
A Process Oriented Development Flow
for Wireless Sensor Networks

Guillaume Kremer Jimmy Osmont

CS Dept., UBO
France

g.kremer@wanadoo.fr

Jimmy.Osmont@univ-brest.fr

Bernard Pottier

LabSTICC UMR CNRS 3192, UBO
France

pottier@univ-brest.fr

Abstract
To ease the development for sensor networks, we propose a
two-stage top-down flow: design and simulation, then syn-
thesis of sensor code. The flow is an alternative to a direct
design at node level.

The first operation is to describe network topologies on
a graph model using textual or interactive tools. Simula-
tions are achieved by generating a system of processes into
an Occam program which is compiled and executed. This
program represents a distributed machine conforming to the
synchronous communication model, which is a strong refer-
ence for algorithm design.

The network simulation allows an early check of solu-
tions to problems such as routing or dumping network data in
various deployment topologies. It provides fast exploration
of algorithm, and topology spaces, focusing on the difficult
collective behaviour rather than local level programming.

1. Introduction
Wireless Sensor Networks (WSN) is an emerging domain
with numerous applications arising, that take benefits from
the communication and sensor technology progresses. Typi-
cal nodes for WSN are very small systems grouping a micro-
controller, a wireless communication transceiver, local ac-
quisition and control subsystem, and a power supply. Node
hardware size can be in the order of few square centimeters
with very low costs, the technology tendency being still to
decrease node sizes and power consumption by integrating
memory, logic and analogue interfaces onmixed-signalcir-
cuits[Doboli and Currie 2007].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

IWST ’09 September 2009, Brest.
Copyright c© 2009 ACM [to be supplied]. . . $10.00

WSN organizations can vary a lot, grouping few nodes
around a controller with a star topology, or being mesh con-
nected with thousands of nodes acting together. A recent ex-
ample of very large system is the car parking network de-
ployed at San Francisco with more than 4000 nodes [Swed-
berg 2007]. Another dimension of WSN is mobility. Some
networks have fixed sensing positions with mobiles crossing
these positions, others arefleetshaving complete mobility. A
case (curious) example is aSmart Farm, where the cattle is
equipped with wireless sensors and GPS[Wark et al. 2007].

The main stream in sensor networking is the 802.15.4
open architecture also known as ZigBee [Aggelou 2008].
ZigBee provides the possibility to connect ten of thousand of
staticsensors, providing routing and medium range connec-
tions. Usually nodes receive a small operating system such
as TinyOS [Matischek 2008], and they are programmed us-
ing a C derivative such as NesC[Gay et al. 2003].

As the acceptance of WSN requires faster developments
done by application experts, it is now necessary to provide
more efficient techniques to program, at least, the simplest
applications. WASP [Bai et al. 2009] is a step forward in this
direction with a claim that applications could be developed
in very short cycles, far better than existing WSN dedicated
languages. WASP is using NesC as a back-end and thus, has
the restrictions of NesC/TinyOS.

Instead of using low level development approaches, we
are developing a two-step top-down flow allowing to build
optimizedspecific systems. The idea is to follow architec-
ture development methodologies, by concentrating first on
distributed system problems, and, second, by synthesizing
optimized code for node hardware.

The main motivations to build an abstract representation
of target networks are as follow:

• WSN applications can be very different in nature, with
difficult distributed problems to solve. An example is the
necessity to route security information in the presence of
failures as it would be the case for a railway sensing sys-
tem deployed linearly on kilometers. Another example is



the unpredictable topology of amobile fleetwhere each
node must send data or alerts to a moving gateway.

Basic problems in these situations are dedicated or adap-
tive routing algorithms, data collection control, self heal-
ing in the connectivity.

• node architectures result from a careful study of applica-
tion criteria. This is especially a problem for the choice of
capacity of the memory used for local data and message
buffering, and for the choice of communication periodic-
ity.

Furthermore, if emergingmixed-signaltechnologies are
to be used, the programming tools must use modules
merging software tasks, on chip routing, and configura-
tion for interface blocks. C derivatives will not work in
this situation, but object oriented or process oriented de-
sign tools can still operate[Doboli and Currie 2007].

As wireless communications imply emitting and receiv-
ing according to a known schedule, the sensor network has
a synchronous behaviour. Details on how the actual network
will work are thus replaced by the abstraction of distributed
synchronous communication model.

This is a well known abstraction for distributed processes
exchanging messages periodically with their direct neigh-
bours. The system achieveslocked stepprogresses with the
advantage to simplify design and proofs of algorithms due to
the quasi-synchronous temporal property. Numerous algo-
rithms and systematic approaches are known to work in this
context [Lynch 1998]: mutual exclusion, leader elections,
spanning trees, expression reductions, transactions, failure
recovery, . . . Programs for the synchronous model can be
expressed as loops over sequence of procedure calls corre-
sponding to distributed computations that nodes agree to do.

To reach the simulation level, a design flow would start
with the specification of the sensor distribution at geomet-
ric level, from which a communication connectivity can be
automatically deduced. This provides a distributed process
system organization, on which we can add local sensor be-
haviours. At this point, we have an executable specification
suitable for simulation of a future real deployment. Program
development is mostly achieved during this first stage.

In a second stage, the local sensor behaviours are trans-
lated into code for the targeted node micro-controllers, or
virtual machines supported by the nodes. This is a technical
activity that can rely on compilers, libraries for local data
collection, for control, and on available distributed services.

The whole framework has models and tools for specifica-
tion of a planar geographic distribution, for process system
connectivity, and for synchronous communication activity.
As we have a highly concurrent communicating system, it is
convenient to refer to an existing concurrent programming
model. The CSP programming style allows us to represent
sensor nodes as processes, with channel communications
implemented by wireless communications. Practically, the

process system is an Occam program suitable for massive
parallel simulation. Each process receives array of channels
as parameters, and executes a loop operating communica-
tion, and local processing. Models and tools are developed
in Smalltalk-80.

The paper describes the domain requirements and the
internal graph model. This model can be addressed in ways
depending on the application. Section 2 presents random
and textual input of networks organizations. In section 3 we
describe how Occam programs are produced according to
the synchronous communication model. A sample of these
programs is provided in appendix B. Section 4 presents
an algorithm conforming to the synchronous model, this
algorithm allowing to decide communication time slots for
this model (time division MAC access).

2. Requirements and solutions
2.1 Connectivity

The simplest situation is the case of sensors deployed in
a particular location: a house, a plant, a greenhouse. For
largest scale, WSN are experimented on towns, forests,
roads, railways, etc. . .

Sensors can also be moving if they are carried by animals,
cars, boats, . . .

For sake of simplicity we will ignore the dynamic evolu-
tion of the network, accepting the idea that we will be able to
manage these evolutions as a succession of phases where the
node interactions are static, or quasi-static, meaning static
with failures. The dynamic evolution will be studied as a
succession of quasi static phases.

Given a distribution of sensors, we consider that the con-
nectivity is given by the capability of one node to send and
receive to neighbour nodes. Again, there is a large amount of
variability there, since some nodes can tune amplification to
extend or reduce the neighborhood. We suppose that sensors
emit in a zone represented by a circle, having a given radius,
in which other sensors can listen communications. This is
known to be a coarse approximation.

The connectivity is defined by a graph which vertexes are
sensors and edges are links that can carry communications
from one node to another node.

2.2 From geometry to connectivity

Deploying a WSN means planning sensor positions. The first
idea of field engineers will probably be to get a map and
point particular positions, with the purpose to devise how
sensors can connect together producing a real network.

In other situations, one can rely on random dispatching of
devices to cover a particular surface, or to observe mobiles
moving according to social or natural laws.

The key points are the needs to represent:

1. geometric distributions, in one or several dimensions

2. a network abstraction represented by a graph



3. communication capabilities to predict graph from distri-
bution

Geometric distributions are abstract, or real. In large
scales the exact geographic position can be very important
to practically locate the sensor. In other cases, distancesbe-
tween position are enough to make decisions. Finally, the
engineer will be interested to get a tool showing a view on
the zone to be controlled, a scale meter, and to let tools de-
cide what is the topology obtained by a sensor distribution.

Geometric distributions can be modelled in a small class
hierarchy allowing to describe these particular situations,
and conversions from one to another. As an example, a draw-
ing on a view needs to be translated in a set of GPS positions
to allow sensor setups. Reciprocally, given a collection of
GPS positions collected by a WSN, we will need to draw it
on a computer screen to represent mobile positions or their
moves.

Figure 1. From distribution to connectivity: node distribu-
tion is decided to obtain wireless connections. Circles repre-
sent area where other sensors can (likely) receive the center
messages.

2.3 Models and algorithms

Basically a distribution of sensors is simply a collection of
sensors. Each of the sensor has a location expressed in a class
according to the current space reference.

The network structure relies on several classes for nodes,
abstract graph and topologies. Nodes have collections for
input and output neighbours and support for naming the
program to be executed. A graph is a set of nodes, and a
topology provide more context information such as symbols
used for messages, and provision for textual expression of
networks1. The listing below is the textual representation

1 These classes are also suitable to describe lot of other situations, in partic-
ular circuit architecture organizations.

of a random distribution which process level organization
is shown figure 2.

Listing 1. Network specification
genRange640Po in ts20

messages none d e f i n e d .
P2 { P7 , P14 } Node
P3 { P5 , P15 } Node
P4 { P17 , P20 } Node
P5 { P3 , P15 } Node
P6 { P11 , P13 , P18} Node
P7 { P2 , P8 , P19} Node
P8 { P7 , P19 } Node
P9 { P10 , P12 , P19 , P20} Node
P10 { P9 , P12 , P17} Node
P11 { P6 , P13 , P18} Node
P12 { P9 , P10 , P19} Node
P13 { P6 , P11 , P18} Node
P14 { P2 } Node
P15 { P3 , P5 } Node
P17 { P4 , P10 , P20} Node
P18 { P6 , P11 , P13} Node
P19 { P7 , P8 , P9 , P12} Node
P20 { P4 , P9 , P17} Node

P10 P9
P10.P9

P12

P10.P12

P17

P10.P17

P9.P10

P9.P12

P20

P9.P20

P19P9.P19

P12.P10
P12.P9

P12.P19

P17.P10

P17.P20

P4 P17.P4

P20.P9 P20.P17

P20.P4 P4.P17

P4.P20

P2P7
P2.P7 P14

P2.P14P7.P2

P8
P7.P8

P7.P19

P14.P2

P15

P3P15.P3

P5P15.P5
P3.P15

P3.P5

P5.P15

P5.P3

P8.P7

P8.P19

P19.P9

P19.P12

P19.P7

P19.P8

P13

P6P13.P6

P11

P13.P11

P18
P13.P18

P6.P13

P6.P11

P6.P18

P11.P13

P11.P6

P11.P18

P18.P13

P18.P6

P18.P11

Figure 2. Process organization for a 20 nodes random sys-
tem. Geometric space is a drawing view of 640pts, sensors
can reach neighbours at the same distance. Some nodes are
isolated



Building the network from the geometric distribution is
the following loop (simplified):

Listing 2. From distribution to system
graph := D i c t i o n a r y new .
d i s t r i b u t i o n do : [ : eachNd |

n e i g h b o u r s := Se t new .
d i s t r i b u t i o n do : [ : o therNd |

( eachNd canReach : o therNd )
i f T r u e : [ n e i g h b o u r s add : o therNd ] ] .

g raph add : ( eachNd−> n e i g h b o u r s ) ] .
ˆ g raph

The two models for distribution and networks are inter-
esting for the expression of organizations in several points
of view:

• topologies can be specified for different situations, the
simplest ones being random distribution, or manual posi-
tioning as shown in this section.

Further possibilities are numerous, including the control
of distributions from simulator moving sensors according
to given laws: car traffic, walk in a mountain, tide in a
bay, etc. . .

• topologies can translate into graphs representing sensor
networks, this level being reusable for lot of other ab-
stractions.

• these graphs are denoted by a syntax shown above, where
each node as an associated program or procedure (or
method). Graphs can be translated into process logic or-
ganizations as shown figure 2. This is obtained by rewrit-
ing into thedot language forGraphviz software.

The next section will show that a major application is
rewriting to an executable concurrent program.

3. Representing WSN as concurrent
programs

In the first stage of developments, we must concentrate on
the fundamental questions and their possible solutions. The
domain is a set of small systems, possibly in unknown num-
ber, communicating together, possibly in a changing net-
work organization.

Our beacons are the knowledge developed in distributed
algorithms, the state of the art in sensor networking (open
systems), and mobile routing techniques explored in Mo-
bile Ad-hoc Network (MANET)[Macker and Chackeres
2009]. We can also rely on system specification mechanisms
proposed by the Concurrent Sequential Processes (CSP)
paradigm, and its associated programming languages and
compilers Occam, and Occam-Pi for mobile systems[Inmos
b] [Welch and Barnes 2004].

The introduction of the domain is the fact of Mark
Weiser’s vision[Weiser and Brown 1996] ofubiquitous com-
puting where lot of communicating small devices would

help people non intrusively. Today this vision is a reality
thanks to communication and integration technologies.

We need intermediate level representations of the real
sensor deployments with the possibility to develop and
check solutions. The situation is similar to the creation ofa
virtual machine, except that the real code will be distributed
on distant elements. A system language can help.

3.1 WSN modelling using Occam

Occam is attractive because of its complete set of primitives
for the expression of concurrency:

Par constructs for the development of structural parallelism
controlled by barriers,

Channelsas the single primitive for synchronization and
communication

Alternatives specifying non-determinist behaviours

Protocols to model sequence of exchanges on channels

Timers allowing to introduce clocks, delays and time-outs
into programs

Occam has several compilers that generate native i386
processor code, or intermediate code for virtual machines
(VM). A threaded run-time allows to simulate hundreds of
processes on shared memory multi-processors [Ritson et al.
2009], and there is documentation and free software allow-
ing to build or evolve VMs.

Occam and its tools appear as a serious support for mod-
elling and testing WSN behaviours. As large irregular con-
current programs are difficult, if not impossible, to produce
by hand, tools described section 2 will considerably ease the
generation of complex systems from WSN behaviours.

3.2 Occam program skeleton generation

An Occam program is a structural description of a concur-
rent activity. If the language, and associated instructionset,
have relatively high level system primitives, it remains that
the process organization, and the communication channels
must be given in the program, and is checked effectively by
the compiler. In the case of sensors, we have irregular system
architectures.

By analyzing the network model from section 2, we can
produce everything necessary for a translation to Occam:

• channel declarations (perhaps thousands!)

• grouping of channels in aliases used as process parame-
ters (perhaps hundreds)

• computing process fan-in and fan-out, making buffer
space reservations

• starting the WSN as a set of cooperating processes

• declaring procedure skeletons for process found in the
network

• tracing.



The expression of the network as a process system is a
concurrent program showing process, procedures, channels,
that compiles and executes on empty procedure code.

The next step is to add an execution model suitable for
WSN. A credible choice is the synchronous communication
model, that will fix local sensor behaviours into automata
looping on communications, state evolution, and next mes-
sage productions.

3.3 Synchronous communication model

This model is known in the domain of distributed algorithms
as a good starting point for algorithm design and proof. Each
node contributing to a computation must execute repetitively
a loop including a communication phases, and a computation
phases. During the communication phases, each node must
send messages to his neighbours, and accept messages from
his neighbours.

In this way, we produce a kind of global clock that mimics
a computer clock, and we can more easily reason on the
system behaviour.

To introduce this model in our Occam programs, we sim-
ply need to produce an infinite loop denoting communica-
tions with neighbours. The following code illustrates the lo-
cal program behaviour.

Listing 3. Synchronous model
−− Procedu re d e f i n i t i o n s
PROC P ( [ ]CHAN OF p r o t o i n ,
[ ]CHAN OF p r o t o out , −− f o l d e d
VAL INT i d e n t i t y ) −− f o l d e d

−− messages d e c l a r a t i o n P
[ 4 ]BYTE inMessages :
[ 4 ]BYTE outMessages :
−− Code of p r o c e d u r e P

SEQ
−− i n i t i a l i z e
SEQ t o u r s = 0 FOR 10

SEQ
PAR

PAR i =0 FOR SIZE i n
i n [ i ] ? inMessages [ i ]

PAR j =0 FOR SIZE ou t
ou t [ j ] ! ou tMessages [ j ]

−− l o c a l p r o c e d u r e c a l l he re
:

All process will thus execute this template. We can notice
the declaration of channel groups as parameters, and com-
puted maximum dimension (4) for incoming and out-coming
message arrays. Here, the loop count has been fixed at the
limit of 10 synchronous steps by the generator. The com-
munication is a parallel construct to avoid deadlock during
execution. There are placeholders for initialization and state
transition code implementing the distributed behaviour.

It is also noticeable that each process receives an identity
as an integer. Using this integer, it is possible to access a
global array, and configure the process from values produced
by the generator. The appendix B provides more details with
a sample of program structure.

3.4 Adding behaviour

Our flow has reached a stage where a complete process sys-
tem skeleton can be produced automatically from a variety
of WSN deployment situations.

This system will accept to loop on empty transformations:
messages do not carry anything, and incoming information
is even ignored by our process. We have a representation of
a distributed computer of arbitrary organization, executing
repetitively a NOP instruction.

At this stage, we need to add a local behaviour. Following
propositions from Nancy Lynch model in [Lynch 1998],
we propose to fix the behaviour in a procedure called after
the communication construct. This procedure will process
parameters for:

current incoming message buffer array

next out-coming message buffer array

state a record grouping local variables

The evolution procedure has the responsibility to analyze
the new messages making decision on local variable evolu-
tions. Then it produce next phase messages into buffers.

Such procedure can be producedmanually, by synthesiz-
ing automaton programs described in a given syntax, or they
can follow a template for encoding/decoding network proto-
cols.

The synchronous model techniques are convenient to de-
sign and check distributed algorithms. By following a regu-
lar pattern, they open the way to reuse of validated library
code, possibly manipulated by higher level languages.

3.5 A routing protocol case study

Our hypotheses is that some sensors need to send data to a
known particular destination. This can be a device with more
memory support, or a gateway providing WSN interface to
Internet, as example.

We must consider two situations:

1. a network where all nodes are in range.

2. a mesh connected network

In the first case, routing is useless since sending data
from one point to another is direct. In the second situation,
availability of a routing protocol is necessary, as example,
an algorithm based on table exchanges between cooperating
nodes.

This protocol appears as a particular procedure in charge
of routing table maintenance. This procedure is called upon
receiving a table from a neighbour. Its role is to compute



nodes user real channels
10 5.8s 1.1s 14
100 7.4m 1.3m 1510
400 149m 42m 24496

Table 1. Simulation time for 100000 empty synchronous
loops. Quad Xeon multiprocessor providing 8 processors.
Observe that the execution time relates to the number of
channels (graph edges, also meaning communication oper-
ations), and not the number of processes.

the shortest path to destinations in view of further routing
operations.

As the network can be mobile or include mobiles, the
entire routing tables computation must happen regularly.

The algorithm is divided in two parts. In a first stage, each
node transmits its own table to its neighbors. In a second
stage, nodes update their table by adding missing nodes and
compute a minimum hop number toward each node. The
table update procedure is given in appendix C to illustrate
how behaviours are described. Validation is obtained by
executing a simulation with routing interleaved with random
data propagation.

3.6 A summary on system simulation

At simulation level, WSN are represented as communicating
processes with arbitrary organizations. We have presenteda
method for applying abstract algorithms, and producing sim-
ulations. These simulations can be executed on concurrent
machines supporting a thread level distributed Occam ker-
nel (table 1).

Another claim is the capability to produce tools for
distributed algorithm development by following the syn-
chronous model methodology. WSN behaviours can now
be expressed as sequences, loops, conditional calling pro-
cedures. The programmer view is the development of algo-
rithms operating on a set of processes, with total abstraction
of communications.

Now, we need to explain how the simulation level (similar
to VHDL) could be used to produce real processor code and
real communications (similar to real circuit layout). Thisis
discussed in the following section.

4. Synthesis for real systems
Sensors is a maturing technology. Recent products include
circuits with the following characteristics:

• 2.4Ghz transceiver with SPI serial bus for control and
data exchange. Spread Spectrum, low power, 16 byte
buffers, address decoding and optional acknowledgement
of transactions.

• Reconfigurable logic/analogue circuit with 8bit micro-
controller, small RAM and flash memory, general pur-
pose I/Os, SPI interface.

Because the controller can directly integrate analogue
signals, a couple of these circuits is enough to build a wire-
less sensor.

Other options include ARM system on chip, GPS receiver
on one chip etc.. ARM can be programmed using free GNU
tool chain, which is not the case for the first controller.
In each case, systems have very low memory capacity, in
particular for data and stack management.

4.1 Options for implementation

A reference for low level implementation is simply the target
processor for Occam. This processor (transputer) existed
several years ago, and still survives due to its instructionset
(TIS).

The Kent Retargetable Occam Compiler (KROC) pro-
ceeds in two passes producing an intermediate code suit-
able for Occam, then translating to i386 native code. TIS
has process level semantics with instructions for launching
processes, communicating on channels, computing barriers,
managing timers, etc. . . TIS is documented by [Inmos a],
has a simulator VM written in C, and has a portable in-
terpreter initiative called theTransterpreter[Jacobsen and
Jadud 2004].

Writing such a VM is not very difficult due to the abun-
dant documentation and examples available. As there is a
compiler available, a first option to cover WSN needs is to
implement a VM adapted to the sensor framework remov-
ing useless instructions, and adding new ones to support lo-
cal control directed to sensing devices, and the synchronous
communication model. TIS code is very compact and per-
fectly suitable for spreading programs on WSN, securely and
at low cost. This can be a decisive advantage for the VM ap-
proach.

Another option for practical support is to build a synthe-
sizer for C, if there is some chance to compile C to a con-
troller, or native processor code in the other case.

The practical communication issue is discussed with a
proposition in the following section.

4.2 A link access model

Wireless transmissions are inherently multiple access on a
shared medium. Basic communications are always broad-
cast, and point to point messaging is a consensus on a chan-
nel choice and how to decide to receive a packet.

Collisions can happen, and this is more likely to arise
in some well known situations. The exposed terminal and
the hidden terminal problem are two of them. Both are well
explained in the literature [Karl and Willig].

Two nodes sending data at the same time and at the
same frequency to a third node is an example of a potential
collision situation. To reduce packet losses, the two nodes



can send their data on different time slots, or using different
frequencies.

Knowing that, we can consider to use both time and
space scheduled transmissions. Here, space is the sensor
distribution space, as discussed in section 2.

Each synchronous cycle will now be divided into a silent
period and a communication period called asuperframe.
Each superframe is split intotime slots.

We can use the terms of Time Division Multiple Ac-
cess (TDMA) for time access, Frequency Division Multi-
ple Access (FDMA) being for frequency allocation. Spread
Spectrum technique provide channels on a shared frequency
band.

TDMA is a communication model that provides each
node with a non ambiguous time slot for emitting. By non
ambiguous we mean, that two nodes having a same other
node in their neighborhood should not transmit at the same
time. In a similar way, FDMA will need to allocate one ore
several frequency band for each node in the system.

The problem is similar to solving a graph node color-
ing problem where the graph is the wireless network as dis-
cussed section 2. The graph coloring problem is solved by
assigning two different colors to two nodes linked in the net-
work. In our cases colors represent a time slot in the TDMA
context or a frequency in the FDMA context (see figure 3)

31

4

5

2

6

7

8

9

6

7

8

9

1

5

4

3

2

6

7

8

9

1

5

4

3

2

Figure 3. The figure shows different networks used during
the coloring phase. First scheme is the wireless network,
two nodes are linked if they are at range. Second one is
the augmented graph, i.e. the first one with edge linking two
nodes having the same neighbor. Last network is the result
of the graph node coloring algorithm

The algorithm proposed for distributed allocation of com-
munication channels is as follow:

1. an appearing node randomly chooses a slot number
(color), and broadcast a slot request to its neighbours.
The request is propagated at a distance of 2 around the
sender.

A special slot is used to arrange color allocation.

2. If one of the node crossed by the request uses the chosen
color, an alternative color is proposed to the requester.

By bounding the number of nodes crossed by the request
by 2, only neighbors at a distance of one or two hops
will be hit by the request. Therefore we can set an upper

bound concerning the reception of the answer to 4 syn-
chronous cycles.

3. The color is validated if the asking node doesn’t receive
any request four cycles after emitting a request.

Few observations can be made relative to sensor distribu-
tion and relative to the synchronous model applicability.

Sensor generally do not need to speak all the time, but pe-
riodically, or on-demand. One can see the general behaviour
of a sensor as a cycle, including power saving mode, then
the sensor awakes, process data and enter a communication
activity. For this to work, it is necessary to maintain a shared
clock reference.

During communication period, each sensor must speak
and listen. In a large network, there will be shared slots due
to coloring. In small, grouped networks, there can be a com-
plete connectivity inside the network. In this situation, it is
necessary to have one slot for each node. Another interesting
question is the relation between the synchronous communi-
cation model, and TDMA.

As we have a turn allocated for each sensor, we can
implement the neighbour communication phase by sending
our messages at this turn, listening the rest of the superframe,
or only one part of the slots if the neighbour slots are known.

5. Conclusion
We have described a top down approach for WSN program-
ming. An associated framework is being built centered on
a graph model. This model can be addressed in different
ways such as texts, interactive maps[Kremer and Osmont
2009], or random distributions. It can be translated in dif-
ferent ways, and an example are Occam programs which
processes execute loops embedding communications and lo-
cal processing according to the synchronous communication
model. The aim of the framework is to focus on distributed
algorithms design, use and validation, prior to sensor code
generation. Concurrent simulation of intermediate programs
can be obtained using the KROC compiler targeting multi-
core processors. As it is, the framework has been used to
simulate network activities such as route management, effec-
tive routing (RIP, AODV, DSDV), naming. Very large ran-
dom networks have been produced to check correctness of
the solutions.

It is a known question that the time-driven simulation
achieved on the system process can be sub-optimal com-
pared to an event driven simulation that can reduce the num-
ber of channel synchronizations. An improvement will thus
to produce a different execution sequenced by an appropriate
scheduler supporting a virtual time.

It is also known that more support could be obtained from
Occam variant (Occam-Pi) that allows to describe mobile
channels, and mobile barriers, but it appeared risky to use
this support, due to the necessity to control future sensor mo-



bility by outside considerations managed in the Smalltalk-80
framework.

As shown by the current Occam code generator and dot
file generator the framework can easily be extended to ad-
dress a varietu of situations, including the need for sim-
ulation using Smalltalk-80 process networks[Goldberg and
Robson 1983].

The second stage for real code synthesis is under inves-
tigation with the creation of a virtual machine for sensors.
The current direction is to execute a subset of theTransputer
Instruction Set(TIS), replacing channel operations by call to
the local wireless communication library.

A. Generation flow and data structures

Listing 4. Sample textual specification
<methods>
<c l a s s−id>

AlgoDis . NetworkTopolog ies</ c l a s s−id>

<ca tego ry>comp i l ing</ ca tego ry>

graph1
” sample network ”

messages M1 , M2 .
P1 { P2 , P3 , P4} Pim
P2 { P1 , P3 } Pam
P3 { P1 , P2 } Poum
P4 { P1 , P2 , P3 } Poum
</methods>

A.1 Textual specification

A parserNetworkTopologies translates a textual specifi-
cation into an equivalent object representation.

Figure 4. Representation of the network description after
parsing is a dictionary which keys are node names and values
are couple arrays for fan-out and process binding.

A.2 Graph model

The sample program has been develooped as a model, figure
6 shows the data organization of the resulting graph. The
test methodgraphSample demonstrates the simplicity of
the specification and its development.

Figure 5. The first element in a couple is the set of reachable
nodes, the second element is the name of a procedure to be
executed.

Listing 5. Test method
<s t−source>
<methods>
<c l a s s−id>

AlgoDis . NetworkTopo log ies c l a s s</ c l a s s−id>

<ca tego ry>t e s t i n g</ ca tego ry>

graphSample

” b u i l d a synch ronous Occam program ”
| n e t g raph t e x t f i l e |
n e t := s e l f new graph1 . ” p a r s e r model ”
g raph := n e t bu i l dGraph . ” g raph model ”
t e x t := g raph programMain . ”Occam t e x t ”
f i l e := ’ syncModel . occ ’ asF i l ename w r i t e S t r e a m
f i l e n e x t P u t A l l : t e x t ; c l o s e .

</methods>

B. Synchronous program sample
The following listing shows the Occam skeleton developed
for a 4 node ring.

Listing 6. Ring executing an empty loop

−−g e n e r a t e d a t June 23 , 2009 10 :17 :43 am
−−g e n e r i c synch ronous network model
−−Bernard P o t t i e r . UBO
−−r i n g 5
−−
−−messages n u l l s e a r c h l e a d e r .
−−P0 { P1 } Node
−−P1 { P2 } Node
−−P2 { P3 } Node
−−P3 { P0 } Node

VAL [ 4 ] [ 2 ]BYTE NetProcess IS [
”P0 ” , −− i d : 1
”P1 ” , −− i d : 2



Figure 6. First column shows the graph including a set of
nodes, each node having two collections for input and output
links. On the right, the first output links has source and target
NetworkNodes.

”P2 ” , −− i d : 3
”P3 ” ] :

VAL [ 4 ] [ 4 ] BYTE NetProcedu re IS [
”Node ” , −− i d : 1
”Node ” , −− i d : 2
”Node ” , −− i d : 3
”Node ” ] :

PROTOCOL r i n g 5 . p r o t o IS BYTE:

−− Procedu re d e f i n i t i o n s
PROC Node ( [ ]CHAN OF r i n g 5 . p r o t o i n ,

[ ]CHAN OF r i n g 5 . p r o t o out ,
VAL INT i d e n t i t y )

−− messages d e c l a r a t i o n Node
[ 1 ]BYTE inMessages :
[ 1 ]BYTE outMessages :
[ 2 ]BYTE MyName:
−− Code of p r o c e d u r e Node

SEQ
SEQ index = 0 FOR SIZE MyName

MyName[ index ] := −− f o l d e d
Ne tProcess [ i d e n t i t y ] [ i ndex ]

SEQ t o u r s = 0 FOR 100000
SEQ

PAR
PAR i =0 FOR SIZE i n

i n [ i ] ? inMessages [ i ]
PAR j =0 FOR SIZE ou t

ou t [ j ] ! ou tMessages [ j ]
−− dummy b e h a v i o u r
SEQ i =0 FOR SIZE i n

ou tMessages [ i ] : = inMessages [ i ]
:

PROC r i n g 5 ( )

−− Channel d e c l a r a t i o n s
CHAN OF r i n g 5 . p r o t o P0 . P1 :
CHAN OF r i n g 5 . p r o t o P1 . P2 :
CHAN OF r i n g 5 . p r o t o P2 . P3 :
CHAN OF r i n g 5 . p r o t o P3 . P0 :

−− Channel t a b l e d e c l a r a t i o n f o r nodes
P0 . ou t IS [ P0 . P1 ] :
P0 . i n IS [ P3 . P0 ] :
P1 . ou t IS [ P1 . P2 ] :
P1 . i n IS [ P0 . P1 ] :
P2 . ou t IS [ P2 . P3 ] :
P2 . i n IS [ P1 . P2 ] :
P3 . ou t IS [ P3 . P0 ] :
P3 . i n IS [ P2 . P3 ] :

−− Program Body
PAR

Node ( P0 . in , P0 . out , 1 )
Node ( P1 . in , P1 . out , 2 )
Node ( P2 . in , P2 . out , 3 )
Node ( P3 . in , P3 . out , 4 )
−− End of program body

:



C. Code for route management

Listing 7. Route maintenance procedure
PROC UpdateTab leRoute ( Tab leRoute tLoc , Tab leRoute tRecue , VAL INT c a n a l )

INT t r o u v e :
Route r :

SEQ

SEQ i = 0 FOR tRecue [ d e r n i e r ]
SEQ

t r o u v e := 0
SEQ j = 0 FOR tLoc [ d e r n i e r ]

IF
tLoc [ tabR ] [ j ] [ ne twork ] = tRecue [ tabR ] [ i ] [ ne twork ]

SEQ
t r o u v e := 1
IF

tRecue [ tabR ] [ i ] [ d i s t a n c e ]< tLoc [ tabR ] [ j ] [ d i s t a n c e ]
SEQ

r [ ne twork ] := tRecue [ tabR ] [ i ] [ ne twork ]
r [ c a n a l ] := c a n a l
r [ d i s t a n c e ] := ( tRecue [ tabR ] [ i ] [ d i s t a n c e ] ) + 1
r [ qua l ] := tRecue [ tabR ] [ i ] [ qua l ]
r [ nex tRou teu r ] := tRecue [ tabR ] [ i ] [ ne twork ]
g e t R o u t e r I d ( tLoc , cana l , r [ nex tRou teu r ] )
a j o u t e r R o u t e ( tLoc [ tabR ] , j , r )

TRUE
SKIP

TRUE
SKIP

IF
t r o u v e = 0

SEQ
r [ ne twork ] := tRecue [ tabR ] [ i ] [ ne twork ]
r [ c a n a l ] := c a n a l
r [ d i s t a n c e ] := ( tRecue [ tabR ] [ i ] [ d i s t a n c e ] ) + 1
r [ qua l ] := tRecue [ tabR ] [ i ] [ qua l ]
r [ nex tRou teu r ] := tRecue [ tabR ] [ i ] [ ne twork ]
g e t R o u t e r I d ( tLoc , cana l , r [ nex tRou teu r ] )
a j o u t e r R o u t e ( tLoc [ tabR ] , tLoc [ d e r n i e r ] , r )
tLoc [ d e r n i e r ] := ( tLoc [ d e r n i e r ] ) + 1

TRUE
SKIP

:



References
George Aggelou.Wireless Mesh Networking, with ZigBee. Mc-Graw Hill Communications, 2008.

Lan S. Bai, Rober P. Dick, and Peter A. Dinda. Archetype-based design: Sensor network programming for application experts, not just
programming experts.IPSN’09, San Francisco, April 2009.

Alex N. Doboli and Edward H. Currie.Introduction to Mixed-Signal, Embedded Design. Cypress semi-conductor, 2007.

David Gay, Philip Levis, David Culler, and Eric Brewer. NESC 1.1 language reference manual. May 2003. URL
http://nescc.sourceforge.net/papers/nesc-ref.pdf.

Adele Goldberg and David Robson.Smalltalk-80, the language and its implementation. Addison-Wesley, 1983.

Inmos.Transputer instruction set, a compiler writer’s guide. Inmos, a.

Inmos.Occam2 reference manual. Prentice-Hall International, b.

Christian L. Jacobsen and Matthew C. Jadud.Communicating Process Architecture, chapter The Transterpreter, a Transputer Interpreter,
pages 99–106. IOS Press, 2004.

Holger Karl and Andreas Willig.Protocols and architectures for wireless sensor networks. Wiley.

Guillaume Kremer and Jimmy Osmont. Reseaux mobiles de capteurs: Outils d’étude et de simulation. Master’s thesis, Master informatique
– Universite de Brest, May 2009.

Nancy Lynch.Distributed Algorithms. Morgan-Kauffman, 1998.

Joseph Macker and Ian Chackeres. Mobile ad-hoc networks (manet). IETF, 2009. URL
http://www.ietf.org/html.charters/manet-charter.html.

Rainer Matischek.A TinyOS-based ad hoc wireless sensor network. VDM Verlag, dr Muller, 2008.

Carl G. Ritson, Adam T. Sampson, and Frederick R. M. Barnes. Multicore Scheduling for Lightweight Communicating Processes. In John
Field and Vasco Thudichum Vasconcelos, editors,Coordination Models and Languages, 11th International Conference, volume 5521 of
Lecture Notes in Computer Science, pages 163–183. Springer, June 2009. URLhttp://www.cs.kent.ac.uk/pubs/2009/2928.

Claire Swedberg. SF uses wireless sensors to help manage parking. RFID Journal, September 2007. URL
http://www.rfidjournal.com/article/view/3625/2.

Tim Wark, Peter Corke, Pavan Sikka, Lasse Klingbeil, Ying Guo, Chris Crossman, Phil Valencia, Dave Swain, , and Greg Bishop-Hurley.
Transforming agriculture through pervasive wireless sensor networks.Pervasive Computing, IEEE, 2007.

Mark Weiser and John Seely Brown. The coming of calm technology. Xerox PARC, October 1996. URL
http://www.ubiq.com/hypertext/weiser/acmfuture2endnote.htm.

Peter H. Welch and Frederick R. M. Barnes.Communicating Sequential Processes, the first 25 years, chapter Communicating Mobile
Processes, pages 175–210. Springer, 2004.


