
Smalltalk Metaprogramming supports Probabilistic
Program Analysis

Dave Mason
Ryerson University
350 Victoria Street

Toronto, ON, Canada M5B 2K7
dmason@ryerson.ca

ABSTRACT
Program paths (equivalently program input subdomains)
are interesting for a variety of purposes in software engineer-
ing, including testing, reliability, and estimating of resource
requirements. The full potential of paths is often not real-
ized because it is difficult to generate the most important
paths from the – potentially infinite – set of possible paths
for a program.

This paper introduces two probabilistic algorithms to gen-
erate paths based on an operational profile describing the
probability distribution of the possible inputs. The first is
a theoretically clean, but implementationally difficult algo-
rithm based on program continuations. The second is a more
practical, but less accurate algorithm based on Monte Carlo
techniques. Prototype implementations of both algorithms
are briefly examined.

Smalltalk provides the ideal testbed for these ideas because
of its metaprogramming capabilities. These implementa-
tions utilize: dynamic code generation, full object orienta-
tion, and first-class continuations – a combination of features
found in very few other languages.

Categories and Subject Descriptors
F.1.2 [Computation by Abstract Devices]: Modes of
Computation—probabilistic computation; D.2.5 [Software
Engineering]: Testing and Debugging—testing tools, trac-
ing ; G.3 [Probability and Statistics]: Reliability and life
testing

General Terms
Measurement, Reliability, Theory, Metaprogramming

1. INTRODUCTION
A program path or program trace is one of the many (pos-
sibly infinite) legal sequences of basic blocks through a pro-
gram. That is, a program path represents a distinct se-
quence of instructions, executed for a particular input value,
determined by a sequence of predicates representing the pro-
gram conditionals and loops. In fact, the same sequence of
instructions will be executed for the set of values – a pro-
gram input sub-domain – selected by the conjunction of that
sequence of predicates.

This paper introduces two different probabilistic algorithms
to generate paths based on an operational profile describ-
ing the probability distribution of the possible inputs. The
paths and corresponding domains produced by these algo-
rithms could be provided as input to other programs to eval-
uate various software metrics on the program under exam-
ination. Because the generation of paths from these algo-
rithms is driven by the operational profile, the most relevant
ones will be produced first and significant problems will be
detected earlier.

Discovered paths can be useful for several problems in soft-
ware engineering.

1. When looking at test coverage, path coverage is the
gold standard, but rarely seriously considered because
the number of potential paths is too large, and it is dif-
ficult to prioritize among the available paths.[2, 4, 7, 8,
19, 21, 22] Given that these algorithms deliver paths in
the order of most significance, they would make path
coverage highly usable. Generated paths/domains can
be fed to a program that checks each domain against
all the existing tests to verify that each domain is cov-
ered, flagging those that are not.

2. When considering reliability of a program, path do-
mains are good candidates for appropriate units to
which to assign a pass/failure since all points in the
domain will execute exactly the same instructions and
thus should have comparable correctness.[6, 10, 15, 16,
17, 18, 20] Generated paths/domains can be fed to
a program that tests the program under examination
against a gold standard in each domain and verifies
that they produce the same result. From this a relia-
bility calculation can be made for the program oper-
ating with the particular operational profile.1

1It’s a bit more complicated than this, but the complications

3. When considering resource consumption, such as exe-
cution time or stack utilization, since the same instruc-
tions are executed, all the points in the same domain
should have comparable resource comsumption.[5] The
definition of “instruction” can be important to this be-
cause things like variable-sized heap allocation may be
treated as a single “instruction”. With the frequency
information provided by the operational profile, paths
could also be used for program performance tuning
and profile-directed compilation,[9]

1.1 Identifying Paths
Paths can be identified via structural induction across the
program control flow graph (CFG), using different walks of
the control flow graph. The challenge for any such walk is
generating the most important paths from the potentially
infinite set of possible paths.

Depth First
Depth-first search is probably the simplest approach, but be-
cause it takes no account of possible input values, it runs al-
most immediately into potentially infinite loops – and hence
infinite path lengths. While such loops can be detected, the
question of when to stop moves into the realm of the heuris-
tic option.

Breadth First
Breadth-first search is more complicated, but potentially not
much better because many of the first paths identified may
be error-handling and other low-frequency paths.

Heuristic
Heuristic approaches use knowledge about program struc-
tures, such as typical numbers of loop iterations and error
handling, to control the depth of the search for paths and
to focus on the more core paths through the program.[13]

1.2 Operational Profiles
An operational profile is a statistical description of the con-
text in which the program will be used.[11, 12] Ideally an
operational profile will be based on actual field usage. While
it is convenient to think of an operational profile as a multi-
variate (one for each parameter to the program) probability
density function (PDF), which could be a continuous func-
tion, an operational profile is often developed as a histogram.
The important property is that the function is non-negative
at all points and that the integral over the entire input space
is exactly 1.

2. PROBABILISTIC PATH GENERATION
This paper introduces two probabilistic algorithms that uti-
lize an operational profile describing the probability distri-
bution of the possible inputs. Both algorithms generate
paths more-or-less in the order from the the most to least
significant, as determined by the operational profile.

Probabilistic execution of a program looks at values differ-
ently. For discussion purposes, consider programs with nu-
meric parameters. Where in a normal program execution,

are outside the scope of this program. See [10, 15] for more
information.

variables all contain actual numeric values, in a probabilistic
execution, variables contain either numbers or expressions of
the (probabilistic) input parameters. The input parameters
are never reified, except as defining a region of the input
space – a sub-domain.

Predicates then become comparisons of expressions of the
input parameters and, rather than truth or falsity, they have
only probabilistic meaning. When combined with a set of
other probabilistic predicates forming a path, they define a
portion of the input space and have a particular probability
of input values being in the domain, based on the operational
profile.

2.1 Continuation-based path generation
This algorithm is theoretically very clean; the first path pro-
duced is strictly the most frequent path and the frequency
is available as soon as the path is produced. Then the next
path produced is strictly the next most frequent, and so on.

A continuation is the “rest of the program execution”.[1]
Capturing a continuation allows the program to do some
other work and then to return to the continuation to allow
it to continue executing as if nothing had happened.

There are two difficulties with this algorithm. Firstly, the
algorithm is dependent on being able to capture the program
continuation at the point a probabilistic predicate is used to
determine program flow. Secondly, the correctness of the
frequency promise above is dependent on the accuracy of
operational profile and the quality of the integration of the
operational profile over the sub-domains.

The algorithm maintains a priority queue of continuation/
path/ frequency ordered by frequency. When a probabilistic
predicate must be evaluated to determine which of two paths
to follow, the continuation is captured and two objects are
put on the priority queue. One object placed on the priority
queue contains

• the predicates that led to the decision point, augmented
by the new predicate,

• the continuation to return true, and

• the frequency of that augmented set of predicates.

The other object placed on the priority queue contains

• the predicates that led to the decision point, augmented
by the complement of the new predicate,

• the continuation to return false, and

• the frequency of that augmented set of predicates.

Then the highest frequency partial path on the priority
queue is popped, the current predicate set is set to that
of the popped object, and the continuation is resumed.

This may lead to many partial path executions before one
execution gets to the end of the program under test. When

ProbabilisticExec evaluate: [:x |

t:=0.

[t*0.1<x] whileTrue: [

t:= t+t+1.

r:=t].

r]

value: (PDFNormal new mean: 1.5 stdDev: 0.5)

result: [:result :path|

"use the result and path"

].

Figure 1: Using ProbabilisticExec class

one execution gets to the end of the program under test,
its path, frequency, and result are reported, and the next
object on the priority queue is popped. When there are no
more objects on the priority queue, all the paths have been
generated and executed to completion.

2.2 Monte Carlo-based path generation
This algorithm is somewhat simpler as no integral is required,
and no continuations are captured.

The drawbacks of this algorithm are that frequencies for
paths are not generated by the algorithm and immediately
available, and the paths are not strictly ordered, such that
the first-produced path may not be the highest frequency
path. However, the first paths produced will tend to be the
most important, so the basic properties of the first algorithm
will be upheld.

The algorithm generates a datapoint in the input space, ran-
domly but using the operational profile to chose the value
from the more-probable sub-domains.2 It then tests the
point against a list of domains identified to date. If that
domain has already been identified, the algorithm goes back
to generate another point. Otherwise, the program is ex-
ecuted with the chosen point. Probabilistic predicates are
generated as in the probabilistic algorithm, but when one
must be evaluated to determine which of two paths to fol-
low, the list of current predicates is augmented by the new
predicate and then execution is resumed with the correct
true or false value so that the branch goes in the proper
direction.

3. PROTOTYPE IMPLEMENTATION
The actual code to handle the probabilistic control flow is
only a few dozen lines of Smalltalk code, but when added to
code for integration, multi-variate polynomials, and tests it
currently totals about 2500 lines of code.

Figure 1 shows how easily paths can be generated from a
block of code. The frquency and the set of predicates are
available from the path object. The MonteCarloExec class is
used in exactly the same way, although as mentioned earlier,
doesn’t produce as useful a frequency value.

For example, the path 0 < v1 <= 0.1 – one of the paths gen-
erated from the program in figure 1 – would be represented

2Generating datapoints in this order is an open problem.

mustBeBoolean

^ProbabilisticExecution currentExecution

atContext: thisContext sender

addPredicate: self

Figure 2: mustBeBoolean method from Maybe

as a compound predicate equivalent to (and compiled as)
[:v1| 0.1 >= v1 and: [0 < v1]].

Smalltalk was chosen for the protype implementation for
several reasons:

• Dynamic types

• First-class booleans

• Dynamic code generation

• Continuation capture

3.1 Dynamic types
Dynamic types allow existing code to be analysed without
any change to the code. This is desirable because the very
nature of the analysis is to examine the code for errors, so
any required manipulation would allow for the introduction
(or elimination!) of errors from the original code.

When the block from the example in figure 1 is executed, the
variable x is substituted with a probabilistic variable repre-
senting the normal distribution described by the PDFNormal

probability density function. While these probabilistic vari-
ables can act like numbers (arithmetic operations building
up polynomials of the probabilistic variables), they are also
the hooks that trigger the analysis. Comparisons among the
probabilistic values or between probabilistic values and num-
bers produce probabilistic booleans of the subclass Maybe.

3.2 First-class booleans
In Smalltalk all control flow is described using polymor-
phism; that is, all subclasses of the Boolean class imple-
ment the method ifTrue:, but the True class evaluates the
block passed as a parameter while the False class ignores
it – and vice versa for ifFalse:. Thus, to implement the
probabilistic booleans of the subclass Maybe should simply
entail defining the required methods from Boolean.

However, to get reasonable performance from Smalltalk, the
compiler recognizes that these message sends are actually
conditionals and compiles them into conditional jumps that
only recognize the known true and false values. The com-
piler performs similar optimizations for loops.

But all is not lost! If a value tested is not one of the expected
values (true or false), the interpreter sends the message
mustBeBoolean, which allows the object to do whatever it
needs to do and then to return a known boolean value so
the branch test can proceed.

Figure 2 shows the mustBeBoolean method from Maybe. When

atContext: context addPredicate: maybe

| result |

result := maybe evaluateWith: currentValues.

currentPath addPredicate: (

result ifTrue: [maybe]

ifFalse: [maybe not]).

context skipBackBeforeJump.

^ result

Figure 3: atContext:addPredicate: method from
MonteCarloExec

atContext: context addPredicate: maybe

| newPath frequency |

context skipBackBeforeJump.

newPath := currentPath copy addPredicate: maybe.

frequency := newPath frequencyWith: currentPDF.

frequency >0 ifTrue: [

priorityQueue add:

(ProbContinuation fromContext: context

path: newPath

result: true)].

newPath := currentPath addPredicate: maybe not.

frequency := newPath frequencyWith: currentPDF.

frequency >0 ifTrue: [

priorityQueue add:

(ProbContinuation fromContext: context

path: newPath

result: false)].

self queueNext

Figure 4: atContext:addPredicate: method from
ProbabilisticExec

a Maybe boolean is tested, it dispatches to the current prob-
abilistic execution engine to capture the predicates and to
determine whether the branch should be taken or not.

Figure 3 shows the atContext:addPredicate: method from
MonteCarloExec. Here we simply evaluate the Maybe pred-
icate with the current injected point, then based on that
evaluation add the predicate or its complement to the cur-
rent path, and finally return the result to the branch point
so that it can branch in the appropriate direction.

Figure 4 shows the atContext:addPredicate: method from
ProbabilisticExec. In this case, no evaluation of the pred-
icate is required because we are going to capture both paths:

1. create the true continuation

• a copy of the current path is augmented with the
predicate

• the frequency of that path is determined by tak-
ing an integral of the current PDF over the re-
sulting path

• a continuation is created with that path that will
eventually return true

• that continuation is added to the priority queue.

2. create the false continuation

• the current path is augmented with the comple-
ment of the predicate

• the frequency of that path is determined by tak-
ing an integral of the current PDF over the re-
sulting path

• a continuation is created with that path that will
eventually return false

• that continuation is added to the priority queue.

3. Pull the highest priority continuation off the queue and
resume it.

3.3 Dynamic code generation
Both algorithms require fast testing of whether a point is
contained in a domain determined by a path.

In the ProbabilisticExec engine, two integrals need to be
calculated over a domain at each conditional point in the
program execution. Since Monte Carlo integration is the
only feasible approach, this can require potentially hundreds
of membership tests per integral.

In the MonteCarloExec engine, each generated point has to
be checked to see if the domain containing it has already
been covered, and the tester’s analysis code may also want
to calculate the integral over the operational profile.

As mentioned in the example, a path for a domain like
0 < v1 <= 0.1 would be represented as a conjunction of
comparisons. The fact that this can be converted to the
block [:v1| 0.1 >= v1 and: [0 < v1]] and be compiled
allows this membership test to be much faster than if the
predicates needed to be interpreted.

3.4 Continuation capture
As can be seen in figure 4, in the ProbabilisticExec engine
execution follows a probabilistic path through the program.
At every point where an input parameter affects control flow,
the engine captures the continuation and adds it twice to a
priority queue with appropriate priorities based on the in-
tegral of the operational profile over the corresponding do-
mains. Eventually both of the continuations will return –
once with true and once with false – in an order and at a
time dictated by the operational profile in use.

Squeak Smalltalk has an implementation of continuation
capture that allows the restoring of temporary variables to
their state as of the continuation capture. Although not cur-
rently implemented, this could conceivably be extended to
restore any referenced objects to their state, but this could
easily get out of hand.

4. CONCLUSIONS
The order of generation of the progam paths can be driven
by the operational profile describing the probability distri-
bution of the inputs of a program, so that more important
paths can be generated earlier.

To the extent that one can generate accurate operational
profiles, the approaches described in this paper can dramat-
ically improve the usefulness of path-based techniques for
quality metrics.

If a reasonably accurate operational profile is available for
a program, and if a set of paths has been generated, the
integrals over the domains corresponding to the paths can
provide several pieces of supplementary information.

1. The sum of the integrals gives a lower bound on the
domains considered so far for this particular usage.

2. The sum of the integrals of the successful domains
(whether refering to coverage or reliability) provides
a lower bound on the success rate for this particular
usage.

3. The sum of the integrals of the failed domains provides
a lower bound on the faliure rate for this particular
usage.

4. The combination of the success and failure rates pro-
vides an asymptotic bound on the range of possible
success rates; as more domains are evaluated those
bounds can be moved arbitrarily close.

5. While the integrals over the domains are specific to a
particular operational profile, the paths and domains
themselves are independent of the operational profile
being used, so at any time the success/failure/considered
integrals can be recalculated with alternate operational
profiles, providing the same information, but for a new
usage.

Smalltalk made this experiment possible, and makes it pos-
sible to evaluate the efficacy and efficiency of the two algo-
rithms. That evaluation is currently being undertaken.

Other future work is to determine operational profile de-
scriptions that can give useful integrals for non-numeric pa-
rameters.

5. REFERENCES
[1] A. W. Appel. Compiling with Continuations.

Cambridge University Press, 1992.

[2] R. Cheung and C. Ramamoorthy. Optimal
measurement of program path frequencies and its
applications. In Proceedings 1975 Intl. Fed. Automat.
Contr. Congr., Aug. 1975.

[3] P. Frankl, editor. Proceedings of the 2002 International
Symposium on Software Testing and Analysis. ACM
Software Engineering Notes, July 2002.

[4] A. Goldberg, T.-C. Wang, and D. Zimmerman.
Applications of feasible path analysis to program
testing. In Ostrand [14], pages 80–94.

[5] D. Hamlet. Component synthesis theory: The problem
of scale. In 4th ICSE Workshop on Component-Based
Software Engineering (CBSE’2001), Toronto, Canada,
May 2001.

[6] D. Hamlet. Continuity in software systems. In Frankl
[3].

[7] W. E. Howden. Reliability of the path analysis testing
strategy. IEEE Transactions on Software Engineering,
2(3):208–215, Sept. 1976.

[8] R. Jasper, M. Brennan, K. Williamson, B. Currier,
and D. Zimmerman. Test data generation and feasible
path analysis. In Ostrand [14], pages 95–107.

[9] S. Jinturkar, J. Thilo, J. Glossner, P. DArcy, and
S. Vassiliadis. Profile directed compilation in dsp
applications. In Proceedings of the International
Conference on Signal Processing Applications and
Technology (ICSPAT98), Sept. 1998.

[10] D. Mason. Probabilistic Program Analysis for Software
Component Reliability. PhD thesis, University of
Waterloo, 2002.

[11] J. Musa, G. Fuoco, N. Irving, and D. Kropfl. The
Operational Profile, pages 167–216. McGraw-Hill, New
York, 1996.

[12] J. D. Musa. Applying operational profiles in testing.
In Proceedings of 10th International Software Quality
Week, pages 1–25, San Francisco, CA, May 1997.

[13] M. N. Ngo and H. B. K. Tana. Heuristics-based
infeasible path detection for dynamic test data
generation. Information and Software Technology,
50(7–8):641–655, jun 2008.

[14] T. J. Ostrand, editor. Proceedings of the 1994
International Symposium on Software Testing and
Analysis. ACM Software Engineering Notes, Aug.
1994.

[15] D. Richardson. A Partition Analysis Method to
Demonstrate Program Reliability. PhD thesis,
University of Massachusetts, Sept. 1981.

[16] D. J. Richardson and L. A. Clarke. Partition analysis:
A method combining testing and verification. IEEE
Transactions on Software Engineering,
11(12):1477–1490, Dec. 1985.

[17] S. Weiss and E. Weyuker. An extended domain-based
model of software reliability. IEEE Transactions on
Software Engineering, 14(10):1512–1524, Oct. 1988.

[18] E. Weyuker and T. Ostrand. Theories of program
testing and the application of revealing subdomains.
IEEE Transactions on Software Engineering,
6(3):236–46, May 1980.

[19] L. J. White and E. I. Cohen. A domain strategy for
computer program testing. IEEE Transactions on
Reliability, 6(3):247–257, May 1980.

[20] D. Woit. Operational Profile Specification, Test Case
Generation, and Reliability Estimation for Modules.
PhD thesis, Queen’s University, Kingston, Ontario,
February 1994.

[21] M. R. Woodward, D. Hedley, and M. A. Hennell.
Experience with path analysis and testing of
programs. IEEE Transactions on Software
Engineering, 6(3):278–286, May 1980.

[22] S. J. Zeil and L. J. White. Sufficient test sets for path
analysis testing strategies. In 5th ICSE, pages
184–194. IEEE Computer Society, Catalog No.
81CH1627-9, Mar. 1981.

