number of standard patterns. As existing

class definitions shall not be altered, the SqueakSave frame-
work relies on the SqsStorage class as a decorator [14]
that handles persistence-related operations such as storing,
updating, or deleting objects.

Accordingly, calls of save or destroy will be inter-
nally delegated to an instance of SqsStorage instead of
being handled completely by the target objects themselves.
For each object that is present within the image, a unique
SqsStorage instance is created on demand. Due to a
caching mechanism that is utilizing weak references [16],
the respective instances are only available as long as the
base object is not subject to garbage collection.

In addition to the decorator, the framework will also
assign a unique object id to each persisted object. Those
unique identifiers, that are usually generated by the respec-
tive RDBMS, are required to couple an object to its database
representation and, accordingly, enable references between
objects on the database level [1]. The ids are stored as an
instance variable of the decorators within the image and in a
primary key column within the database.

The decorator is connected to the current database ses-
sion and by that has access to the corresponding config-
uration for the decorated object. The configuration de-
termines the classes of the descriptionHandler and
tableStructureHandler instance variable variables.

3.2 O/R Mappings: Creation and Update
The description handler is responsible for creating mappings
between objects and their database representations. It does
not create the underlying database schema but analyzes the
given objects using introspection and creates detailed de-
scriptions for the current values of an object’s attributes.

For most basic data types, such as strings or integers, the
mapping to relational constructs is straightforward. The sug-
gested column names are simply deduced from the instance
variable name and the types are pre-defined within sqsType
methods on the class side of the respective classes. This
methods return a SqueakSave internal string representation
of the according SQL type. For types with variable length
the mappings are additionally enriched with the information
about the current length of the respective object.

Information about complex attributes—objects that can-
not be mapped to simple SQL types but require a separate ta-
ble structure—is additionally tagged with the class of the re-
spective object as well as a generic description of a foreign-
key relation to the database table for that particular class. For
attributes holding collections of objects, the type of the col-
lection, the class of the collection index, and the class of the
included elements have to be determined.

All this information is persisted in the format specified by
the corresponding description handler. Upon every save of
an object the description handler has to determine whether
changes to the relational structure would be necessary by
examining each instance variable for differences compared
to the previous version of the description.

Object-Relational Mapping with SqueakSave 6 2009/9/8

Alterations can become unavoidable in a variety of sce-
narios. Most obviously that is the case if the class of an
assigned value has changed. However, not every object class
change requires a database structure change. Certain types
comply with each other with regards to their database rep-
resentation. Within the example application, this behav-
ior could be observed if an Admin object is the current
value of an attribute that was previously pointing to general
User objects. For collections, it is also necessary to deter-
mine whether the type of the collection itself has changed
since indexable collections like an OrderedCollection
or a Dictionary would require the storage of the index,
whereas a Set , for example, would not require such a field.

Depending on the specified configuration, the framework
issues a warning dialog before changing the descriptions. If
developers decide to not allow the requested changes, the
storing procedure is aborted.

3.3 Table Structure Adaption
After the mapping descriptions have been updated, the
SqsStorage decorator passes control to the table structure
handler. It translates the general attribute descriptions to rep-
resentations of actual relational constructs (tables, columns,
or constraints) and thus builds a generically traversable ab-
straction from the actual table structure. Each such table ob-
ject can have a number of columns, foreign key constraints,
and child tables. In addition, each child table also includes a
reference to its parent table.

In a straightforward case, however, the structures created
from the descriptions are rather simple. Depending on the
inheritance mode specified within the configuration, all at-
tributes reside within the same table (single table inheri-
tance), or a separate child table is created for each subclass
(class table inheritance). Within those tables, a column with
the previously determined SQL type is created for each sim-
ple attribute. For complex attributes, the handler will also
create a foreign-key constraint that guarantees the referential
integrity of the reference to the table of associated objects.

Collection Mapping. Collections of objects are always
created as join tables, and not like in other O/R mappers
in case of one-to-many relations as foreign keys within the
table of the referenced objects. This is a direct consequence
of two problems. The first one is the distinction between
one-to-many and many-to-many relations through reflec-
tion. While it would be possible to detect those relations,
implementing this feature has proven itself to be too time
consuming during program execution. Not only would the
framework be supposed to follow all references pointing to
objects within a collection, until one is found that has more
than one reference to it. But, additionally, database queries
would be required to check if references exist that are not
currently present within the application’s object memory.

The second problem is the inversion of the logical associ-
ation direction from the object model to the relational struc-

ture [21]. Instead of the collection owner pointing to the val-
ues of the collection, elements within that collection would
reference their owner. This fact is also problematic regarding
object usage within many collections in different classes or
instance variables of the same class. It would be required to
add a new table column for every reference to those objects.

The created join tables contain a field referencing the ta-
ble entry of the collection owner and another column point-
ing to the respective object within the collection. Addition-
ally, an order field is introduced if the application uses or-
dered collections. This field is created with the type of the
index value of the collection. To map an Array , for example,
the index field would be of type INTEGER, while a string-
indexed dictionary would require a VARCHAR type. If the
collection only includes simple values, the reference field to
collection elements will be replaced with a field of the re-
spective type that directly stores them within the join table.

Structure Updating. If the table structure already has been
created, the table structure handler compares a cached ver-
sion of the class table with the one created from current de-
scriptions. The SqsTableChanges class is capable of com-
paring two tables and extract all columns, whose names or
types have been altered. Additionally, it detects added and
removed columns and foreign key constraints. All required
changes are subsequently carried out on the database.

Since this process is highly sensitive to interference
with similar operations carried out by other processes, a
semaphore guards the entire structure update and creation
workflow. While this might diminish the overall system per-
formance, it is necessary to keep the cached table structures
and, accordingly, the database schema in a consistent state.

Finally, after the table structure has been altered to the
required schema, the description handler inserts the values
into the corresponding tables.

3.4 Supporting Workflows
The previously described procedures are sufficient for the
basic implementation of O/R mapping and table structure
creation and updates as well as insertion of the actual values
into the database. However, more elaborated workflows are
required to improve the mapper’s performance or handle
special circumstances, such as cyclic dependencies.

By tightly coupling decorator instances to decorated ob-
jects, it is possible to cope with recursive calls of the save
method. Decorator instances will only try to store associated
objects if the current object has not already been processed
in the present operation. A flag is set upon first traversal, and
if cyclic references lead to an object again, only changes to
instance variables and owned collections will be examined.

Decorators also create a simple representation of the
state of the decorated object upon each save call. This so-
called instance variable value map enables the framework
to quickly determine whether an object has changed at all
and if so, which variables have changed. Unchanged vari-

Object-Relational Mapping with SqueakSave 7 2009/9/8

ables will be ignored during mapping description updates
and also not be part of the ‘UPDATE’ statement issued on
the database.

Database Connection Handling. Database adapters en-
capsulate SQL query generation according to the specifi-
cations of the respective RDBMS. To execute those queries,
adapters rely on SqsDatabaseConnection instances. These
conceal differences between the connection objects supplied
by the different database access drivers.

The physical database connection is obtained by the
database adapters only when required, and dropped when-
ever queries have been executed successfully. While con-
necting and disconnecting to the server upon each request
would have simplified the implementation, it is not a viable
approach with regards to performance. Login procedures on
database servers are rather costly in comparison to execu-
tion times of smaller queries. Therefore, SqueakSave im-
plements a centralized connection pool. This pool is main-
tained by the singleton SqsConnectionManager , and due
to a SharedQueue implementation also thread safe. Each
adapter that requires a database connection has to utilize the
connection manager and either get it instantly, or whenever a
connection is returned to the queue by another adapter. The
shared queue guards the insertion and retrieval processes.
Hence, it is guaranteed that each connection is only assigned
to one adapter at a time. All adapters that have to wait for
a connection are also waiting for the semaphore to become
available and, accordingly, race conditions are prevented in
this scenario, too.

While this standard behavior is suitable for most ba-
sic operations, it obviously cannot be used during transac-
tions. Therefore, each database adapter is aware of its cur-
rent transaction state and does not return connections to the
queue while a transaction is in progress.

3.5 Query Generation
The following section provides a detailed explanation of
the SQL query generation from method invocations on the
language-native query API.

Collection Protocol Emulation. The implementation of
the collection protocol emulation for object queries is based
on the work of W. Harford and E. Hochmeister, who have
implemented a quite similar system for the ReServe project7.
While the basic implementation allowed for simple queries
on directly associated attributes of objects, it has been en-
riched with the capabilities to define query conditions on
associated collections and directly associated objects to a
much deeper level within the object graph structure.

In order to analyze the block-closures that are passed as
arguments to the respective collection methods, SqueakSave
utilizes the SqsQueryValue classes depicted in Figure 3.
Each of those classes imitates the protocol of basic system

7 http://www.squeaksource.com/REServe.html

-queryClass : Class

-whereBuffer : String

-orderBy : String

-ignoreTypeField : Boolean

-distinct : Boolean

SqsQuery

-aliasSuffix : string

-field : string

-queryClass : Class

-originalTable : SqsTable

SqsQueryTable

-whereBuffer : String

-depictedClass : Class

-referencedColumn : SqsPersistenceDescription

SqsQueryValueProtoObject

SqsQueryCollection SqsQueryDate

SqsQueryDateTime

SqsQueryNumber SqsQueryObject SqsQueryString

-joinDirection : string

-fromFields : Collection

-toFields : Collection

SqsTableLink

0..*

1

tableLinks
0..1

1
previousQueryValue

1..*1

valueTables

1..*1

queryTables

1

1

toTable

1

1
currentQueryValue < < u s e > >

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 3. Collection Protocol Emulation Classes

classes such as Integer or String . But instead of deliver-
ing the result for each operation, the methods gradually fill
the whereBuffer attribute with the SQL equivalents of the
respective operations. Listing 11 presents the SQL WHERE
statement that is generated for a sample query (Listing 10).

query := (SqsQuery on: BlogPost) analyze: [:aBlogPost |
aBlogPost text size > 100].

Listing 10. Language-Native Query Before Translation

‘WHERE CHAR_LENGTH(blog_posts.text) > 100‘

Listing 11. Generated SQL WHERE Statement

Complex objects, that cannot be directly mapped to an
SQL type are depicted by instances of SqsQueryObject .
Each method sent to those objects is analyzed with regards
to the database columns representing the corresponding at-
tribute. If such a column exists, the where buffer is enriched
with a unique identifier consisting of the according table and
column name. If columns refer to rows in different tables
(i.e., foreign key relations), this scoping is performed by
SqsQueryObjects, too. Upon each scoping to another ta-
ble, the table names are being aliased with a unique suffix,
that allows for self-referencing foreign key handling.

In addition to the WHERE statement creation, the system
also conglomerates the tables that are important to the query
within SqsQueryTable objects. They include a unique suf-
fix and a reference to the SqsTable object, that serves as a
meta-description of the database table structure. Addition-
ally, a number of links to other tables can be added to a
query table, in order to represent joins that have to be per-
formed for queries. During the final steps of query genera-
tion, those query tables are connected to form the FROM part
of the SQL query. Tables, whose values have to be returned
from a query, are stored in the valueTables collection of
an SqsQueryObject .

This generic analysis of block-closures allows the frame-
work to handle table structures for class and single table in-
heritance and the nesting of constraints, e.g., for sub queries
on collections that are owned by query objects, without any
explicit distinctions between the different table models.

Object-Relational Mapping with SqueakSave 8 2009/9/8

[:aComment | (aComment author = ’author’) &
(aComment title = ’comment’)].

Listing 12. Block-Closure Generated from Dynamic-
Finder Method.

Convention-Based Query Methods. The implementation
of the convention-based dynamic query methods is also
based on the collection protocol emulation. Therefore, the
finder methods are analyzed for the occurrence of attribute
names and the respective values. This is performed within
a re-implementation of the doesNotUnderstand method
that handles calls of undefined methods on objects. The
method checks whether the first part of the selector either
matches find or findAll. If either of those strings matches
the beginning of the given method selector, the remaining
parts are scrutinized for their compliance with instance vari-
able names of the respective search class. Finally, the algo-
rithm determines the logical operators that are implied by
the method name.

Afterwards the framework creates block-closures depict-
ing those constraints and concatenates them with the chosen
logical operators. The block-closures are generated by utiliz-
ing the previously extracted strings from the method selec-
tor name and the arguments passed to the dynamic finder
method. The values are especially important in this case,
since they have to be translated into a string. Complex ob-
jects, for example, require the inclusion of their object id into
the query string, while simple types such as dates or strings
need to be escaped to be properly parsed by the Squeak com-
piler. Therefore, the SqsSearch class maintains a dictionary
with the respective methods, it has to call for certain types
of objects. If the string representation has been successfully
generated, it is passed to the Compiler that generates exe-
cutable bytecode for the required block-closure.

This block-closures will be then forwarded to an instance
of the SqsQuery class, that analyzes them as described
previously. Listing 12 depicts the block-closure created from
the second dynamic finder method presented in Listing 5.

Object Proxies. For performance and framework internal
reasons, instances of SqsProxy are inserted into query re-
sults instead of directly associated complex objects or col-
lections. There are dedicated proxies for directly associated
objects and those representing collections.

Proxies for directly associated objects like a user’s blog
in the sample application are necessary to avoid an eager
loading of the entire object graph upon the creation of query
results. The proxies are initialized with all information re-
quired to trigger loading of the depicted object if the appli-
cation accesses them. All calls to proxy objects, except for
those defined on ProtoObject , are delegated to the loaded
instances. Thereby, proxy insertion remains transparent to

framework users and the proxies could also be removed once
the depicted object is present within the image.

Collection handling requires a different approach to
proxy insertion. While the aforementioned objects only
serve as placeholders, collection proxies are essential to de-
tect changes in collections. Therefore, before each save call
and after loading an object as the result of the search query,
an instance of SqsCollectionProxy is inserted instead of
the original collection. In addition to loading all objects that
are part of the original collection, those proxies also cre-
ate and maintain an internal map of the collection objects.
This allows the framework to detect added, displaced, and
removed objects in a collection. Hence, after each success-
ful save call, the collection map will be updated, and if the
object referencing the collection is saved again, all changes
that happened up to this point will also be reflected within
the database.

Object Caches. In addition to using caches for object id
storage without object model or inheritance structure alter-
ation, query performance optimization also requires this fea-
ture. To avoid rebuilding objects that already are query re-
sults, or have been instantiated just recently, it is necessary
to maintain an additional cache. It has to return pre-built in-
stances identified by their class name and object id.

While caching all available objects could improve the
performance of query result creation, a trade-off between
the memory footprint of the framework and the performance
gain induced by result caching has to be made. Therefore,
the cache size is limited on a per class basis to a config-
urable number of entries and makes it possible to implement
different cache sizes for each application.

3.6 Framework Extension
A central requirement for the development has been the ex-
tensibility of the framework with regards to the adoption of
newly available database management systems and the im-
plementation of custom O/R mapping flavors. Therefore, the
classes responsible for realizing the corresponding behavior
have been implemented in ways that ought to simplify the
development of custom framework extensions.

Custom Object-Relational Mapping Descriptions. The
SqsDescriptionHandler serves as an abstract base-class,
that defines the methods, which are crucial to the implemen-
tation of custom description handlers.

Only two methods have to be implemented in order to cre-
ate new mapping description handlers. sqsDescriptionFor:
returns the meta-description of the O/R mapping for an in-
stance variable of the object that is subject of currently per-
formed persistence operations. While this description can be
stored in arbitrary formats, the method always has to deliver
instances of SqsPersistenceDescriptor . This transla-
tion might be costly with regards to time consumption, but
developers could avoid performance problems by caching

Object-Relational Mapping with SqueakSave 9 2009/9/8

the SqueakSave-internal format or persisting it by utilizing
the standard description handlers.

The second method that needs to be implemented is
createDescriptions. It is called during the storing pro-
cess and, since the description handlers have full access to
the decorator of the persisted object, requires no additional
parameter. While it would compromise the self-configuring
nature of SqueakSave, to not create or update mapping de-
scriptions, custom description handlers that should only sup-
ply reading abilities can waive this implementation.

Database Adapters. An obvious extension point for an
O/R mapper are adapters for different RDBMS. They im-
plement the generation of the SQL queries depicting certain
database operations. In order to provide a custom adapter,
two steps are mandatory for alleged extension developers.

The first one is to create a subclass of SqsConnection
that implements some basic operations to control the state of
the actual database connection and execute queries on them.
The connection control methods are required in order to
automatically create new connections within the connection-
pool. Therefore the init, close, and isAlive operations
have to be implemented. In addition to the query execution,
the framework also requires means to convert the query
results from the client-internal format into a general one, that
can be handled by SqueakSave adapters.

While it is necessary to re-implement those methods for
each adapter facilitating a native client implementation, it
would be possible to utilize an open standard interface that
provides the same access methods, regardless of the un-
derlying database. This includes connectors like ODBC8

or OpenDBX9. However, the setup of those two solutions
requires not only the installation of respective clients for
Squeak, but additionally the installation or even compilation
of platform-dependent libraries within the operating system.

The methods within the protocol of SqsDatabaseAdapter
that have to be overridden in order to provide a working
adapter implementation for a certain RDBMS are rather dif-
ficult to be determined. This is mainly a consequence of the
custom extensions to the SQL-standard implemented by dif-
ferent RDBMS vendors. The basic implementation within
SqueakSave, however, strives to implement almost all oper-
ations according to the SQL standard. This should minimize
the number of methods that have to be overwritten.

3.7 Summary
Main requirements for the implementation were the realiza-
tion of automatic updates, language-native queries, and ex-
tensibility of the framework. Above, necessary design de-
cisions for the implementation of this behavior have been
presented. Automatic updates are implemented by a copious
algorithm that covers almost all possible changes to object

8 http://support.microsoft.com/kb/110093
9 http://www.linuxnetworks.de/opendbx

models and therefore dependably and only updates existing
mapping descriptions if necessary.

Language-native queries have been implemented by a
block-closure analysis system that can handle deep object
graph structures and standard operations on simple data
types as well as accessor methods on complex objects.

Extension points are also available for all designated
components of the framework and provide meaningful pre-
sets for the implementation of custom description and table
structure handlers, as well as database adapters

4. Evaluation
The main focus of the implementation of SqueakSave is
the support of fast-evolving object models and the devel-
opment of a generic architecture that allows for extension
of the available description systems, table structure handlers
and database adapters. However, performance is an impor-
tant aspect of each persistence management system [2]. Ac-
cordingly, the implemented framework has to be evaluated
with regards to both aspects. The following section provides
benchmark results for SqueakSave in comparison to another
O/R mapping framework for the same development environ-
ment. Additionally, the production and development modes
are compared and conclusions are drawn regarding perfor-
mance bottlenecks and possible optimizations.

4.1 Performance
Numerous benchmarks exist to measure the performance
of object persistence technologies. The BUCKY [7] or the
BORD benchmark [19], for example, are especially de-
signed to analyze the performance of object-relational sys-
tems. Other approaches, like the OO7 Benchmark [6], have
been developed to provide objective measurements for any
kind of object persistence, without any special focus.

One of the requirements for the implementation of Squeak-
Save is to provide persistence in a transparent manner.
Therefore, the OO7 Benchmark is utilized for performance
measurements. The implementation used for this compari-
son is based on the Java version10 of the original benchmark,
which was written in C. It was ported to Java to compare
the performance of object-relational mappers and object-
oriented databases [31].

Measurements have been carried out on a 2.4 GHz In-
tel Core 2 Duo Macbook with 4GB RAM and Mac OS X
10.5.6. PostgreSql version 8.3 has been used as the underly-
ing RDBMS. Each benchmark was run 100 times; measure-
ment results represent the median of all retrieved timings.

4.2 Comparison with other Object-Relational
Mappers

Since platform specific limitations and performance bottle-
necks, such as overall inferior execution speed or subpar
implementations of viable system classes, impede objective

10 http://sourceforge.net/projects/oo7/

Object-Relational Mapping with SqueakSave 10 2009/9/8

Traversal2b Traversal2c

SqueakSave 19.266 SqueakSave 19.426

GLORP 26.835 GLORP 23.501

Traversal1 Traversal2a

SqueakSave 125.698 SqueakSave 2.237

GLORP 58.718 GLORP 5.012

0s

75s

150s

225s

300s

SqueakSave GLORP

Database Creation Time

Query 1 Query 2

Figure 4. Benchmark Database Creation Times

measurements, a meaningful comparison can only be per-
formed against a comparable system implemented within
Squeak: The generic lightweight object-relational persis-
tence framework (GLORP) [18].

In addition to pure performance comparisons of aspects
like object creation after queries, it is also interesting to see
how the different implementation paradigms of GLORP and
SqueakSave compare to each other. SqueakSave requires
explicit save operations to store or update objects, while
GLORP is transaction based. Accordingly, the transaction
based frameworks are able to accumulate all operations on
the data and perform them, if possible, in bulk SQL state-
ments. The benchmarks will identify scenarios where this
behavior is beneficial with regards to performance.

The PostgreSql Client 1.0 was used in a Squeak 3.10 im-
age running on the Squeak VM version 3.8.18. SqueakSave
was used in revision 107, and GLORP in version 0.4.169.
To further avoid influences on the measured timings, both
systems were set-up to their respective production environ-
ment, i.e., SQL statement logging and other debugging fea-
tures have been disabled.

The benchmark consists of two parts. The first one per-
forms a number of plain search queries on the created object
space and measures the timings for each of them. The sec-
ond part traverses object hierarchies from distinctive starting
points and performs some alterations of the respective ob-
jects. In addition to those standard parts, database creation
times have been examined, as well. While the insertion of
such an highly intertwined and large object graph might not
reflect everyday usage patterns of object-relational mappers
within applications, it is an indicator for alleged performance
bottlenecks and optimization potentials.

The overall database size of the benchmark can be con-
figured in four orders of magnitude. Each of them increases
the amount of stored objects and connections between them.
The third-largest version of the benchmark was used, since
it reflects the intended application area for the SqueakSave
framework in terms of database usage. It includes approx-
imately 10.000 atomic parts with 30.000 connections and
thus reflects the database payload of small to mid-sized ap-
plications.

Figure 4 presents the overall creation time for the database
schema that is required to perform the OO7 Benchmark. It
is evident that GLORP outperforms SqueakSave by far. This
is mostly a consequence of the ability to delay the insertion
of objects into the database and perform them at a later point
in a bulk operation. Thereby, instead of numerous single

0ms

10ms

20ms

30ms

40ms

SqueakSave GLORP

Query 1

0ms

12ms

24ms

36ms

48ms

SqueakSave GLORP

Query 2

0ms

90ms

180ms

270ms

360ms

SqueakSave GLORP

Query 3

0ms

175ms

350ms

525ms

700ms

SqueakSave GLORP

Query 4

0ms

20ms

40ms

60ms

80ms

SqueakSave GLORP

Query 5

0ms

1,250ms

2,500ms

3,750ms

5,000ms

SqueakSave GLORP

Query 7

0ms

1,250ms

2,500ms

3,750ms

5,000ms

SqueakSave GLORP

Query 8

Figure 5. Benchmark Query Times

queries, only a few large ones are carried out and, accord-
ingly, the overall execution time decreases. While this tech-
nique obviously could improve the performance of Squeak-
Save within such insertions, the decision to only provide
direct save methods has been made with regards to API sim-
plicity and not execution speed.

Query Performance. The queries performed during the
OO7 benchmark continuously increase in terms of complex-
ity and result count. A description of the query contents is
available in the paper that describes the original benchmark,
as well as in the comparison carried out by Zyl et. al.

Query times presented in Figure 5 show that, regarding
query performance, GLORP is generally faster than Squeak-
Save. The large difference in the first query, however, is not
a result of superior query performance, but a consequence
of optimistic caching. Instead of performing the query on
the database, results are delivered directly from the cache.
While this obviously increases query performance, it is also
error-prone. Had the respective object been removed from
the database in another session, the query would return an
object that no longer exists in persisted space.

In all queries, except for the aforementioned one, differ-
ences between SqueakSave and GLORP are in a range of
about 10–20%. The slight advantage in query four is a con-
sequence of more efficient join table handling, since the gen-
erated SQL statements are almost equal, except for some mi-
nor differences in created table and column alias names.

Object-Relational Mapping with SqueakSave 11 2009/9/8

0s

33s

65s

98s

130s

SqueakSave GLORP

Traversal 1

0s

2s

3s

5s

6s

SqueakSave GLORP

Traversal 2a

0s

7s

14s

20s

27s

SqueakSave GLORP

Traversal 2b

0s

6s

12s

18s

24s

SqueakSave GLORP

Traversal 2c

Figure 6. Benchmark Traversal Times

Unfortunately, the benchmarks reveal the tendency of an
increasing distance between the two frameworks for expand-
ing result sets. In queries seven and eight, the previous gap
becomes vastly larger.

Concluding the query performance review, it can be
stated that SqueakSave still has potential for optimization.
While the difference for small result sets is minor and might
be improved by smarter caching mechanisms, handling large
result sets still remains an issue.

Traversal Performance. The chosen traversal measure-
ments of the OO7 benchmark all follow the same pattern.
They start at the generated modules and navigate from the
design root down to the atomic parts. With each traversal
the depth of navigation through the object graph increases
and, additionally, the last two also alter some data within
the atomic parts. Traversal 2c not only changes those values
once, but three times.

The other available traversals have been omitted, since
they iterate through all characters of document texts and
accordingly do not provide any insights into traversal speed,
but only string operation performance.

Traversal benchmarks have been run independently from
previous database creation and query tests. Those would
have lead to extensive caching of the object graph and, there-
fore, could not reveal deficiencies within the loading of as-
sociated objects. For subsequent traversals, however, object
caches have not been cleared in order to analyze the over-
all traversal performance and the caching of previously ob-
tained results within one benchmark run.

The results depicted in Figure 6 unveil that only on first
time object graph traversal, SqueakSave suffers from the
currently missing support for eager loading of associations.
Hence, the associated objects for each of the sub parts have
to be obtained within multiple queries and can not be loaded
in advance by a single one. The subsequent traversals, on the
other hand, show that the huge disadvantage of SqueakSave
turns around completely. This is a consequence of Squeak-
Save’s caching mechanism, that gradually fills the central
object cache during the first traversal. Hence, the entire ob-
ject graph resides in memory for the second run. While

the performance obviously improves because of that mech-
anism, the same coherence problem mentioned with regards
to GLORP’s first query result apply here.

The traversal times in the following tests obviously in-
crease since the sub elements of the model are not only being
traversed, but also updated. Therefore, it was expected that
the advantage of SqueakSave slightly diminishes. However,
the traversal times in those tests still show, that for the traver-
sal of previously loaded object graphs SqueakSave seems to
be a more efficient solution than GLORP.

The results have shown that SqueakSave, despite its au-
tomated mapping features can compete with existing O/R
mapping solutions in terms of query and traversal perfor-
mance. Especially, the caching mechanism makes Squeak-
Save a viable solution for sequential object graph traversals.
The slow insertion times within large data-sets could be di-
minished by implementing a technique similar to the one in-
troduced by GLORP. Special attention in future versions of
the implementation has to be paid to the handling of large
result sets, since they obviously impact the performance in a
more than linear manner.

4.3 Development vs. Production Environment
The automatic creation of object-relational mapping descrip-
tions is the main feature of SqueakSave. Due to the reflection
mechanisms used to create this behavior, performance is ob-
viously an issue that has to be examined closely. Therefore,
the OO7 benchmark suite has been performed in develop-
ment and production mode. The following results will reveal
fields of usage where the automatic mapping behavior has a
negative impact on the overall system performance, but also
identify scenarios that are not affected by it. Additionally, in-
sights into potential optimization points will be gained from
those considerations.

Image 7 depicts the creation time for the small and tiny
database layout. It can be clearly apprehended that the in-
spection of every object that has to be stored within the
database slows down the overall performance. This is not
a very surprising fact, since not only does the framework in-
spect each object, but also occasionally writes new descrip-
tors to the image. Additionally, it has to check for and, if nec-
essary, execute changes to the database schema. The perfor-
mance degradation also seems to remain constant between
the different benchmark scales, which implies that the table
and description creation and updates have a much smaller
impact on the performance, than the constant introspection
measures. Obviously, after a very short period of time, no
more alterations of the two models are necessary, and thus
the difference between the two modes grows linearly.

While this slow-down might seem too high to be toler-
ated, developers should have to take into consideration that
creating the scale 1 data model suffices to generate a valid
database schema, that can be consecutively used to create
the data-structures for the small or even bigger benchmarks.
This, and the fact that the object-model can be developed in-

Object-Relational Mapping with SqueakSave 12 2009/9/8

0s

175s

350s

525s

700s

production development

Database Creation Time (ms) - Small Database

0s

4s

9s

13s

17s

production development

Database Creation Time (ms) - Tiny Database

300ms

315ms

330ms

345ms

360ms

SqueakSave GLORP
0ms

20ms

40ms

60ms

80ms

SqueakSave GLORP

Figure 7. Benchmark Database Creation Times for Squeak-
Save Modes

0ms

1,250ms

2,500ms

3,750ms

5,000ms

SqueakSave GLORP
0ms

1,250ms

2,500ms

3,750ms

5,000ms

SqueakSave GLORP

0s

35s

70s

105s

140s

Development Production

Traversal 1

0s

1s

1s

2s

2s

Development Production

Traversal 2a

0s

7s

14s

21s

28s

Development Production

Traversal 2b

0s

7s

15s

22s

29s

Development Production

Traversal 2c

Query 1 Query 3

Figure 8. Benchmark Traversal Times for SqueakSave
Modes

crementally without the necessity to alter database structures
explicitly, relativizes the obvious performance impact.

Query performance does not differ between the two
modes, since the synchronization between object model and
database representation only takes place during object sav-
ing and, accordingly, does not affect search queries.

During traversal measurements, however, the previously
observed differences still apply (see Figure 8). While the
first traversal is barely affected by the current execution
mode, changes to the object model (i.e., Traversals 2b+c) are
performed much faster in production mode. It is therefore
necessary for developers to thoughtfully utilize this feature
if performance is important. Especially the role-based choice
of the framework mode can provide a viable means for the
balance between execution time and object model flexibility.

4.4 Framework Profiling
The benchmark implementation and execution provided a
solid foundation for profiling the framework under a non-
trivial workload. A couple of conclusions could be drawn,
that can be incorporated into future framework upgrades.

• Much time of storing and query execution has been spent
on automatic retrieval of configuration objects from the
respective configuration classes. This is a direct conse-
quence of Squeak’s not incorporating categories as first
class objects, and thus a time-consuming lookup for the
respective classes has to be performed.

• Storing object ids in distinctive caches does not vastly
affect execution speed. However, upon large scale opera-

tions, such as the creation of the benchmark database, the
impact remains perceivable, since the according caches
also grow with the number of in-memory objects.

• SqueakSave’s current handling of large result sets suffers
from the creation of ineffectively sized collections. While
they provide a simple approach to the generation of ob-
jects from query results, their traversals are not optimized
if the size exceeds certain values. Therefore, smarter al-
gorithms have to be developed that utilize the Squeak-
internal limits for efficient collection handling by split-
ting large result sets into smaller portions.

• Fine-grained save operations provide a viable means for
controlling database insertions and updates. However, to
accommodate larger object models or collections of ob-
jects that have to be inserted, they perform too many
small queries to remain applicable. It is therefore nec-
essary to implement techniques allowing for calling the
save method on the root of an object graph and combin-
ing insert and update operations in few SQL queries.

• Regarding object graph traversal, eager object loading is
important. Future versions of the framework should in-
clude this feature to minimize the number of SQL state-
ments required to obtain the entire object graph.

• During the execution of the benchmark in development
mode, it became apparent that preconditions for de-
scription and table update checks provide a vast perfor-
mance improvement. Therefore, after the completion of
the benchmark suite means have been integrated into the
framework that not only prevent updates of descriptions
and table structures, but also the examination of their
predecessors if it is not utterly necessary.

4.5 Summary
The presented benchmark results have shown that Squeak-
Save still has to be optimized for certain fields of application.
Especially the query performance for large result sets is an
issue that deserves closer attention in the future. However,
object graph traversals are implemented in a viable manner
and the results demonstrate that the minimalist intrusion into
object models has a positive impact on such operations. Ad-
ditionally, the declarative nature of the query interface, as
well as the simple set-up and integration of the framework
are advantages that make SqueakSave a suitable persistence
solution for application development in Squeak.

5. Related Work
The special capabilities of dynamically-typed object-oriented
programming environments like Squeak or other Smalltalk
dialects affect the design and implementation of O/R map-
ping solutions. While the possibility to analyze the source
code before program execution to determine the required
table structure is missing, the often much more elaborate in-
trospection and intercession features allow for more flexible

Object-Relational Mapping with SqueakSave 13 2009/9/8

implementations. Within the scope of this paper, only map-
pers for dynamically-typed object-oriented environments are
considered. However, since the mapper is to provide persis-
tence in a manner reminiscent of object-oriented databases,
examples of this category have also been investigated with
regards to their support for a relational database foundation.

Dynamic Object-Relational Mappers ActiveRecord for
Ruby on Rails [12] is a database schema-driven O/R map-
ping solution that adheres to the convention over configura-
tion (CoC) principle [28]. While it provides almost effortless
configuration, database schemas and object models are not
automatically kept synchronized. Especially alterations of
the application object structure have to be manifested in the
database schema before they are available in the respec-
tive object model and subject to persistence mechanisms.
ActiveRecord also introduced dynamic finder methods as a
language-native query interface for relational databases.

DataMapper11, another Ruby O/R mapping framework,
relies on mappings defined by a very minimalist API, that
only requires the definition of an SQL type for a certain
attribute in order to create a valid database schema. Af-
ter each mapping change, a re-run of the database creation
method has to be performed, but will consecutively erase
the database completely and remove all data. However, the
framework also offers migrations, that can gradually add, al-
ter, or remove columns in existing database tables. The query
API is quite similar to the one present in ActiveRecord.

GLORP [18] provides object-relational persistence by
heavy utilization of meta descriptions. These must follow
certain naming conventions and have to be declared for the
model, the database tables, and the relation between model
attributes and database constructs. While GLORP allows for
comprehensive reverse mapping of legacy database struc-
tures, its addition to existing applications is impeded by the
mandatory introduction of an id instance variable to each
persisted model class, and the need to provide a complete
mapping description even for trivial cases.

IOSPersistent12 was following an approach similar to
SqueakSave. It provided fully-automatic persistence for all
subclasses of an abstract base class of the framework and
automatically created the according table models. Due to
its monolithic architecture, it was not extensible by simple
means and additionally did not allow for custom object-
relational mapping descriptions. It has been superseded by
the ReServe13 project, that removed the automatic table cre-
ation, but in contrast simplified the creation of custom map-
ping descriptions and introduced a query API, that has been
the foundation for SqueakSave’s language-native queries.

Object Databases The Gemstone project [5] provides al-
most transparent persistence. However, it requires an exten-

11 http://www.datamapper.org
12 http://www.squeaksource.com/IOSPersistent.html
13 http://www.squeaksource.com/ReServe.html

sive environment in order to be applied as a persistence solu-
tion. It generally relies on object-oriented database technol-
ogy to persist application data, but additionally provides the
means to integrate relational database management systems
into the storage process.

Another object-oriented database that provides compati-
bility with relational systems is db4o [24]. The db4o Repli-
cation System (dRS) utilizes Hibernate to replicate applica-
tion data to specified RDBMS and is additionally able to
read data from relational databases. Thereby users are able
to perform ad-hoc SQL queries on the data without having to
utilize an environment capable of handling the db4o-internal
data structures. Additionally, this feature allows the inte-
gration of legacy data from relational database into object-
oriented environments.

6. Conclusions
SqueakSave is a reflective object-relational mapper that re-
lieves developers of the task to manually maintain mappings
between object models and relational database structures.
Additionally, the framework is implemented in a way that
does not interfere with existing object models and thus
can be added almost transparently to existing solutions.
While those features provide an increased degree of flex-
ibility, query and storage performance are slightly dimin-
ished. However, since the main goal of the implementation
has been to aid the development process of applications, the
decreased performance is a trade-off that is worthwhile with
regards to the gain in developer productivity.

The depicted extension points of the framework ought to
support the development of new and innovative ways to cre-
ate specialized table structures and mapping description for-
mats that can be easily integrated into the existing solution.

While the current version is able to compete with long-
established solutions, future work will especially involve the
optimization of queries that deliver large data sets and the
simultaneous insertion of multiple application objects within
a decreased amount of SQL statements.

Another important aspect for improvement is the provi-
sion of custom mapping description handlers. Thereby, the
seamless integration of SqueakSave into existing applica-
tions can be vastly simplified by enabling the framework to
utilize descriptions that have already been created for other
O/R mappers such as GLORP. Additionally, general purpose
meta description frameworks, such as Magritte [27] could be
integrated to not only map objects to relational constructs,
but also generate validation methods that are performed be-
fore the storing of objects.

Despite the obvious optimization and extension points
identified within this paper, other research projects could be
adopted to further minimize the intrusiveness of the frame-
work into the application or further optimize the generation
of SQL queries. The former could be reached by utilizing
aspect-oriented constructs to provide the persistence func-

Object-Relational Mapping with SqueakSave 14 2009/9/8

tionality as an easily attachable aspect to existing applica-
tions [26]. The latter is possible by an in-depth analysis of
inner-application workflows, that determine the queries most
suitable within certain execution states [25].

SqueakSave provides a solid foundation for further re-
search and shows that meta-programming and reflection are
viable to simplify the integration of object-relational persis-
tence mechanisms into applications developed in dynamically-
typed object-oriented programming environments.

References
[1] S.W. Ambler. Designing a Robust Persistence Layer. Softw.

Dev., 6(2):73–75, 1998.

[2] S.W. Ambler. Agile Database Techniques. John Wiley &
Sons, 2003.

[3] R. Barcia, G. Hambrick, K.Brown, R.Peterson, and
K.S.Bhogal. Persistence in the Enterprise. IBM Press,
2008.

[4] A.P. Black, S. Ducasse, O. Nierstrasz, D. Pollet, D. Cassou,
and M. Denker. Squeak by Example. Institute of Computer
Science and Applied Mathematics of the University of Bern,
Switzerland, 2008.

[5] P. Butterworth, A. Otis, and J. Stein. The GemStone object
database management system. Commun. ACM, 34(10):64–77,
1991.

[6] M.J. Carey, D.J. DeWitt, and J.F. Naughton. The 007 Bench-
mark. In SIGMOD ’93: Proceedings of the 1993 ACM SIG-
MOD international conference on Management of data, pages
12–21, New York, NY, USA, 1993. ACM.

[7] M.J. Carey, D.J. DeWitt, J.F. Naughton, M. Asgarian,
P. Brown, J.E. Gehrke, and D.N. Shah. The BUCKY object-
relational benchmark. In SIGMOD ’97: Proceedings of the
1997 ACM SIGMOD international conference on Manage-
ment of data, pages 135–146, New York, NY, USA, 1997.
ACM.

[8] W.R. Cook. Interfaces and specifications for the Smalltalk-80
collection classes. SIGPLAN Not., 27(10):1–15, 1992.

[9] W.R. Cook and C. Rosenberger. Native Queries for Persis-
tent Objects. Computer Languages, Systems & Structures,
31:127–141, 2005.

[10] S. Ducasse, O. Nierstrasz, N. Schärli, R. Wuyts, and A.P.
Black. Traits: A mechanism for fine-grained reuse. ACM
Trans. Program. Lang. Syst., 28(2):331–388, 2006.

[11] J. Elliott. Hibernate: A Developer’s Notebook. O’Reilly
Media, Inc., 2004.

[12] O. Fernandez. The Rails Way. Addison-Wesley, 2007.

[13] M. Fowler, D. Rice, M. Foemmel, E. Hieatt, R. Mee, and
R. Stafford. Patterns of Enterprise Application Architecture.
Addison-Wesley, 2002.

[14] E. Gamma, R. Helm, and J.M. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-
Wesley, 1995.

[15] T. Goldschmidt, R. Reussner, and J. Winzen. A case study
evaluation of maintainability and performance of persistency

techniques. In ICSE ’08: Proceedings of the 30th interna-
tional conference on Software engineering, pages 401–410,
New York, NY, USA, 2008. ACM.

[16] J. J. Hallett and A. J Kfoury. A formal semantics for weak ref-
erences. Technical report, Department of Computer Science,
Boston University, 2005.

[17] E. Klimas, D. Thomas, and S. Skublics. Smalltalk with style.
Prentice Hall, Englewood Cliffs, NJ, 1996.

[18] Alan Knight. GLORP: generic lightweight object-relational
persistence. In OOPSLA ’00: Addendum to the 2000 proceed-
ings of the conference on Object-oriented programming, sys-
tems, languages, and applications (Addendum), pages 173–
174, New York, NY, USA, 2000. ACM.

[19] S.H. Lee, S.J. Kim, and W. Kim. The BORD Benchmark
for Object-Relational Databases. In DEXA ’00: Proceedings
of the 11th International Conference on Database and Ex-
pert Systems Applications, pages 6–20, London, UK, 2000.
Springer-Verlag.

[20] U. Leser and F. Naumann. Informationsintegration: Architek-
turen und Methoden zur Integration verteilter und heterogener
Datenquellen. Dpunkt Verlag, 2007.

[21] F. Lodhi and M.A. Ghazali. Design of a simple and effec-
tive object-to-relational mapping technique. In SAC ’07: Pro-
ceedings of the 2007 ACM symposium on Applied computing,
pages 1445–1449, New York, NY, USA, 2007. ACM.

[22] S. Melnik, A. Adya, and P.A. Bernstein. Compiling mappings
to bridge applications and databases. ACM Trans. Database
Syst., 33(4):1–50, 2008.

[23] OMG. UML 2.0 Specification, 2005.

[24] J. Paterson, S. Edlich, H. Hörning, and R. Hörning. The
Definitive Guide to db4o. Apress, Berkely, CA, USA, 2006.

[25] P. Pohjalainen and J. Taina. Self-configuring object-to-
relational mapping queries. In PPPJ ’08: Proceedings of
the 6th international symposium on Principles and practice
of programming in Java, pages 53–59, New York, NY, USA,
2008. ACM.

[26] A. Rashid and R. Chitchyan. Persistence as an aspect. In
AOSD ’03: Proceedings of the 2nd international conference
on Aspect-oriented software development, pages 120–129,
New York, NY, USA, 2003. ACM.

[27] L. Renggli. Magritte - Meta-Described Web Application De-
velopment. Master’s thesis, Software Composition Group,
University of Berne, 2006.

[28] C. Richardson. ORM in Dynamic Languages. Queue,
6(3):28–37, 2008.

[29] D. Thomas. Ubiquitous applications: embedded systems to
mainframe. Commun. ACM, 38(10):112–114, 1995.

[30] D. Ungar and R.B. Smith. Self: The power of simplicity.
SIGPLAN Not., 22(12):227–242, 1987.

[31] P. Van Zyl, D.G. Kourie, and A. Boake. Comparing the per-
formance of object databases and ORM tools. In SAICSIT
’06: Proceedings of the 2006 annual research conference of
the South African institute of computer scientists and infor-
mation technologists on IT research in developing countries,
pages 1–11, Pretoria, Republic of South Africa, 2006.

Object-Relational Mapping with SqueakSave 15 2009/9/8

