
Diagnosis and semi-automatic correction of
detected design inconsistencies in source code

Sergio Castro Johan Brichau Kim Mens
Université catholique de Louvain, Belgium

{sergio.castro, johan.brichau, kim.mens}@uclouvain.be

Abstract
In order to alleviate design decay, different program design
documentation techniques are used for the specification and
detection of design inconsistencies in code. However, these
design documentation techniques do not always provide sup-
port for the diagnosis and (semi-) automatic correction of
such inconsistencies. In case they do, corrective solutions
are typically targeted to a reduced set of pre-defined incon-
sistency problems, and they are not easily customizable to
new kinds of consistency checks defined by a user. In par-
ticular, they cannot infer possible corrective actions to solve
new user-defined inconsistency problems. In this paper, we
present a technique for the diagnosis and (semi-) automatic
correction of inconsistencies in the context of an existing
tool for inconsistency management: IntensiVE. Our tech-
nique uses logic abductive reasoning to infer solutions to de-
tected user-defined inconsistencies, starting from basic com-
posable corrective actions. A first prototype implementing
our technique on top of IntensiVE is shown.

Keywords Design inconsistency, diagnosis, correction, ab-
ductive reasoning , IntensiVE, SOUL, Smalltalk

1. Introduction
The lack of traceability of program design decisions (e.g.,
coding conventions [Beck 1997], idioms [Coplien 1992], de-
sign patterns [Gamma et al. 1995], design regularities [Min-
sky 1996]), and lack of documentation and verification tech-
niques that can enforce these decisions, cause a continu-
ous erosion of the design of a software system [van Gurp
and Bosch 2001]. Therefore, program design documentation
techniques are needed to provide developers with a com-
plete understanding of the design decisions that govern the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ESUG ’09 August 31, Brest
Copyright c© ACM [to be supplied]. . . $10.00

implementation. In this way, they can make efficient mod-
ifications to such implementation when needed [Letovsky
and Soloway 1986] [Robillard et al. 2004], while avoiding
changes that do not respect existing design (i.e., create de-
sign inconsistencies) [Parnas 1994]. This improves the over-
all quality of the code in terms of reusability, extensibility
and comprehensibility. Though some tools provide for the
detection and even correction of certain kinds of design in-
consistencies in code, such as stylistic conventions and some
bad practices (e.g., CheckStyle [Che06] and Lint [Johnson
2007]), these tools do not allow for a general means of
checking a broad number of regularities [Minsky and Min-
sky 1994] that need to be defined in a real software system,
nor do they offer a mechanism for automatically inferring a
corrective solution for user-defined inconsistency problems.

In this paper, we present a first prototype implementa-
tion of a technique based on logic abductive reasoning that
overcomes some of these limitations. This prototype is im-
plemented on top of IntensiVE [Mens et al. 2005, Kellens
2007], a tool suite for specifying and enforcing a wide va-
riety of structural regularities in the source code of a sys-
tem. Software engineers can define regularities by means of
source-code queries that gather specific source-code entities
into intensional views, upon which constraints are imposed.
With IntensiVE, developers can specify the regularities they
deem interesting and invoke their detection at any time they
desire. Upon such detection, violations of the regularities in
the source code or in the design documentation are reported
by the tool suite.

However, the current support offered by IntensiVE for
inconsistency management is limited to specification and
verification of structural regularities. In this work we attempt
to expand this support with:

1. a diagnosis mechanism that provides a programmer with
possible explanations of the causes that created an incon-
sistency;

2. a semi-automatic correction mechanism that supports the
programmer in the task of applying corrective actions
on code, in such a way that the system will be more
consistent.

As explained in the next sections, these two objectives
will be reached using abductive reasoning techniques [Pierce
1935].

This paper is structured as follows. Section 2 provides an
overview of how IntensiVE is currently used for the spec-
ification and detection of inconsistencies in code. Section
3 explains why the notion of logical abduction is suitable
for the diagnosis and correction of inconsistencies. Section 4
introduces our abductive reasoning framework for inconsis-
tency management with the help of a small example. Section
5 shows with a less trivial example our technique, and ex-
plains how existing corrective actions can be reused in new
contexts. Section 6 presents related work that makes use of
abductive techniques for inconsistency management in soft-
ware engineering. Section 7 discusses our future work and
finally section 8 presents our conclusions.

2. Using IntensiVE for the specification and
verification of regularities

In this section we show with a small example how IntensiVE
can be used for specifying and detecting a common bug in
code. In section 5 we will show on a less trivial example
how IntensiVE could verify the correct implementation of a
design pattern.

Inspired by the well known code critic checks [Johnson
2007] provided by many developing tools (e.g., VisualWorks
Smalltalk [Cincom Systems, Inc. 2007]), we have selected
as a first example one typical check: the verification that any
class implementing the binary message = also provides an
implementation for the method hash, and vice versa.

Although this check is already provided by Smalltalk, we
have decided to show here how this can be implemented in
IntensiVE in order to demonstrate how reusable (as we will
see in section 5) and executable corrective actions can be
defined. Something that is not currently provided by existing
development tools.

2.1 Definition of an intensional view
An intensional view represents a set of source-code entities
(e.g., methods, classes, etc) that make up the implementation
of a concept of interest. In many cases, source code entities
implementing a same concept share a structural property. For
example: all accessor methods share the coding convention
that their names should be the same that the instance vari-
ables they are accessing.

More precisely, an intensional view is an intensionally
specified set of tuples of source-code entities. The compo-
nents of the tuple are the source code elements relevant to
the concept the intensional view is expressing (e.g., the ex-
tension of an intensional view describing all the accessors
in the classes belonging to a particular package, is a set of
tuples containing each of them only one element: an acces-
sor method). The size of this tuple and the code entities it
contains, is part of the definition of the intensional view.

A relevant property of intensional views is that their sets
of tuples are not defined by enumeration (i.e., extensionally)
but by means of an intension. Similar to set theory, an inten-
sion is a descriptive definition that yields, upon evaluation,
the set of tuples of entities belonging to the extension of the
view. Although IntensiVE is independent of the query lan-
guage used, our tool tightly integrates with the logic (meta-
) programming language SOUL[Wuyts 2001] (a dialect of
Prolog [Shapiro and Sterling 1994]).

Figure 1 shows the definition of an Intensional View in
IntensiVE that groups all the classes implementing a hash
method. The SOUL query used to gather these classes is:

methodWithNameInClass(?,hash,?class)

Upon execution, this query will bind the tuple variable
?class to classes implementing methods with name hash.

Grouping elements belonging to a same concept is a very
useful mechanism for code exploration and comprehension.
However, being able to define constraints over the elements
belonging to these concepts is what makes Intensional Views
particularly suitable for the specification and detection of in-
consistencies. Different mechanisms are possible in Inten-
siVE for specifying such constraints, but for the sake of sim-
plicity we will talk only about the mechanism of alternative
views.

An alternative view is an alternative definition of an ex-
isting concept, where all the source code elements in an al-
ternative definition should also be part of the elements of the
original concept and vice versa. For example, we can say
that the same groups of classes redefining a hash method,
should also redefine the = method. Then this view is com-
posed of two alternatives. The second alternative uses the
following SOUL query to bind the tuple variable ?class to
all the classes implementing methods with name = :

methodWithNameInClass(?,=,?class)

2.2 Detection of inconsistencies
Once multiple alternatives have been defined for a view, it
is possible to accomplish a verification that will report a
list with all the source elements that are present in both
alternatives (consistencies) and source code elements that
are defined in only one of the alternatives (inconsistencies).

Figure 2 shows a verification of the previously described
Intensional View with two alternatives. The third column
shows classes implementing the = method (bullets without
‘X’). At the second column we can see classes implementing
the hash method. A row with red bullets (with ‘X’) means
that the view does not satisfy one of the two alternative
descriptions of the view, for example a class that implements
the hash method and not the =, or vice versa.

3. Abduction as a diagnosis mechanism
At this point we have seen how IntensiVE can report de-
tected inconsistencies between design and code (for exam-
ple, the adherence of the code to the design regularity that

Tuple definition Comments

Alternative Views IntensionIntension language

Intensional Views and Relations

Figure 1. A view with two alternatives. The first alternative queries classes implementing the hash method.

Figure 2. Consistency check of the hash versus = methods
regularity.

every class implementing a hash method should implement
an = method and vice versa). Before being able to semi-
automatically correct detected problems, we need a mech-
anism to diagnose which are the possible causes of these
problems (i.e., hypothesizing which are the properties of the
source code elements that could be causing the inconsistency
[Reiter 1987]).

Since in our diagnosis problem the description of a sys-
tem is already expressed with logic terms [Wuyts 1998,
Mens and Kellens 2006], being pragmatics we decided to
adopt a diagnosis strategy based on logic programming too.
This decision led us directly to abductive reasoning [Flach
1994].

Pierce was the first to formally introduce the notion of
abduction as one of the three fundamentals forms of human
reasoning (the other two being deduction and induction)
[Pierce 1935].

Abductive reasoning plays the role of a generator of new
ideas or hypotheses [Yu 1994]. It has been shown to be
specially useful as an inference process for scientific dis-
covery of explanatory hypotheses for anomalous phenom-
ena [Paavola 2004, Pierce 1955] and, more specific to our
problem, as a mechanism for the detection and diagnosis
of inconsistencies in different fields of software engineer-
ing [Russo and Nuseibeh 2000, Nuseibeh and Russo 2007,
Russo et al. 2000, Satoh 1998b, 2000, Denecker and Kakas
1993].

Intuitively, with abduction we can find a set of hypotheses
(or explanations) that, when added to a given formal speci-
fication, will allow an observation to be inferred [Russo and
Nuseibeh 2000]. A more formal definition is provided in
[Denecker and Kakas 1993]. A typical Abductive Logic Pro-
gramming Theory is defined as a triple (P,A, IC), where P
is a logic program (a set of Horn clauses), A is a set of ab-
ducible atoms and IC is a set of logical formulas referred as
integrity constraints.

Given such a logic theory (P,A, IC), an abductive expla-
nation for a query Q is a set ∆ ⊆ A of ground atoms1 such
that:

• P ∪∆ |= Q

• P ∪∆ |= IC

• P ∪∆ is consistent

That is, any explanation ∆ together with the original
theory P should satisfy the observation Q, should respect the
integrity constraints IC, and should be consistent. Note that
the set ∆ should satisfy the criteria of: (1) belonging to the
set of abducible predicates A and (2) it should be minimal,
in the sense that no abductive explanation is subsumed by
another abductive explanation [Russo and Nuseibeh 2000].

We will illustrate abductive reasoning with a small ex-
ample adapted from [Flach 1994] and [Inoue and Sakama

1 Abduction produces only ground explanations. The inference of new rules,
or non-ground explanations belongs to the domain of induction

1998]. Assuming no special integrity constraints, we could
define our abductive logic programming theory (P,A, IC)
as:

• P is the logic program:

flies(?x) if bird(?x), not(ab(?x))
ab(?x) if broken-wing(?x)
broken-wing(tweety)

• A is the set {bird(?x), broken-wing(?x)}.
• IC is an empty set {}.

Then if Q is the observation: flies(opus), we find that ∆
is the set {bird(opus)}.

Explanation: in order for the query flies(opus) to succeed,
both bird(opus) and not ab(opus) should succeed. Though
there is not any fact explicitly stating that opus is a bird, the
predicate bird(?x) is abducible, so we know that a possible
explanation for the observation flies(opus) is that opus is a
bird. Since not(ab(opus)) succeeds, no additional explana-
tion is required.

In addition to the generation of such facts that when
added to a theory make a query succeed, useful general-
izations to the concept of abduction allow the retracting of
facts (referred as negative explanations) and unexplanations
of negative observations (referred as anti-explanations) [In-
oue and Sakama 1998].

To understand the intuition behind this, let us revisit our
previous example. If we ask for an explanation of the query
flies(tweety), normally abduction would fail in finding such
explanation. We recall that for the query flies(tweety) to suc-
ceed, both bird(tweety) and not(ab(tweety)) should succeed.
Though the first predicate can be abduced (i.e., bird(?x) is
abducible), a complete explanation cannot be found since
not(ab(tweety)) fails and no explanation can be found to
make it succeed. This is because ab(tweety) succeeds giv-
ing that broken-wing(tweety) also succeeds. With the no-
tion of negative explanations, we could say that broken-
wing(tweety) is a negative explanation of flies(tweety). In
other words, to make flies(tweety) succeed, we have to re-
tract from our theory the fact that tweety has a broken wing
(i.e., to make tweety fly again we have to heal its wing).

In the next section we demonstrate how abduction can be
used as an effective mechanism for diagnosing and correct-
ing design inconsistency problems in source code.

4. Diagnosing and correcting inconsistencies
4.1 The diagnosis problem in IntensiVE
Reiter [Reiter 1987] defines the diagnosis problem as the
search for the components of a system that under the as-
sumption they are faulty, will explain an inconsistency be-
tween the description of that system and certain anomalous
observations .

In our context, we consider the description of a system
as the design regularities over source code that govern an

implementation. Our observations are the source code ele-
ments that fulfill or not these design regularities. In other
words, our problem consists in determining which are the
faulty source code elements that are causing design incon-
sistencies to occur, and how we can repair these source code
elements in order to fix those inconsistencies.

Revisiting our example of section 2, figure 2 shows a
comparison between two sets of source code elements that
should be identical: the set of classes defining a hash method
and the set of classes defining an = method. In our example,
an inconsistency is found if a class is present in the first set
(i.e., it implements the method hash) and not in the second
(i.e., it does not implement the method =) or vice versa.

If a class is not present in the first set, for exam-
ple: AbstractQuantifier, it is because the result of
the query gathering the tuples belonging to this set
is not including this class. In other words, the query
methodWithNameInClass(?,hash,[AbstractQuantifier]) is
failing.

Even if we do not know how this query is defined in
SOUL, intuitively we know that if we would add a method
hash to AbstractQuantifier, then the result of the query
would include the class AbstractQuantifier.

An alternative way to resolve this inconsistency would
have been to retract the class AbstractQuantifier from the
second set. This is because if a class is not present in the
first nor the second set, no inconsistency will be found. The
class AbstractQuantifier is present in the second set since the
query methodWithNameInClass(?,=,[AbstractQuantifier])
is succeeding. Intuitively, we know that if we delete the
method = from AbstractQuantifier, the result of the query
will not include anymore the class AbstractQuantifier.

In general, in order to solve inconsistencies present in
views with two (or more) alternatives, for every inconsis-
tency found a programmer must choose between one of these
two options:

• Find a code transformation that will add tuples to the
sets where they are missing, giving that these tuples are
present in the sets of the other alternatives.
• Find a code transformation that will retract tuples from

the sets where they should not be, giving that these tuples
are not present in the sets of the other alternatives.

Therefore, we found that a programmer willing to diagnose
and correct this kind of inconsistencies, is faced with these
problems:

• Choose the sets to fix, either adding or retracting tuples
from these sets.
• Find explanations why a tuple is not present in the set

chosen (in case a tuple needs to be added) or why it is
present (in case a tuple needs to be retracted).
• Finding, performing and verifying the right code trans-

formation that will correct the inconsistency.

The first two questions are related to diagnosis, the third
question is related to correction of inconsistencies. In this
section we explain how using abductive reasoning tech-
niques, it is possible to partially solve these problems.

4.2 A framework for diagnosis and correcting
inconsistencies

We have intuitively described the process of diagnosing and
correcting inconsistencies in Intensional Views with two or
more alternatives. In this section we propose a more method-
ological mechanism using abductive reasoning.

As mentioned in section 3, in order to use abduction for
diagnosis we have to predefine a subset of sentences that can
be part of an explaining answer, called abducibles. In ab-
ductive reasoning, these sentences should not appear as con-
sequence of rules [Flach 1994, Denecker and Kakas 1993,
Russo and Nuseibeh 2000], in order to avoid the generation
of explanations that themselves can be explained in terms of
other sentences.

However, we relax this constraint in our technique. In
SOUL, the structure of an object-oriented program is reified
(i.e., given an equivalent representation of its structure in a
logic language) using queries over an abstract syntax tree.
These queries intensionally represent the logic facts that de-
fine the structure of a program. Therefore, in SOUL there is
not an explicit set of final clauses (or facts) expressing the
structure of a program [Wuyts 2001, 1998] that we could
define as abducibles. Instead, we have defined any predicate
stating a structural relationship among source code elements,
and for which a corrective action can be defined, as poten-
tially abducible.

Since abducible predicates have to be explicitly declared,
our framework has the notion of corrective actions. These
are a set of clauses following this pattern:

correct(〈abduciblePredicate〉, 〈action〉, 〈description〉).
The meaning of the predicate parameters is

abduciblePredicate: an abducible predicate. All the possi-
ble explanations are expressed in terms of predicates de-
clared as abducible. Two possible types of abducibles can
be declared: abducibles for explanations (denoted by the
in functor) and abducibles for anti-explanations (denoted
by the out functor). In other words: in-abducibles, denot-
ing explanations, declare that a predicate will be added
to the theory after the execution of an associated correc-
tive action. out-abducibles, denoting anti-explanations,
declare that a predicate will be retracted from the the-
ory after the execution of an associated corrective ac-
tion. This terminology is taken from [Inoue and Sakama
1998].

action: a code transformation procedure that will apply a
corrective action associated with an explanation (i.e., ad-
dition of the predicate abduciblePredicate to the theory)
or anti-explanation (i.e., retraction of the predicate ab-
duciblePredicate from the theory).

description: a textual description of an explanation and its
associated corrective action.

For example, the following is the abducible predicate for
methodInClass(?method,?class) with an associated anti-
explanation:

correct(out(methodInClass(-?method,+?class)),
[[(Refactory.Browser.RemoveMethodRefactoring removeMethods:

(OrderedCollection with: ?method selector)
from: ?class) execute.]]),

[’this corrective action deletes the method ’,
(?method selector asString),
’ in class ’, (?class asString)]

As we mentioned in section 3, the anti-explanation of an
observation is a set of facts that need to be added (positive
anti-explanation) or retracted (negative anti-explanation)
from our theory (i.e., the reification in logic of an ob-
ject oriented program) in order to unexplain [Inoue and
Sakama 1998] an observation. However, we mentioned that
in SOUL an object oriented program is not reified as a set
of logic facts, but as queries over its parse tree that repre-
sent those facts. Then, instead of adding or retracting facts,
an explanation/anti-explanation will be associated with a
source code transformation that will change the parse tree
of a program. As a result, SOUL will reify the modified
parse tree, having the same effect than explicitly adding or
retracting facts as it is done in traditional abduction.

In our example, an anti-explanation for the predicate
methodInClass(?method,?class), is associated with the re-
moval of the method ?method from the class ?class (i.e.,
if we remove the method ?method from ?class, the fact
methodInClass(?method,?class) is retracted from our the-
ory).

We have chosen the methodInClass/2 predicate as ab-
ducible, since the queries defining the alternatives of our In-
tensional View make use of it. This is because methodWith-
NameInClass/3, the SOUL query used with different param-
eters in the two alternatives, is defined as:

methodWithNameInClass(?method, ?selector, ?class) if
methodInClass(?method, ?class),
methodWithName(?method, ?selector)

Once we have defined an anti-explanation for an ab-
ducible predicate, we are implicitly defining a possible anti-
explanation for all the predicates that depend on the success
of our abducible predicate. In other words, if the success
of methodWithNameInClass/3 depends on the success of
methodInClass/2, an anti-explanation for methodInClass/2
will be an anti-explanation for methodWithNameInClass/3.

Figure 3 shows a user choosing in IntensiVE a tuple to
correct with a contextual menu. Note that the selected tu-
ple belongs to the second alternative of our example, and
that the only source code element in the tuple is the class
AbstractQuantifier. The tool infers that the user is asking
for an explanation of the possible actions the programmer
could execute in order that the query methodWithNameIn-

Figure 3. Choosing a tuple to correct

Class(?,=,[AbstractQuantifier]) fails and the view becomes
consistent.

Since methodWithNameInClass/3 is defined in terms of
methodInClass/2, when the query methodWithNameInClass(
?,=,[AbstractQuantifier]) is launched, it will be resolved
to methodInClass(?method,[AbstractQuantifier]), method-
WithName(?method,=). The normal resolution process con-
tinues until the query succeeds, but in the meanwhile our
abductive interpreter detected that methodInClass/2 was
invoked and that its execution was successful. Since we
asked to the abductive interpreter for explanations to the
fact that methodWithNameInClass/3 is false, given that
methodInClass/2 is an abducible predicate with an anti-
explanation associated with it, the interpreter answers that
the desired result will be obtained if the fact methodIn-
Class/2 is retracted (i.e., the corrective action associated
with out(methodInClass/2) is executed). The results are
shown to the user in a browser together with other possible
solutions. Figure 4 shows an initial version of this browser
developed with Glamour [Bunge 2009], from where the pro-
grammer can easily inspect a solution and execute its asso-
ciated code transformation.

The top left panel shows a list of possible solutions, the
top right panel a textual description of this solution and the
bottom panel shows a visual explanation of the execution of
the logic abductive interpreter. Note that only one solution
is shown, since only one relevant abducible predicate was
defined in our example.

Although it can be seen as if our intension was just to de-
fine a specific solution to the problem of classes with an un-
necessary method =, in fact we have defined a corrective ac-
tion that can be reused where an anti-explanation for a pred-
icate using methodInClass/2 is needed. For example, if in
the consistency check (figure 3) the programmer would have
chosen to retract the class IVRelationDef from the first set of
the view instead (i.e., the classes implementing the method
hash), no additional work would be needed, since the query

Figure 4. Corrective actions browser

methodWithNameInClass(?,hash,[IVRelationDef]) is also
defined in terms of methodInClass/2.

5. Example: the command design pattern
5.1 Description of the problem
In this section we use our framework for a less trivial exam-
ple. We have taken a regularity from an existing Smalltalk
project: the StarBrowser [Wuyts and Ducasse 2003]. This
project implements a well-known design pattern: the com-
mand design pattern [Gamma et al. 1995]. In the Star-
Browser implementation of this pattern, command objects
are instances of the AbstractAction class. They should over-
ride the method perform to implement the action to execute.
An interesting feature of action classes is that some of them
are undoable. As long as an undoAction method is provided,
the action performed can be undone. Furthermore, a de-
sign constraint requires all the classes which actions can be
undone, to return true in their method isUndoable. Other-
wise, the class will be considered as not undoable. Similarly,
any class returning true in the method isUndoable and not
providing an implementation for the method undoAction is
violating our consistency rule.

Figure 5 illustrates various examples of classes that
should adhere to this design constraint. The default im-
plementation of isUndoable in AbstractAction is returning
false. Any class providing an undoAction method should
override the method isUndoable returning true.

We can see in the figure that the class DummyAction
is consistent according to our design, since an undoAction
method is provided and the isUndoable method is return-
ing true. However, this is not the case for ExperimentalAc-
tion and DrawAction. ExperimentalAction implements an
undoAction method, but it does not override the method
isUndoable. Since this method is returning false in its par-
ent class, an inconsistency is produced because the class is
answering that it is not an undoable class, but it provides
undo behaviour.

DrawAction is overriding the method isUndoable return-
ing true, but no implementation for undo behaviour is pro-
vided (i.e., the class does not implement an undoAction
method).

Finally, the class QueryAction provides an implementa-
tion of undoAction, but returns the result of a block in the
method isUndoable. Therefore, knowing for sure if the class
is following or not our design rule is often impossible to
know with certainty.

In the remainder of this section we show how we can
verify this design pattern using IntensiVE, and demonstrate
how problems can be diagnosed and corrected using the
abductive reasoning techniques shown in this paper.

5.2 Specification and detection of inconsistencies
We start by defining an intensional view for the undoable
actions. This view has two alternatives. The first alternative
queries the classes implementing the method isUndoable
and returning true in it. The query for this alternative is:

classBelow(?class,[AbstractAction]),
classChainReallyUnderstandsMethodWithName(

?class,?method,isUndoable),
methodReturnsBoolean(?method,[true])

Upon execution of this query, classBelow/2 will bind the
variable ?class to all classes inheriting from AbstractAction.
classChainReallyUnderstandsMethodWithName/3 will filter
this result, keeping only those classes which understand a
method named isUndoable. Here, the variable ?method will
be bound to the isUndoable method. The third predicate will
filter even more the results, keeping only those classes that
return true in their isUndoable methods.

The query for the second alternative of the view is the
following:

classBelow(?class,[AbstractAction]),
classChainReallyUnderstandsMethodWithName(

?class,?,undoAction)

Similarly to the first alternative, the second alternative
queries the classes inheriting from AbstractAction. After
that, the result is filtered to those classes that understand
the undoAction method.

Upon checking these regularities in IntensiVE, we will
compare the sets of classes returning true in the method
isUndoable, and the set of classes providing an implementa-
tion for the method undoAction.

Figure 6 shows the result of this check. We can see that
only few classes do not respect this design constraint. Our
next step is to diagnose and correct these inconsistencies.

5.3 Diagnosis and correction of inconsistencies
In order to semi-automatically solve design inconsistency
problems with our abductive reasoning technique, we pre-
suppose the existence of a library of basic corrective actions
(i.e., abducible predicates associated with one or more code
transformation actions), that are reusable across different in-
consistency problems. In the trivial example shown in the
previous section, we illustrated the use of anti-explanations
for retracting facts from our theory (i.e., out-abducibles). In
this example, we will make use of an explanation for adding

Figure 6. Consistency checking for the command design
pattern in the StarBrowser.

facts to our theory (i.e., in-abducibles). For this, we will de-
fine a corrective action for methodReturnsBoolean/2.

The following corrective action declaration associates the
in-abducible for the predicate methodReturnsBoolean/2, to a
code transformation.

correct(in(methodReturnsBoolean(+?method,+?boolean)),
[[?class compile: (?selector asString,

’ ˆ’, ?boolean asString).]]) if
methodWithNameInClass(?method,?selector,?class),
[’this solution changes the code of the method ’,

?method asString, ’.
The new code just has a simple ’,
?boolean asString ,’ return statement’]

We explained in section 4 that code transformations
linked to in-abducibles should guarantee after their perfor-
mance the truth of the abducible predicate (i.e., the addi-
tion of the predicate to the theory). In this case, the pred-
icate states that a method ?method is returning a boolean
with value ?boolean. A possible solution is creating a new
method (or replacing the code of a method if it already
exists) with the appropriate boolean value (taken from the
value of ?boolean). Note that this is a destructive opera-
tion that needs to be managed with extreme care, and this
is the main reason that our approach is semi-automatic. It
is the tool user’s responsibility to make that change or not,
and face the consequences if things go wrong. We envision
as future work the inclusion of a transaction mechanism to
rollback such destructive changes if needed.

This transformation is shown in the corrective action dec-
laration as a Smalltalk block that will be executed when the
tool user requests to trigger this corrective action.

Making use of a library of corrective actions, a program-
mer could ask for correcting the absence of the class Exper-
imentalAction from the first alternative of our view. This is
shown in figure 7.

This user request is interpreted by our tool, as the search
for an explanation of the reason why the following query is
failing:

Figure 5. The command design pattern as implemented in the Starbrowser.

Figure 7. Correcting the absence of ExperimentalAction
from the first alternative

classBelow([ExperimentalAction],[AbstractAction]),
classChainReallyUnderstandsMethodWithName(

[ExperimentalAction],?method,isUndoable),
methodReturnsBoolean(?method,[true])

The two first predicates are successful, but the last one
fails, since ExperimentalAction is not implementing the
method isUndoable returning true. However, our abduc-
tive interpreter will detect that the failed predicate metho-
dReturnsBoolean/2 is abducible, and that a corrective action
that will add it to the theory is available. The available cor-
rective action is shown to the user in figure 8. Upon exe-
cution of this corrective action by the user, an isUndoable
method returning true will be added to the class Experi-
mentalAction, overriding the default behaviour defined in
AbstractAction, and the inconsistency will be solved.

As a last example, let us take a look at another class.
If a programmer is interested in correcting the presence of
DrawAction in the first alternative of the view (figure 9),
this request will be understood as the explanation of why
the query below is succeeding:

classBelow([DrawAction],[AbstractAction]),
classChainReallyUnderstandsMethodWithName(

[DrawAction],?method,isUndoable),
methodReturnsBoolean(?method,[true])

The three predicates of the query succeed. However, as
part of the resolution process of the first predicate, method-
InClass/2 is queried (though we will not show the com-

Figure 8. Corrective actions for adding ExperimentalAction
to the first alternative of the view.

plete resolution tree in order to avoid unnecessary com-
plexity). At that moment, the abductive interpreter dis-
covers an anti-explanation for methodInClass/2 (developed
for our first example in section 4). Then, if it exists an
anti-explanation for methodInClass/2, and classChainRe-
allyUnderstandsMethodWithName/3 is defined in terms of
methodInClass/2, then the anti-explanation of methodIn-
Class/2 is also useful for unexplaining classChainReal-
lyUnderstandsMethodWithName/3. Then, there already ex-
ists in our framework a code transformation procedure
that will make classChainReallyUnderstandsMethodWith-
Name([DrawAction],?,undoAction) fails, and no new solu-
tion needs to be added to the library of corrective actions.

As we described in the previous section, the only anti-
explanation available in our library of corrective actions for
the predicate methodInClass/2, is to delete the method in the
first parameter in the predicate from the class in the second
parameter. Although simple, in our problem this solution
can be absolutely valid, because if this method is deleted,
the DrawAction class will use the default implementation of
isUndoable present in its base class AbstractAction, which

Figure 9. Correcting the existence of DrawAction in the
first alternative

Figure 10. Corrective actions for adding DrawAction to the
first alternative of the view.

returns false. That value is consistent with the fact that no
undoAction method is provided in the class DrawAction.

The browser with the visualization of this solution is
shown in figure 10, note the similarities with figure 4, chang-
ing only the parameters of the source code transformation.

As such, we have demonstrated that small solutions from
primitive problems can be easily reused in other contexts
than the original where they were needed for first time.
Also, we have shown that these solutions can be relevant and
useful.

Given that the examples we have explored here are still
rather small and simplistic, we will see in section 7 that one
of the paths in our future work is to test our technique in
bigger and more realistic examples.

6. Related Work
Inconsistency management using abductive-logic program-
ming techniques has been discussed as a promising mech-
anism in many areas of software engineering, such as:
requirements engineering, software design, and databases
among others.

Russo et al. present in [Russo and Nuseibeh 2000] a com-
prehensive survey on this topic. Most of the works discussed
there are centered around inconsistency management in re-
quirements engineering [Nuseibeh and Easterbrook 2000],
particularly the analysis and revision of specifications [Men-
zies 1996, Nuseibeh and Russo 1999, Russo et al. 2000,
Satoh 1998a,b, 2000].

Analysis of specifications is the analysis on the model of
a system. This model is built in terms of the interaction of
a system with the environment and the user-goals that this
system should implement [Zave and Jackson 1997]. In this

context, Inconsistency detection consists of the task of ver-
ifying system properties over such a model. It is described
that in general with abduction is possible to verify, for any
property P (X), if the goal P (X) ∧ ¬P (X) can be inferred
from a specification. If that is the case an inconsistency ex-
ists, and the explanation of this goal generated for the abduc-
tive process constitutes a diagnosis of why the specification
is inconsistent.

Alternatively, in [Russo et al. 2000] inconsistencies are
detected and diagnosed trying to identify through abduction
counter-examples of all the invariants in a system. If the
abductive reasoning mechanism fails to find an answer, this
establishes the validity of the invariant with respect to a
system description.

Also in the work of Russo et al., inconsistency manage-
ment techniques are divided according to the consistency as-
sumptions they make about the model to examine. For ex-
ample, the work in [Nuseibeh and Russo 1999] describes
a specification as a composition of multiple partial spec-
ifications with or without logical inconsistencies. The ap-
proach identifies changes that address some specification in-
consistencies, while leaving others. The abductive reasoning
mechanism identifies evolutionary changes to perform on
the specification, such that a particular consistency rule is no
longer violated. Quasi-classical logic [Hunter and Nuseibeh
1998] is used as a mechanism for reasoning in a incon-
sistency system without trivialization [Besnard and Hunter
1995].

A different perspective is described in [Satoh 1998b,
2000, 1998a]. These proposals are focused on analyzing
the impact of changes in an initially consistent specifica-
tion. The specification revision process is in charge of re-
stablishing consistency in order to accommodate a given
change request, and abduction in this case is used to iden-
tify additional changes on the given specification so as to
re-establish consistency.

In [Satoh 1998a] Satoh describes a logic approach based
on abductive reasoning for adding and deleting pollution
markers [Balzer 1991] from a given specification in order to
manage consistency after a change has been performed. The
objective of pollution markers is considering inconsistencies
as exceptions that can be isolated from the rest of the data.

In the domain of software modelling, Andrea et al. dis-
cuss in [Zisman and Kozlenkov 2001] a mechanism for
checking inconsistencies in UML specifications. Mapping
UML specifications in XMI format, they use abduction for
declaring as consistency properties certain goals that should
succeed following a particular course of events. If a goal
do not succeed or its proof follows another course of events
that the one expected, changes set indicating which axioms
should be deleted or added are produced by abductive rea-
soning.

7. Future work
We have visioned two main venues of future work that are
strongly related among them: the consideration of integrity
constraints and the development of heuristic strategies for
filtering distinct diagnosis solutions.

7.1 Consideration of Integrity constraints
In our abductive interpreter we have not yet considered the
existence of integrity constraints. The result of an abductive
interpreter could be refined with the use of these constraints
[Kakas and Tony 1998]. In case they are present, abduc-
tive reasoning should generate only explanations that sat-
isfy these constraints, and the abductive interpreter should
check their satisfiabilty each time a new explanation is pro-
duced [Russo and Nuseibeh 2000]. Possible integrity con-
straints that we will further explore are the verification that
any code transformation, in addition to solve a local incon-
sistency, will preserve the consistencies in all the previously
consistent Intensional Views and the relations among them.

7.2 Heuristic strategies
Even though integrity constraints could be a good mech-
anism for filtering a certain number of wrong solutions,
the process of abductive reasoning must be complemented
with a further quality criterion over candidate solutions, in
order to infer only the best explanations for an inconsis-
tency[Josephson and Josephson 1994]. These additional va-
lidity considerations are not part of the abductive process
itself, but complement it [Paavola 2004, Sullivan 1991]. Ab-
ductive exploration just performs the function of a model
builder that should be followed for a confirmatory data anal-
ysis. Therefore, abduction plays the role of an explorer of
viable paths, but further inquiry should determine which are
the most plausible solutions [Yu 1994].

7.3 Development of bigger and more realistic examples
We have developed until now rather small examples, and ex-
plored how corrective actions targeted to one particular prob-
lem can be reused in other problems with different contexts.
One of our immediate next steps is the definition of a more
realistic case study that leads us to explore all the possibili-
ties of our technique and its limitations.

8. Conclusions
In this work we have explored abductive logic reasoning
as a promising mechanism for the diagnosis and correc-
tion of design inconsistencies in program source code. We
have demonstrated, using two small examples, how to iden-
tify source code artifacts that could be causing inconsis-
tencies, and how to associate corrective actions to them
that upon execution will restore the consistency of the pro-
gram source code. Furthermore, our corrective actions can
be reused across distinct problems, since they are defined in
terms of basic logic predicates.

References
Robert Balzer. Tolerating inconsistency. In ICSE ’91: Proceedings

of the 13th international conference on Software engineering,
pages 158–165, Los Alamitos, CA, USA, 1991. IEEE Computer
Society Press. ISBN 0897913914. URL http://portal.
acm.org/citation.cfm?id=256748.

K. Beck. Smalltalk Best Practice Patterns. Prentice Hall, 1997.

Philippe Besnard and Anthony Hunter. Quasi-classical logic: Non-
trivializable classical reasoning from incosistent information.
In ECSQARU ’95: Proceedings of the European Conference
on Symbolic and Quantitative Approaches to Reasoning and
Uncertainty, pages 44–51, London, UK, 1995. Springer-Verlag.
ISBN 3-540-60112-0.

Philipp Bunge. Scripting browsers with glamour. Master’s thesis,
Bern University, April 2009.

Che06. Checkstyle, December 2006.
http://checkstyle.sourceforge.net.

Cincom Systems, Inc. Visualworks smalltalk environment.
http://www.cincom.com/smalltalk, 2007.

J. Coplien. Advance C++ Programming Styles and Idioms.
Addison-Wesley, 1992.

Marc Denecker and Antonis Kakas. Abduction in logic program-
ming. 1993. URL http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=?doi=10.1.1.134.7504.

Peter Flach. Simply logical: intelligent reasoning by example. John
Wiley & Sons, Inc., New York, NY, USA, 1994. ISBN 0-471-
94152-2.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design patterns: elements of reusable object-oriented software.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1995. ISBN 0-201-63361-2.

Anthony Hunter and Bashar Nuseibeh. Managing inconsistent
specifications: reasoning, analysis, and action. ACM Trans-
actions on Software Engineering and Methodology, 7(4):335–
367, 1998. URL citeseer.ist.psu.edu/article/
hunter95managing.html.

Katsumi Inoue and Chiaki Sakama. Specifying transactions for
extended abduction. In In: Proc. 14th Int’l Joint Conf. on
Artificial Intelligence, pages 394–405. Morgan Kaufmann, 1998.

Stephen Johnson. Lint. http://www.jutils.com/, 2007.

John R. Josephson and Susan G. Josephson. Abductive Inference:
Computation, Philosophy, Technology. Cambridge University
Press, 1994.

R.A. Kowalski A.C. Kakas and F. Tony. The role of abduction
in logic programming. In C.J. Hogger D.M. gabbay and J.a.
Robinson, editors, Handbook of Logic in Artificial Intelligence
and Logic Programming. Oxford University Press, 1998.

Andy Kellens. Maintaining causality between design regularities
and source code. PhD thesis, Vrije Universiteit Brussel, 2007.

S. Letovsky and E. Soloway. Delocalized plans and program
comprehension. IEEE Softw., 3(3):41—49, 1986.

Kim Mens and Andy Kellens. IntensiVE, a toolsuite for document-
ing and testing structural source-code regularities. 10th Con-
ference on Software Maintenance and Re-engineering (CSMR),
pages 239–248, 2006.

Kim Mens, Andy Kellens, Frederic Pluquet, and Roel Wuyts. The
intensional view environment. International Conference on Soft-
ware Maintenance (ICSM) Industrial and Tool Volume, pages
81–84, 2005.

Tim Menzies. Applications of abduction: knowledge-level mod-
elling. Int. J. Hum.-Comput. Stud., 45(3):305–335, 1996. ISSN
1071-5819. doi: http://dx.doi.org/10.1006/ijhc.1996.0054.

Naftaly H. Minsky. Law-governed regularities in object systems:
part i: an abstract model. Theor. Pract. Object Syst., 2(4):283–
301, 1996. ISSN 1074-3227. doi: http://dx.doi.org/10.1002/
(SICI)1096-9942(1996)2:4〈283::AID-TAPO4〉3.0.CO;2-V.

Naftaly H. Minsky and H. Minsky. Law-governed regularities
in software systems. In In Proceedings of the ACM Sympo-
sium on Principles of Programming Languages, pages 299–312.
Springer-Verlag, 1994.

Bashar Nuseibeh and Steve Easterbrook. Requirements engi-
neering: a roadmap. In ICSE ’00: Proceedings of the Con-
ference on The Future of Software Engineering, pages 35–46,
New York, NY, USA, 2000. ACM. ISBN 1-58113-253-0. doi:
http://doi.acm.org/10.1145/336512.336523.

Bashar Nuseibeh and Alessandra Russo. Using abduction to evolve
inconsistent requirements specifications. In the Use of Logical
Abduction in Software Engineering 25, pages 1039–7841, 1999.

Bashar Nuseibeh and Alessandra Russo. Using abduction to
evolve inconsistent requirements specification. Australasian
Journal of Information Systems, 6(2), 2007. ISSN 1326-
2238. URL http://journals.sfu.ca/acs/index.
php/ajis/article/view/296/266.

Sami Paavola. Abduction as a logic and methodology of dis-
covery: the importance of strategies. Foundations of Science,
9(3):267+, 2004. ISSN 1233-1821. doi: 10.1023/B:FODA.
0000042843.48932.25. URL http://dx.doi.org/10.
1023/B:FODA.0000042843.48932.25.

David Lorge Parnas. Software aging. In ICSE ’94: Proceedings
of the 16th international conference on Software engineering,
pages 279–287, Los Alamitos, CA, USA, 1994. IEEE Computer
Society Press. ISBN 0-8186-5855-X.

C. S. Pierce. The Collected Papers of Charles Sanders Peirce.
Harvard University Press, 1935.

Charles S. Pierce. Abduction and induction. In J. Buchler, editor,
Philosophical Writings of Pierce, pages 150–156. Dover Books,
New York, 1955.

R. Reiter. A theory of diagnosis from first principles. Artif.
Intell., 32(1):57–95, April 1987. ISSN 0004-3702. doi: 10.
1016/0004-3702(87)90062-2. URL http://dx.doi.org/
10.1016/0004-3702(87)90062-2.

M. Robillard, W. Coelho, and G. Murphy. How effective developers
investigate source code: An exploratory study. IEEE Trans.
Softw. Eng, 30(12):889—903, 2004.

A. Russo and B. Nuseibeh. On the use of logical abduction in
software engineering. In S. K. Chang, editor, Software Engi-
neering and Knowledge Engineering. World Scientific Publish-
ing Corporation, 2000. URL citeseer.ist.psu.edu/
russo00use.html.

Alessandra Russo, Rob Miller, Bashar Nuseibeh, and Jeff Kramer.
An abductive approach for handling inconsistencies in scr spec-

ifications. In ICSE2000 Workshop on Intelligence Software En-
gineering, 2000. URL http://theory.doc.ic.ac.uk/

˜ar3/wise3.pdf.

K. Satoh. Adding and deleting pollution marker by abductive logic
programming. In First Asia Pacific Workshop on Intelligent
Software Engineering (APWISE’98), pages 48 – 53, 1998a.

K. Satoh. Computing minimal revised logic program by abduc-
tion. In International Workshop on the Principles of Software
Evolution, IWPSE98, pages 177 – 182, 1998b.

K. Satoh. Consistency management in software engineering by
abduction. In ICSE-2000 Workshop on Intelligent Software
Engineering, pages 90 – 99, 2000.

Leon Shapiro and Ehud Y. Sterling. The Art of PROLOG: Advanced
Programming Techniques. The MIT Press, April 1994. ISBN
0262691639.

P. Sullivan. On falsification interpretation of peirce. 27:197–219,
1991.

J. van Gurp and J. Bosch. Design erosion: Problems & causes.
Systems & Software, 61(2):105–119, 2001.

Roel Wuyts. Declarative reasoning about the structure of object-
oriented systems. In In Proceedings of the TOOLS USA ’98 Con-
ference, pages 112–124. IEEE Computer Society Press, 1998.

Roel Wuyts. A Logic Meta-Programming Approach to Support the
Co-Evolution of Object-Oriented Design and Implementation.
PhD thesis, Vrije Universiteit Brussel, 2001.

Roel Wuyts and Stephane Ducasse. Unanticipated integration of
development tools using the classification model. In Computer
Languages, Systems and Structures 30, pages 1–2, 2003.

Chong Ho Yu. Abduction? deduction? induction? is there a logic
of exploratory data analysis? Technical report, Annual Meeting
of American Educational Research Association, April 1994.

Pamela Zave and Michael Jackson. Four dark corners of require-
ments engineering. ACM Trans. Softw. Eng. Methodol., 6(1):
1–30, 1997. ISSN 1049-331X. doi: http://doi.acm.org/10.1145/
237432.237434.

Andrea Zisman and Alexander Kozlenkov. Knowledge base ap-
proach to consistency management of uml specifications. In
ASE ’01: Proceedings of the 16th IEEE international conference
on Automated software engineering, page 359, Washington, DC,
USA, 2001. IEEE Computer Society.

