Exploratory
Modeling

Andreas Tonne — Georg Heeg eK
ESUG 2007
Lugano, August 27th 2007

Overview

e Part 1

- Successful Smalltalk projects and their reasons
e Part 2

— (A little bit) modeling theory

— Example project (-> SAP)

- Modeling challenges
e Part 3

— Exploratory Modeling

Project Woes

e Chaos Report 1995 (Standish Group)
- 30% canceled
- 52% cost more than 190% of estimate
- 16% on time and budget

o [t got better the following 10 years!
- 15% canceled
- 50% cost more than 43% of estimate
- 51% challenged (budget, time, features)

Successful Smalltalk-Projects

e Authors personal experience (1997-2007) with
Georg Heeg
- 0% canceled

- 33% (5/15) challenged (mostly budget and time)
e Feature driven challenges

e Very satisfied customers
— Trust that the solution will be good
— Believe that no showstopper problem exist

Successful Smalltalk-Projects

e A few names...

e ABB

AMD Dresden (-> Taylan’s talk)
Commerzbank

Debeka

GEFA

SAP (-> Ralf Ehret’s talk)

Successful Smalltalk-Projects

e Common characteristics:

e Very long living solutions

e High resistance against replacement
e High customer satisfaction

e Solves ,,special® customer problems

Customer Satisfaction

o Intuitive reason: good models

— Models capture customer requirements correct and
complete (deep models)

e Excitement created by:

— Combination of models
e Unforeseen additional value

— Robustness of models
e Models stable against feature changes

o Featlures change often, correctly modeled domain concepts
rarely

* No “can’t do that”, “this will be expensive”, “the design does
not support this”

‘\@,‘\

Good Modeling in Smalltalk

wﬁ\\&

e Observation:

— Smalltalk proved to be extremely good at expressing domain
concepts in model implementations! Why?

Simple answer:
— Because the language is so nice

Conceptual classifications (abstraction, generalization) are
immediately expressible

No implementation/usage separation by class/interface
Little technical overhead like types, technical declarations etc.
Powerful environments and tools

e This explains why we are happy with Smalltalk

Overview

e Part 1

— Successful Smalltalk projects and their reasons
e Part 2

- (A little bit) modeling theory

- Example project (-> SAP)

— Modeling challenges
e Part 3

- Exploratory Modeling

= 2\

A Little Theory of Modeling

e A model abstractly represents a
phenomenon

e (Stachowiak) Model criteria:
— Mapping: original mapped to model

— Reduction: emphasizing the important aspects by
deleting irrelevant aspects

— Pragmatic: models serve a purpose
e Models are targeted at one or more receivers

e Views of a phenomenon yield different models
(different purposes of the models)

i.-
|_u
o
;n’

=

£ B 17—t

s R =
iy e] obi .-.-.,‘.,..;.‘:.':...J.!...q
oy I et K Im-_..'r.} T ol evmoe e ol g
o .,m..qu.nr.,r | A e -fmu"'; dorsi
*wp R0 B e IS e i
ol e e
'i""l"""*"""] -'--r A
[l-a-.rﬂ-,—u-h dvans f &
-u -mi‘.nf T\F-h-W —-U-mf-rﬂ"il ‘f”i' "
e q R e L

“’z-“fwwm—ﬂw ™ ’FT"“'T”*"‘ 5

- S SR O popd e |

De Humani Corporis Fabrica...
Basel, 1543. Woodcut. National
Library of Medicine.
Andreas Vesalius
(1514-1564)

Leonardo da Vinci‘s Vitruvian Man
(1492). Pen and ink with wash over
metalpoint on paper.

Aokl Al el eY X ELLENIIE
TERTIA
ALFAC LD
WY W T A

LA

Ontleding des menschelyken lichaams...
Amsterdam, 1690. Copperplate engraving with etching. National
Library of Medicine.

Portrait of Govard Bidloo (1649-1713) by Gérard de Lairesse
(1640-1711).

6 P
Q-:\;;-g@?:;r_,\

A Little Theory of Modeling '

e Various views/models by intention
- For domain understanding or implementation
— Level of detail from IT-landscape to
algorithm
e VVarious views/models by receiver

— Blackbox-view by functional behavior for
customer

— Whitebox-view by inner structure of concepts
and their interaction for developer

I A Little Theory of Modeling

Project modeling szenario

talks % w% learns

Concepts Concepts

%structs

Models

Domain

& 2|
s 8 - =\

A Little Theory of Modeling '

e Primary purpose of modeling:
COMMUNICATION

e Achieve a common understanding of the
concepts
—Vocabulary and Imagination

e Verify the model for completeness and
correctness
—This iIs a hard problem!

Practical Modeling

e What to use: UML or UML?
e Our point: UML is a good thing carried
too far

— Cannot cover communication and verification
with the customer easily (details later)

e Others recognize this as well
— Microsoft’s domain-specific languages

Modeling using Smalltalk

Smalltalk is extremely good at expressing domain
concepts in model implementations! Why?

Modeling answer:
— concepts are represented 1-1

- Colloquial use of concepts is expressible in the model
implementation

Important consequence:

- Complexity of concepts and model implementation
match

- Complexity of change to concept and model implementation
match

View Smalltalk as a kind of generic domain-specific
language

€ o
= 2

| \’ \ 7.8 ‘

Customer Satisfaction (rep.)

o Excitement factor: good models

- Models capture customer requirements correct
and complete

e Excitement created by:

— Combination of models
e Unforeseen additional value

- Robustness of models
* Models stable against feature changes

o Featlures change often, correctly modeled domain concepts
rarely

* No “can’t do that”, “this will be expensive”, “the design does
not support this”

Overview

e Part 1

— Successful Smalltalk projects and their reasons
e Part 2

— (A little bit) modeling theory

- Example project (-> SAP)

— Modeling challenges
e Part 3

— Exploratory Modeling

- 2
&-3\;.;@, '\

Example: Duplicate Analyzer -

e Situation: Company with invoice handling
based on standard software

o Expert: Accounts payable clerk
e Task: Identify duplicated paid invoices
e Goal: Reclaim unwarranted payments

e Show of hands: Is this an easy task?

Duplicate Analyzer - First Model

Identify Duplicate
Invoices

Accounts Payable Clerk

Gompare two invoice§

[Suspiciouﬂ/
R

~

«uses»

«uses»

[Equal]

Retrieve Invoice
Originals

A Reclaim Payment

\

/Ketrieve Invoice Originals,/

/
[Different]

“\ /
[Different]

%eclaim Payme

)

___w' X ;\\. 7

Duplicate Analyzer - First Model

Too simple analysis model

Does not even describe the task
correctly

Hidden (unspoken) goals

Use-case needs refinement

Duplicate Analyzer - Fake Interview ' ;

:"‘}j-h@r/‘i? N
|

-> To start with, what is an invoice and how does it differ from the invoice originals? Can’t you always work on the
originals?

<- That would be too time consuming. And the originals are just scans.

-> So what is an invoice and how do you get it?

<- The invoice is coming from the finance system.

-> What is this invoice?

<-“shows a dialog of the finance systems”

-> By what criteria do you choose invoices for comparison?

<-7?

-> You get a list of invoices and do what?

<- Oh! I suppose I have to compare them one by one. The software should do this.

-> That is the point of this project! So you need to compare all invoices in pairs or do you compare more than two
in one go?

<- No I compare two at a time.

-> Do you compare all invoices with all other invoices?

<- That takes too much time. I only compare those that are interesting and potentially duplicate.
-> How do you determine these invoice pairs?

<- ? I look at them and see.

-> So you have some rules by which you know it is worthwhile looking a bit closer?

<-7?

Unknown Unknown
requirement domain

\

Concepts

Developer

%structs

Models

Verification

Domain Phenomenon

Challenges - The Unknown

e Requirements are expressed in terms of
needs and examples

— Lack of formal coherence
— Lack of abstraction

e Understanding the domain

e Moving targets

- Fixing requirements and understanding
changes the goals.

& 2|
Q\,\&@;J_,\
4

Challenges - The Unspoken

e Language gap!
— Different way to express models
— Developer: formal, abstract, seeking generalizations

— Customer: more informal, example (process) based,
individual use cases

» Need a common language for the concepts and
for talking about the modeling process

e UML considered not appropriate!
— Formally adequate for the developer
— But not matching the language of the customer

.8 =5
D zb
| AR S I

I Challenges - Language gap

Two models of a woman with a hat. Seriously clashing language!

& 2\
S PN

| \’ \ 7] | |

Challenges — Customer Assurance

o Often overlooked: achieve a mutual
agreement on the model

— Captures the customer needs
— Can be handled by the developer

e Why does the customer agree that a
model captures his needs?

e VERIFICATION!

Challenge Summary

e Find a modeling process that
— Expresses the domain in enough formal rigor
— Can be understood by the customer
- Produces agreeable proof of the model

—Is fast enough to take place at the speed of
communication

e Get right what the model does instead of
how it is written up

Overview

e Part 1

— Successful Smalltalk projects and their reasons
e Part 2

— (A little bit) modeling theory

— Example project (-> SAP)

- Modeling challenges
e Part 3

— Exploratory Modeling

Exploratory Modeling - Idea

e Models should communicate to the
customer and the developer

e Whitebox models in UML
- Too technical for many customers

e Blackbox models like prototypes
— Not formal enough for developer

e We like to have the cake and eat it too!

Iterative
Development

uoIedIJLIaA

c
O
i

©
i

c

Q

=
9

Q.
£

2. Conduct
experiments for
verification

>
=
=
0
Q
-
@)
-

3. Document model results

= No more “this is not what we intended”

€ 2|
s i

Exploratory Modeling Step 1

e Express problem domain in a suitable
programming environment

e Rules:

—Use the language of the customer
e Simplest possible implementation
e As "non-technical” as possible

-Make the model executable
» Add experimentation environment

€ 2|
s i

Exploratory Modeling Step 2

e Model is implemented for experiments
- Formal rigor given by implementation
- Experiments verify consistency

- Experiments conducted by implementer and
customer together

— Customer has immediate feedback that the
model is right

— Experiments achieve deepening of the
model!

Exploratory Modeling Step 3

e Create model documentation

-Implementation expresses model
exactly

—Less technical, visual documentation is
better

—UML is fine for documentation

e 7
S
i

Exploratory Modeling Result

e No prototyping!
— Running program is not enough

— The model should be expressed in the
implementation

— Allows for modeling cycles

o Blackbox view: customer can verify the
correctness of the model

e Whitebox view: formal model in UML for the
developer

e Rigorous application of xM assures that both
vViews are in sync

& 2
S PN

Exploratory Modeling Language

)
1
f?

e Need programming environment with certain
agile qualities

— Non-technical, barrier free, scripting style

— Meta-programmable
— Concept-oriented
— Interactive

e Only a few languages are flexible and powerful
enough for exploratory modeling

e Smalltalk is optimal for its modeling powers

XM Example

e Three modeling cycles for
duplicate analyzer

e Model implementation embedded
in an experimentation workbench

e See SAP talk of Ralf Ehret

XM Example — Cycle 1

CaseBuilder

instan:tiat es

read invoices read and create cases

InvoiceRepository CaseRepository

Invoice
(from Duplicate Analyzer)
E8invoiceDate
E8vendorName
{E8externalReferenceNumber
E%amount

/\ +current

instar;tiates

InwiceRepository
(from Duplicate Analyzer)

CaseStatus
(from Duplicate Analyzer)

Case

+bestMeasure

SimilarityMeasure

(from Duplicate Analyzer) +current

CaseBuilder

+limit

(from Duplicate Analyzer)

CaseBuildingStrategy

(from Duplicate Analyzer)

enumerates’invices build.cases

CaseRepository

(from Duplicate Analyzer)

SimpleCaseBuildingStrategy

+default

SimilarityRule

SimpleSimilarityRule

WoxCampastaris
CaseStatus ~ [o]
(from Duplicate Analyzer) ca:fswereme =

Invoice [e |
(from Duplicate Analyzer)
Case +bestMeasurt

E8invoiceDate SimilarityMeasure

vendorName (from Duplicate Analyzer) |+current

externalReferenceNumber +limit [s
amount |

+curent

CaseBuilder CaseBuildingStrategy CompositeRule

; ; from Duplicate Analyzer, from Duplicate Analyzer] (from DA - Composite Rules)
instantiates (£ yzer) (P yzen) 0

1 *
AttributeRule
(from DA - Composite Rules)

n

AmountVarianceRule InwiceDateVarianceRule
(from DA - Composite Rules) (from DA - Composite Rules)

InvoiceRepository
(from Duplicate Analyzer)

CaseRepository

(from Duplicate Analyzer)

XM Example - Results

* "Modeling experience” means to model
the clerks knowledge of reasons for
duplicates

e VVariety of modeled duplicate reasons

e Finding suspicious invoice pairs by
applying customer specific set of
duplicate models

@ 7
==L =2

xM - FAQ

e When can I apply xM?
— If there are modeling challenges that are expensive,
risky or unsolvable.
e May I keep the xM implementation?
- A good Smalltalk model implementation is a good
start for the product implementation.
e We have to use language X for the product.
Can I still use xM?

- Yes! The model documentation is the produced
value. A great opportunity to introduce Smalltalk.

Summary

e XM is a modeling process that combines
- Smalltalk as a modeling language

— Continuous experimentation with runable Smalltalk
models

— Model documentation accordingly to the project
requirements

e Results in high quality, verified models
e Good customers reassurance early in a project

