
Maispion: A Tool for Analysing and Visualising
Open Source Software Developer Communities

François Stephany
Université de Mons & agilitic

francois.stephany@agilitic.com

Tom Mens
Université de Mons

tom.mens@umons.ac.be

Tudor Gı̂rba
University of Berne
girba@iam.unibe.ch

Abstract
We present Maispion, a tool for analysing software devel-
oper communities. The tool, developed in Smalltalk, mines
mailing list and version repositories, and provides visualisa-
tions to provide insights into the ecosystem of open source
software (OSS) development. We show how Maispion can
analyse the history of medium to large OSS communities, by
applying our tool to three well-known open source projects:
Moose, Drupal and Python.

Keywords software evolution, mining software reposito-
ries, software visualisation, Smalltalk, open source

1. Introduction
Communication is crucial for the long term success of soft-
ware projects [Brooks 1975, DeMarco and Lister 1987]. De-
velopers need to communicate with their peers and to share
information within their team in order to get the most ef-
ficient coordination. This is especially true in open source
software projects, that have a flexible and volatile social
structure and are often managed in a less strict way. How-
ever, the larger the team, the more difficult communication
is.

Numerous researchers explored the ecosystem of open
source software development [Madey et al. 2002, Mockus
et al. 2002, Nakakoji et al. 2002]. Nevertheless, dedicated
tool support for analysing and visualising the social structure
of open source software development, and how it evolves,
is largely inexistent. To fill this gap, we implemented a
Smalltalk tool, called Maispion. In this article, we illustrate
how this tool can be used to analyse and visualise mailing
lists and source code version repositories of open source
projects. We validate our tool by applying it on three well-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
IWST 2009 31 August 2009, Brest, France.
Copyright c© 2009 ACM [to be supplied]. . . $10.00

known open source projects (Moose, Drupal and Python) for
which we aim to understand how their developer community
behaves.

The paper is organized as follows. Section 2 explains
the various visualisations provided by Maispion. Section 3
shows the internals of our tool. In Section 4 we discuss the
results obtained from applying our tool to the case studies. In
Section 5 we conclude and provide an outlook of the future
work.

2. Visualising communication with Maispion
Analysing mailing lists used by a community of software
developers provides insights in how developers work and
what are the most important persons involved in the project.

Open-source projects typically have a mailing list that
channels the communication in the project. Mailman 1 is one
of the most most used infrastructures for handling mailing
lists. While these infrastructures do offer a robust service
for handling and dispatching mails, they provide only a
rudimentary overview of the discussions that already took
place.

In this section we explain the different visualisations of
mailing list data and versioning data that Maispion provides.

2.1 Tree view
First of all, a mailing list can be seen as a tree, in which
each mail either starts a new thread or is a response to
another mail from an existing thread. Browsing the Mailman
archives online with a web browser does not help much:
We can only browse the mailing list on a monthly basis and
we cannot easily see who are the persons that are the most
active or which threads are particularly long (see Figure 1).
Maispion can provide a digest of the mailing list by showing
all the e-mail threads as trees.

For example, Figure 2 shows a number of threads in
the Moose mailing list. In this visualisation, each e-mail
is represented by a square. A tree of e-mails is actually a
thread, where the top square is the first e-mail of this thread.
The distance between an e-mail and a reply maps the time
between the two; the longer the time, the longer the edge.

1 http://www.gnu.org/software/mailman/index.html

Figure 1. A sample of Mailman web archives from the
Drupal mailing list

We took the ten persons that have sent the most e-mails
and assigned a colour to each of them. The white colour
is assigned to the other individuals. As with all the other
diagrams and visualisations, this view is interactive. It is
possible to right-click on any entity and open an inspector
on it or launch another visualisation (the menu will show
any action that is relevant for the selected entity).

Figure 2. E-mail threads in the Moose mailing list

2.2 Activity distribution over time
In order to detect whether or not a project is developed by
professional developers, it is important to know when they

are working. While professional programmers are paid to
work on the project during office hours from Monday to Fri-
day2, non-professionals are more likely to develop during
the evening. To verify this hypothesis, Maispion can gen-
erate diagrams that show when developers are committing
code or when they are sending e-mails. For example, Fig-
ure 3 shows that most of the commits in the Drupal version
repository happen between 9AM and 7PM, followed by a
peak in activity until midnight. As such, Drupal developers
appear to continue to work after office hours.

Figure 3. Hourly activity of commits in the Drupal repos-
itory. The x-axis shows the hour of the day and the y-axis
maps the average number of commits made during the given
hour.

2.3 Evolution of the activity
We assess the activity in the mailing list by the number of
e-mails that are sent. In a version repository, an activity is
basically a commit. By analysing the evolution of the activity
we know if the project is growing, stable or even abandoned.
The level of activity is a good indicator of the health of a
project. Maispion gives a monthly view of the activity. This
view is available for the repository and for the mailing list.
The two can be combined within the same diagram (see
Figure 4).

In software development, a sprint is a short amount of
time (maximum several days) dedicated to work on a project.
The developers meet in real life and stay together during
the sprint. If we want to analyse a posteriori what happened
during such a code sprint, it is possible to show the activity
on a daily basis. Figure 5 shows the daily activity of the
Python project. Each point of the horizontal axis represent
one day. The bar that goes up maps the number of e-mails

2 This does not exclude, of course, that they may and often will continue to
work outside office hours.

Figure 4. Drupal monthly evolution of activity (red bars represent the e-mail volume, green bars represent the commit volume)

Figure 5. Daily activity for the Python project

that were sent that day while the bar that goes down maps
the number of commits that were pushed in the repository
that day.

2.4 Committers period of activity
Despite major differences, open source developers have a
common point with developers employed to work on a pro-
prietary project: they come and go. Open source developers
are free to leave a project or to join an existing one. Mais-

pion proposes a visualisation to spot this behaviour. Figure 6
shows the activity period of the Drupal-core committers.

Figure 6. Drupal committers period of activity. Each hor-
izontal line represents the commit activity period of a de-
veloper. Only the first individual, which happens to be the
founder of Drupal, was active over the entire studied period.

2.5 E-mail addresses and repository logins usage
It is not uncommon for people to use multiple e-mail ad-
dresses. For example, they sometimes start using a new ad-
dress when they change their job or when they leave uni-
versity. To visualise this behaviour, we developed a diagram
showing how an individual uses his e-mail addresses over
time when contributing to a mailing list. For example, Fig-
ure 7 shows that a particular Moose developer has used 5
different e-mail addresses during the time period studied:
2 private e-mail addresses, and 3 different university ad-
dresses. The latter reflects the fact that this particular person
has moved twice to a different university. We also observe a
clear overlap of his e-mail address usage.

Figure 7. Email addresses usage of a specific developer
on the Moose mailing list. Each horizontal bar represents
a different e-mail address of this developer.

This view is also available for the repository logins. Be-
cause a repository account is set up once, a developer will
not change his repository login as often as his e-mail address
but it sometimes happens.

2.6 Interlocutors and collaborators
The purpose of a (developer) mailing list is to communi-
cate with other individuals participating in the project. To
know who are the primary interlocutors of someone, Mais-
pion shows with whom someone is communicating the most
frequently. We consider two persons to be communicating
with each other if they are active in the same thread. Mais-
pion can display the interlocutors of a particular individual.
Figure 8 illustrates this for the most active commiter of Dru-
pal. He appears to be communicating a lot with (i.e., partic-
ipating in the same e-mail threas as) only a few developers,
and only occasionally with the majority of the other devel-
opers.

A similar view is proposed to see the collaborators of an
individual in the version repository. For a Store repository,
we say that two persons are collaborators if they have com-
mitted code to the same project [Lungu et al. 2007]. For a
CVS or SVN repository, we say that two persons are col-
laborators if they have worked on the same file [Gı̂rba et al.
2005].

Figure 8. Communication frequency of one of the key de-
velopers of Drupal with other developers (in the mailing
list).

2.7 Distribution of commit volume
Many successful open source projects were started by a
programmer who wanted to solve a particular problem. He
started to develop a tool that he intended to use for his
personal needs, but once the tool is released to the public
it gains attention from other developers. The consequence
of this schema is that one person (the creator of the project)
commits a lot and often owns the majority of the code. He is
the person who drives the project and decides which patches
will be integrated or not. If this person stops to work on the
project, the probability that the whole project dies can be
quite high. To analyse this possibility, we want to identify
the key persons involved in a software project. We developed
three different view for this purpose; the commit activity
distribution (Figure 9), the e-mail activity distribution, and
the activity scatterplot (Figure 10). The latter one shows how
commit activity and e-mail activity are correlated. As we
can see in the figure, some people tend to be more active in
the mailing list, while others are more active in the version
repository.

Figure 9. Commit distribution in the Python source reposi-
tory

3. Maispion architecture
Maispion was developed by the first author in the context
of his master thesis [Stephany 2009] on top of the Moose
platform [Ducasse et al. 2005]. Maispion imports data from
source code version repositories and mailing lists. This data
is subsequently processed by Maispion using dedicated visu-
alisations implemented using Mondrian [Meyer 2006] and

Figure 10. Activity scatterplot for the Python project. The
x-axis represents the number of commits, the y-axis the
number of e-mails

Eyesee [Junker and Hofstetter 2007]. Maispion was devel-
oped with Visualworks 7.6 and is available on the SCG Store
repository3.

3.1 Importing versions and mailing lists
Figure 11 shows the essence of Maispion’s architecture. A
bridge pattern is used to capture the central notion of UserI-
dentity. It aggregates the fact that any individual can con-
tribute to the open source project in two different ways:
by sending e-mails to the mailing list, or by committing
versions to the source code repository. The same user can
use many different email addresses (each represented by
EmailUser) to communicate on the mailing list, and can have
different identities (each represented by RepositoryUser)
when committing to the version repository. The Bridge is
used to link a Mailbox, a Repository and the user identities.
A Mailbox keeps track of its e-mail senders and messages.
A repository does the same for its users and commits.

In its current version, Maispion supports three different
types of version repositories: SVN, CVS and Store. The cho-
sen architecture abstracts away from these different reposi-
tories by putting all common version control behaviour in
the Repository class that is specialised for each supported
type of version repository. All Maispion’s visualisations are
defined at the abstract level, and new types of version reposi-

3 See scg.unibe.ch/wiki/howtos/howtoaccessscgstore to find out
how to access this repository.

Figure 11. Core architecture of Maispion

tories (e.g., Git, Perforce) can be accomodated easily by cre-
ating new subclasses of Repository.

For the three currently supported version repositories we
proceeded as follows. CVS logs were imported with the help
of Chronia [Seeberger et al. 2006]. SVN logs, generated
by SVN in XML format4, were imported using existing
Smalltalk libraries for XML parsing. To import data from
the Store repository, we used theStoreIt tool, available on
the SCG Store repository.

Maispion currently imports e-mails encoded in the mbox
format [Hall 2005]. Maispion can automatically download
mailing lists hosted by Mailman, an open source mailing list
management tool used by many open source projects (e.g.,
Pharo, Python, Imagemagick). Accommodating other types
of mailing list formats is left for future work.

All the data imported in Maispion can be browsed with
the Moose browser. This browser helps to navigate within
an instance of a model.

3.2 Merging identities
One of the most important issues when dealing with multiple
sources of data is the identification of individuals. We need
to identify persons committing source code in the reposi-
tory with the mailing list participants. Maispion solves this
problem by performing a semi-automatic identity recogni-
tion. Figure 12 illustrates our method.

The similarity between two strings is computed using the
Levenshtein distance [Navarro 2001]. It is a real distance
metric in the mathematical sense of the word (i.e., it is sym-
metric and satisfies the triangle inequality). This distance
represents the minimal number of insertions, deletions and
substitutions to make the two strings equal. Thus, if the two
strings are identical, the Levenshtein distance between them
is 0. For example, Maispion will detect that the mailing list
participants

4 The following command can be used to generate an SVN log in XML
format: svn log --verbose --xml <REPO URL> > log.xml

(a) E-mail with e-mail

(b) E-mail with repository login

Figure 12. User identity detection

francois.stephany@umh.ac.be (Francois Stephany) and
fstephany@mysuperdomain.st (francois) are probably the
same person: the name Francois Stephany from the first e-
mail will generate a list of possible nicknames that includes
fstephany.

Figure 13. Merge Browser

Of course this approach has its limitations: it is impossi-
ble to identify accurately whether two e-mail addresses be-
long to the same individual if the names used are completely
different. For example, it is impossible to know that fran-
cois.stephany@umh.ac.be from a mailing list is related to
the login tulipe.moutarde in a version repository without per-
forming a social search. In the case of open source software,
social websites such as Twitter, Sourceforge and Github are
good starting points. We thus need to perform a manual ver-

Table 1. General information about Moose, Drupal and
Python

Moose Drupal Python
Repository type Store CVS CVS/SVN
#e-mails 2422 32729 88660
#commits 65768 33594 42219
#committers 227 8 172
#mailinglist users 74 1126 2519
First e-mail 20/04/2007 14/01/2005 21/04/1999
Latest e-mail 17/05/2009 23/05/2009 27/05/2009
First commit 27/04/2001 18/05/2000 09/08/1990
Latest commit 19/05/2009 22/05/2009 27/05/2009

ification of all the identity associations generated by Mais-
pion. This task is facilitated by the Merge browser that we
implemented. Figure 13 illustrates how the user can easily
edit, compare and create identities from e-mail addresses or
version repository logins.

4. Validation
To show that Maispion can be used in practice, we validated
it by analysing and visualising three open source projects:
Moose5, Drupal6 and Python7. Table 1 shows the main char-
acteristics of each studied system.

• Drupal was started as an information sharing tool be-
tween a small group of students. Its creator probably
never expected that his pet project would become so suc-
cessful. Drupal is implemented in a very popular lan-
guage for web programming: PHP. The developers of the
Drupal-core are of course not PHP beginners but mod-
ules and themes can be easily developed by a regular
programmer and are easy to deploy. We analysed the
CVS repository of Drupal as well as the Drupal-core dev8

mailing list.
• Python is a very popular programming language. Design-

ing a programming language is hard and requires many
skills. A project like Python cannot be developed by a be-
ginner who just learned to program. The people who are
developing and discussing the future of Python are prob-
ably highly skilled. We analysed the Python-dev9 mailing
list, as well as the CVS and SVN version repositories. Ini-
tially Python code was stored in CVS, but the developer
community decided to migrate at a certain point in time
to SVN.

5 http://moose.unibe.ch/
6 http://drupal.org/
7 http://python.org/
8 http://lists.drupal.org/pipermail/development/
9 http://mail.python.org/pipermail/python-dev/

• Moose is an academic project developed by researchers,
master and bachelor students. The hobbyist programmer
probably does not have any interest in contributing to
Moose. This makes the project very different from the
two others. We analysed the Moose-dev10 mailing list as
well as the Store version repository.

The use of the different visualisations that Maispion pro-
vided allows us to make several observations about these
three projects. We discuss these in the following subsections.

4.1 General evolution
From Figure 4 we observe (by looking at the red vertical
bars) that the overall activity in the Drupal mailing list de-
creases over time. This behaviour was unexpected. We found
that the first major decrease was due to a change in the bug
tracking system (up till a certain point in time, every change
in the bug tracking system was automatically notified in the
mailing list as well) but we did not find any credible reason
for the long term decrease of activity.

We did not observe this phenomenon for the Python mail-
ing list activity. On the contrary, we observed that Python
gained in popularity between releases 1.5 and 1.6. The mail-
ing lists of both projects see a wave of activity before a re-
lease. As Moose does not have discrete releases, it is impos-
sible to draw this kind of conclusion for its mailing list.

When we compared the activity in the repositories, we
observed that Python and Moose share a similarity; their
development slowed down at a certain point in time. For
Moose, this point is February 2007. We do not know what
happened and interviewing the maintainers of the project did
not shed the light on this activity drop. Python development
activity was intense between version 1.6 and version 2.3. Af-
ter this release, the activity decreased. Both Python and Dru-
pal development see a peak of activity before each release.

4.2 Power law behaviour
An interesting type of behaviour we observed, and which
seems to be confirmed by other researchers as well [Madey
et al. 2002] is that open source software development has
a power-law behaviour. We observed this, for example, in
Figure 8, but the same kind of behaviour was observed as
well for the other studied systems. Developers are commu-
nicating frequently with a small set of other developers, and
only occasionally with the majority of the other developers.
A deeper statistical analysis and understanding of this phe-
nomenon, as well as its impact to OSS development is a topic
of future research.

4.3 Working hours
After analysing the visualisations of mailing list usage of the
three studied systems, a recurrent pattern emerges. As can be
expected, the developers are mostly communicating during
the day and in the evening. In the base of Python and Moose,

10 http://www.iam.unibe.ch/pipermail/moose-dev/

developers do not stop talking during weekends; they just
slow down their activity. This is not the case with Drupal: its
most active day is Sunday.

One difference between Moose and the two other projects
is the fact that it is more quiet during holidays while it is the
exact opposite for the two others. The academic nature of
Moose may explain this phenomenon.

All the repositories show that open source developers
continue to work outside office hours. Moose is the only
project for which the activity decreases in the evening, Dru-
pal and Python see the exact opposite: people are working in
the evening.

4.4 Projects sustainability
The problem affecting both Drupal and Python is the fact
that they are led by a single individual who oversees the de-
velopment and guides the project. This is commonly known
as the so-called bus factor, i.e., the total number of key de-
velopers that would, if incapacitated (e.g., by getting hit by
a bus), lead to a major disruption of the project. For Python,
it is easy to observe this bus factor behaviour, by looking
at the Maispion visualisations shown in Figures 9 and 10.
They show that there is one extremely active developer, both
in terms of commits and e-mails sent. A similar behaviour
can be found for Drupal, where its founder continues to be
the most active person.11

Fortunately, both projects are well documented and are
widely used throughout the world; they are thus sustain-
able on the technical side. But leadership and vision are two
important success factors of these projects. Moose is well
known by a relatively large community of academics who
have built tools on top of it, its bus factor is thus relatively
high. However, all those satellite tools are much less sustain-
able: they are typically developed by one or two students for
a thesis or to support a paper.

5. Conclusions and Future Work
This document introduced Maispion, a Smalltalk tool for
analysing and visualising open source software developer
communities. We showed how these visualisations can be
applied in practice by analysing three mature open source
projects. We have found some interesting communication
patterns for these projects, but clearly more work is needed
to explore these patterns in more detail, to explain why they
appear, and to verify whether other open-source projects
reveal similar patterns.

The visualisations provided by Maispion are subject to
improvement. For example, the visualisations of commiter
activity (Figure 6) or e-mail usage (Figure 7) do not take into
account the frequency of activity over time. An improvement
of this visualisation could reveal this information to better

11 The visualisations that reveal this have not been included in this paper
due to lack of space.

explain the concurrent use of e-mail addresses of a same
individual.

The information about working hours that we derived
from the version repository data is based on the timestamp of
commits in the version repository server. This may lead to a
significant lack of accuracy when developers working on the
open source software project reside in different time zones.
For example, because Python has developers working in US,
Canada and Europe, the aggregated results about working
hours may not be very reliable. We could automatically de-
tect the timezone of an individual based on his e-email us-
age: e-mail headers often includes the timezone from which
the e-mail was sent. Unfortunately, e-mail clients are incon-
sistent with this field of the header. The mobility of devel-
opers is another problem: they can commit code while they
are travelling (if they go to a conference for example) or can
move to another country.

In our current study of how software developer teams
communicate and what we can learn from that, we have
only used information obtained from mailing list and source
code version repositories. A natural extension of our work
would be to integrate bug tracking data and other relevant
data sources as well. [Abreu and Premraj 2009] have tried to
correlate developer communication (obtained from mailing
lists) with software quality (expressed in terms of injected
bugs in the software). In the future we intend to integrate
this kind of data in our tool.

In a general sense, the various types of data extracted
by our tool are amenable to statistical analysis, in order to
identify certain correlations (for example, between devel-
oper communication and coding activity) or to identify cer-
tain evolution trends or certain kinds of patterns (such as the
observed power law).

Collins-Sussman and Fitzpatrick expressed in their Google
Tech Talk that some kinds of behaviour are unwelcome
in open source projects [Collins-Sussman and Fitzpatrick
2007]. It would be interesting to automatically detect such
undesirable behavioral with Maispion.

A final important open research question we are faced
with is whether the communication patterns we typically
find for open source development teams can also be observed
in commercial software, and vice versa.

Acknowledgments
We acknowledge the Swiss Group for Object-Oriented Sys-
tems and Environments (CHOOSE) for offering a student
mobility grant, and Oscar Nierstrasz for his support during
François’ research stay at the Software Composition Group
of Bern University.

The research reported here was carried out in the context
of the Action de Recherche Concertée AUWB-08/12-UMH
19 funded by the Ministère de la Communauté française
- Direction générale de l’Enseignement non obligatoire et
de la Recherche scientifique. We are grateful to the Bel-

gian F.R.S-F.N.R.S for partial funding through FRFC project
2.4515.09.

We also gratefully acknowledge the financial support of
the Hasler Foundation for the project “Enabling the evolu-
tion of J2EE applications through reverse engineering and
quality assurance” (Project no. 2234, Oct. 2007 – Sept.
2010)

References
R. Abreu and R. Premraj. How developer communication fre-

quency relates to bug introducing changes. In Proc. Joint Int’l
Workshop on Software Evolution (IWPSE-EVOL), pages 153–
157. ACM SIGSOFT, 2009.

F.P. Brooks. JR.,“The Mythical Man-Month”. Essays on Software
Engineering. Addison-Wesley Publishing Company, 1975.

B. Collins-Sussman and B. W. Fitzpatrick. How To Protect your
Open Source Project From Poisonous People: Google TechTalk,
January 2007.

T. DeMarco and T. Lister. Peopleware: productive projects and
teams. Dorset House Publishing, 1987.

S. Ducasse, T. Gı̂rba, and O. Nierstrasz. Moose: an agile reengi-
neering environment. In Proc. 10th European Software Engi-
neering Conf., pages 99–102. ACM, 2005.

Tudor Gı̂rba, Adrian Kuhn, Mauricio Seeberger, and Stéphane
Ducasse. How developers drive software evolution. In Proceed-
ings of International Workshop on Principles of Software Evo-
lution (IWPSE 2005), pages 113–122. IEEE Computer Society
Press, 2005. doi: 10.1109/IWPSE.2005.21.

E. Hall. The application/mbox Media Type. RFC
4155 (Informational), September 2005. URL
http://www.ietf.org/rfc/rfc4155.txt.

M. Junker and M. Hofstetter. Scripting diagrams with eyesee.
Bachelor’s thesis, University of Bern, May 2007.

Mircea Lungu, Michele Lanza, Tudor Gı̂rba, and Reinout Heeck.
Reverse engineering super-repositories. In Proceedings of
WCRE 2007 (14th Working Conference on Reverse Engi-
neering), pages 120–129, Los Alamitos CA, 2007. IEEE
Computer Society Press. ISBN 0-7695-3034-6. doi:
10.1109/WCRE.2007.46.

G. Madey, V. Freeh, and R. Tynan. The open source software
development phenomenon: An analysis based on social network
theory. In Eight Americas Conf. Information Systems, pages
1806–1813, 2002.

M. Meyer. Scripting interactive visualizations. Master’s thesis,
University of Bern, November 2006.

A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case studies of
open source software development: Apache and Mozilla. ACM
Trans. Softw. Eng. Methodol., 11(3):309–346, 2002. ISSN 1049-
331X.

K. Nakakoji, Y. Yamamoto, Y. Nishinaka, K. Kishida, and Y. Ye.
Evolution patterns of open-source software systems and commu-
nities. In Proc. Int’l Workshop on Principles of Software Evolu-
tion (IWPSE), pages 76–85. ACM, 2002.

G. Navarro. A Guided Tour to Approximate String Matching. ACM
Computing Surveys, 33(1):31–88, 2001.

M. Seeberger, A. Kuhn, T. Girba, and S. Ducasse. Chronia: Visu-
alizing how developers change software systems. In European
Conf. Software Maintenance and Reengineering, 2006.

F. Stephany. On the analysis of communication patterns in open
source software development. Master’s thesis, Université de
Mons, 2009.

