
Towards a Taxonomy of SUnit Tests ?

Markus Gälli a Michele Lanza b Oscar Nierstrasz a

aSoftware Composition Group
Institut für Informatik und angewandte Mathematik

Universität Bern, Switzerland
bFaculty of Informatics

University of Lugano, Switzerland

Abstract

Although unit testing has gained popularity in recent years, the style and granularity
of individual unit tests may vary wildly. This can make it difficult for a developer
to understand which methods are tested by which tests, to what degree they are
tested, what to take into account while refactoring code and tests, and to assess
the value of an existing test. We have manually categorized the test base of an
existing object-oriented system in order to derive a first taxonomy of unit tests.
We have then developed some simple tools to semi-automatically categorize tests
according to this taxonomy, and applied these tools to two case studies. As it turns
out, the vast majority of unit tests focus on a single method, which should make it
easier to associate tests more tightly to the methods under test. In this paper we
motivate and present our taxonomy, we describe the results of our case studies, and
we present our approach to semi-automatic unit test categorization.

Key words: unit testing, taxonomy, reverse engineering

1 Introduction

XUnit [1] in its various forms (JUnit for Java, SUnit for Smalltalk, etc.) is a
widely-used open-source unit testing framework. It has been ported to most

? We thank Stéphane Ducasse for his helpful comments and gratefully acknowledge
the financial support of the Swiss National Science Foundation for the project “Tools
and Techniques for Decomposing and Composing Software” (SNF Project No. 2000-
067855.02).

Email addresses: gaelli@iam.unibe.ch (Markus Gälli),
michele.lanza@unisi.ch (Michele Lanza), oscar@unibe.ch (Oscar Nierstrasz).

Fig. 1. An enhanced class browser shows methods and their one-method tests site
by site. Note that the test returns its result, thus enabling other unit tests to reuse
it. We thus store tests like other factory methods on the class site.

object-oriented programming languages and is integrated in many common
IDEs such as Eclipse.

Although these development environments help developers to navigate be-
tween related methods in a complex software system, they offer only limited
help in relating methods and the unit tests that test them.

Our hypothesis is that a majority of unit tests focus on single methods. We call
these dedicated unit tests one-method commands. If our hypothesis is valid,
then we could help the developer in several ways to write and evolve methods
together with their tests:

• Tighter integration of tests and methods in class browsers. Each one-method
command could be displayed close to its method, and document a quality-
approved usage of the method. (See Figure 1) It then would be also clear if
a method has a dedicated test case or not. The developer would not have to
switch windows for developing tests or methods as they could be naturally
displayed site by site.

• Test case selection. All one-method commands could be executed as soon as
their focused method has been changed.

• Concrete Typing. The set of tested concrete types of the receiver, param-
eters and result of the method under test are deducible by executing an
instrumented version of its one-method commands. Thus one-method com-
mands remove the burden of a test-first-driven development of providing
the types in a statically typed language or deducing them in a dynamically
typed language.

• Test case refactoring. If a method is deleted, its corresponding test method

could be deleted immediately too. Renaming a method would not break
the brittle naming convention anymore, which is currently the only link
between a method and its unit tests. Adding a parameter to a method
could be automatically mirrored by adding a factory to its according test 1 .

In order to validate our hypothesis we have:

• Developed an initial taxonomy of unit tests by carrying out an empirical
study of a substantial collection of tests produced by a community of de-
velopers.

• Implemented some lightweight tools to automatically classify certain tests
into categories offered by the taxonomy.

• Conducted case studies to validate the generality of the taxonomy.

Our manual experiment supports the hypothesis that a significant portion of
test cases have an implicit one-to-one relationship to a method under test or
are decomposable into one-method commands. Although it is difficult to iden-
tify a general algorithm to distinguish this kind of test, our initial heuristics to
automate this endeavor succeed in identifying 50% of one-to-one tests without
resulting in any false positives.

Structure of the article. In Section 2 we define some basic terms. In Sec-
tion 3 we present the taxonomy derived from our manual case study. In Sec-
tion 4 we describe some simple heuristics for mapping unit tests to the tax-
onomy, and we describe the results of applying these heuristics to two case
studies. In Section 5 we discuss some of the problems and difficulties encoun-
tered. Section 6 briefly outlines related work. In Section 7 we conclude and
outline future work.

2 Basic Definitions

We first introduce some basic terminology, on which our taxonomy builds on.

Assertion: An assertion is a method that evaluates a (side-effect free) Boolean
expression, and throws an exception if the assertion fails. Unit test assertions
usually focus on specific instances whereas assertions of Design By Contract
are used in post-conditions and are more general.

Package: We assume the existence of a mechanism for grouping and naming a
set of classes and methods. In the case of Java this would be packages; in the

1 Further refactorings [2], which have to be carried out in parallel for the test code
and the code under test would be easier too, but this is subject to further research.

case of Smalltalk we use class categories as the smallest common denominator
of several Smalltalk dialects. We call these groups packages.

Command: Every XUnit Test is a command [3], which is a parameter-free
method whose receiver can be automatically created. The XUnit Test can
thus be automatically executed.

The command receiver in the case of a XUnit test case can be constructed
automatically, e.g., new MyTestCase(myTestSelector). The whole command then
looks like:

(new MyTestCase(myTestSelector)).run()

Test package: A test package is a package which includes a set of commands.

Package under Test: If a test package tests another package, we call this other
package the package under test, which may be identified either implicitly by
means of naming conventions, or explicitly by means of a dependency decla-
ration.

Candidate method: A candidate method is a method of the package under test.

Focuses on one method: We say that a command focuses on one method, if it
tests the result or side effects of one specific method and not the result or side
effects of several methods.

3 A Taxonomy of Unit Tests

Initial case study. We derived the taxonomy by manually categorizing 982 unit
tests of the Squeak [4] base system 2 . Squeak is a feature-rich, open source im-
plementation of the Smalltalk programming language written in itself and by
many developers. It includes network- and 2D/3D-graphics support, an inte-
grated development environment, and a constructivist learning environment
for children.

The tests were written by at least 26 different developers. One of the test
developers developed 36% of the test cases, two more developed a further
34%, and yet another six developers produced another 19% of tests. Each
of the other developers produced less than 3% of the tests. We defined the
taxonomy depicted in Figure 2 by iteratively grouping tests into categories
and refining the classification criteria. Our manual categorization yielded a
distribution of the categories shown in Figure 3.

2 Version 3.7 beta update 5878, available at http://www.squeak.org

Command
(focuses on one method?)

One-Method Command
(tests each call of focused method?)

One-Method
Test Command
(calls focused

method once?)

Optimistic Method
Example

One-Method
Test

Pessimistic Method
Example

One-Method
Example Command

(calls focused
method once?)

One-Method
Test Suite

yes no

no

yesyes no

yes no

Multi-Facet
Test Suite

Cascaded
Test Suite

no

Multiple-Method Command
(decomposable into One-Method Tests?)

Independent
Test Suite

yes

Multiple-Scenario Test Suite
(all later tested methods use

result of former?)

yes no

One-Method Example
(expects exception?)

yes

One-Method
Example Suite

no

Multiple-Method Test Suite
(same scenario for

each tested method?)

yes

no

Other

Meta Test

Constraint
Test

Uncategorized

correlates methods
without focusing
on one?

talks about the
program, not its
effects?

Fig. 2. Taxonomy of unit tests. Nodes are gray and denote concrete occurrences of
unit tests.

One-method tests
53%

One-method test suites
15%

One-method
example commands

6%

Multi-facet test suites
5%

Cascaded test suites
4%

Independent test suites
2%

Meta tests
5%

Constraint tests
10%

Fig. 3. Manual classification of unit tests for the base Squeak system

We now describe and motivate each of the unit test categories in the taxonomy.
For each node of our taxonomy we present a real world example found in the

Assertion

(Setup)
Method under Test

One-Method Test

Method under Test 1
Assertion

(Setup 1)

Method under Test 1
(Setup 2)

Method under Test 1
(Setup n)

One-Method Test Suite

Method under Test 1
(Setup)

Method under Test 2

Method under Test n

Multi-Facet Test Suite

Assertion

Assertion

Assertion

Assertion

Assertion

Method under Test 1
(Setup 1)

Method under Test 2
Assertion

(Further Setup)

Assertion
Method under Test n

(Further Setup)

Cascaded Test Suite

Assertion

Fig. 4. One-method test suites, multi-facet test suites and cascaded test-suites are
decomposable into one-method tests.

Squeak unit tests 3 .

We divide our taxonomy tree into two subtrees (Figure 2): (1) One-method
commands, which are commands that focus on single methods, and (2) multiple-
method commands, which do not focus on a single method. We divided each of
these subtrees into two further subtrees, which we will present in the following
subsections.

3 For a short introduction to the Smalltalk syntax see the appendix.

3.1 One-method test commands

A one-method test comand is a one-method command which has assertions
testing the outcome of each call of the method under test.

3.1.1 One-method tests

If it tests the outcome of exactly one call of a method under test, we call it
a one-method test. In the example below the method Week class�indexOfDay:

would be the method under test, and only called once:

YearMonthWeekTest�testIndexOfDay
self assert: (Week indexOfDay: ’Friday’) = 6.

3.1.2 One-method test suites

On the other hand a one-method test suite tests the outcome of the method
under test in several situations:

YearMonthWeekTest�testDaysInMonth
self assert: (Month daysInMonth: 2 forYear: 2000) = 29.
self assert: (Month daysInMonth: 2 forYear: 2001) = 28.
self assert: (Month daysInMonth: 2 forYear: 2004) = 29.
self assert: (Month daysInMonth: 2 forYear: 2100) = 28.

3.2 One-method example commands

A one-method example command is a one-method command which does not
have assertions for the method under test. So this command does not test the
focused method against some desired result, but merely calls it. We detected
three concrete instances of these commands:

3.2.1 Pessimistic one-method examples

A pessimistic method example is a one-method example which checks that an
exception is thrown if a method is called in a way which violates a precondition.
Beck [5] calls pessimistic one-method examples “exception tests”. Here is an
example of a pessimistic one-method example ensuring that an attempt to
create the directory C: on a Windows platform should fail:

DosFileDirectoryTests�testFileDirectoryNonExistence
”Hoping that you have ’C:’ of course...”
FileDirectory activeDirectoryClass == DosFileDirectory ifFalse:[ˆself].
self

should: [(FileDirectory basicNew fileOrDirectoryExists: ’C:’)]

raise: InvalidDirectoryError.

Note that we consider neither shouldnt: raise: nor should: raise: as assertions,
because they do test whether something is true or false in a given state, but
merely check whether or not an exception is thrown.

3.2.2 Optimistic method examples

An optimistic method example is a one-method example which expects that no
exception is thrown if the method under test is called without violating some
preconditions. Again, optimistic method examples do not contain assertions.
The unit test below tests that the invocation of copyBits on a BitBlt in a certain
situation does not throw an exception:

BitBLTClipBugs�testDrawingWayOutside2
| f1 bb f2 |

f1 := Form extent: 100@100 depth: 1.
f2 := Form extent: 100@100 depth: 1.
bb := BitBlt toForm: f1.
bb combinationRule: 3.
bb sourceForm: f2.
bb destOrigin: 0@0.
bb width: SmallInteger maxVal squared; height: SmallInteger maxVal squared.
self shouldnt:[bb copyBits] raise: Error.

3.2.3 One-method example suites

A one-method example suite is a one-method example command which calls
the method under test more than once. It can be decomposed into several
one-method command which call the same focused method once:

FractionTest�testDegreeSin
self shouldnt: [(4/3) degreeSin] raise: Error.
self assert: (1/3) degreeSin printString = ’0.005817731354993834’

3.3 Multiple-method test suite

A multiple-method test suite is a multiple-method command which is decom-
posable into one-method tests. (See Figure 4).

3.3.1 Multi-facet test suites

Multi-facet test suites are multiple-method test suites that reuse a scenario to
test several candidate methods. In the following example a previously initial-
ized variable time is used to check different methods on Time.

TimeTest�testPrinting
self

assert: time printString = ’4:02:47 am’;
assert: time intervalString = ’4 hours 2 minutes 47 seconds’;
assert: time print24 = ’04:02:47’;
assert: time printMinutes = ’4:02 am’;
assert: time hhmm24 = ’0402’.

3.3.2 Cascaded test suites

Cascaded test suites are multiple-scenario test suites in which the results of
one test are used to perform the next test:

Base64MimeConverterTest�testMimeEncodeDecode
| encoded |

encoded ˙ Base64MimeConverter mimeEncode: message.
self should: [encoded contents = ’SGkgVGhlcmUh’].
self should:

[(Base64MimeConverter mimeDecodeToChars: encoded) contents
= message contents].

This cascaded test suite first triggers a method Base64MimeConverter�mimeEncode:,
tests its result encoded, and then uses encoded to test Base64MimeConverter�mimeDecodeToChars:.

3.3.3 Independent test suite

An independent test suite is a multiple-scenario test suite which tests different
methods on different receivers not depending on each other.

In the following example several independent methods are tested:

IslandVMTweaksTestCase�replaceIn:from:to:with:startingAt: needs a totally differ-
ent set of parameters than say

IslandVMTweaksTestCase�nextInstanceAfter: 4

IslandVMTweaksTestCase�testForgivingPrims
| aPoint anotherPoint array1 array2 |

aPoint := Point x: 5 y: 6.
anotherPoint := Point x: 7 y: 8. ”make sure there are multiple points floating around”
anotherPoint. ”stop the compiler complaining about no uses”

self should: [(self classOf: aPoint) = Point].
self should: [(self instVarOf: aPoint at: 1) = 5].
self instVarOf: aPoint at: 2 put: 10.
self should: [(self instVarOf: aPoint at: 2) = 10].

self someObject.
self nextObjectAfter: aPoint.

self should: [(self someInstanceOf: Point) class = Point].
self should: [(self nextInstanceAfter: aPoint) class = Point].

4 Actually these tests are calling primitives, which are implemented in the virtual
machine and not in the smalltalk image.

array1 := Array with: 1 with: 2 with: 3.
array2 := Array with: 4 with: 5 with: 6.

self replaceIn: array1 from: 2 to: 3 with: array2 startingAt: 1.
self should: [array1 = #(1 4 5)].

3.4 Others

We call all test cases which neither focus on one method nor are decomposable
into one-method tests others.

3.4.1 Constraint test

A constraint test checks the interplay of several methods without focusing
on one of them. In the following example a graphic conversion functionality
is tested by comparing the original bitmap with the result obtained after
encoding the bitmap to the png-format and then decoding it back again.

PNGReadWriterTest�test16Bit
self encodeAndDecodeForm: (self drawStuffOn: (Form extent: 33@33 depth: 16))

3.4.2 Meta test

A meta test is a test about the application itself, e.g., its structure, its cur-
rent state or its implemented or unimplemented methods. For example, the
following test checks if the class of Metaclass only has one instance, namely
Metaclass:

BCCMTest�test07bmetaclassPointOfCircularity
self assert: Metaclass class instanceCount = 1.
self assert: Metaclass class someInstance == Metaclass.

3.4.3 Uncategorized

We call all unit tests which do not fall into one of the above categories uncat-
egorized.

3.5 First validation: Maven

Using our taxonomy, we manually categorized 50 randomly selected JUnit
tests of Maven [6], a Java project management and project comprehension 5 .

Distribution of 50 Sample Tests of Maven

One-method tests
16%

One-method test suites
8%

One-method
example commands

4%

Multi-facet test suites
4%

Cascaded test suites
12%

Constraint tests
52%

Meta tests
4%

Fig. 5. Manual classification of 50 random unit tests of Maven

25 of these tests merely checked some getter/setter code and were classified as
constraint tests. The other sampled tests fell naturally into one of our proposed
categories, and if less trivial getter/setter test code had been selected, we could
expect again one-method commands as the majority of classified tests (See
Figure 5).

4 Automatic Classification of Unit Tests

After having manually derived the taxonomy, we developed some lightweight
heuristics to automatically detect the feature properties depicted in Figure 2.
Our goal is to classify most of the unit tests automatically. Using these heuris-
tics we have been able to automatically classify 52% of the manually classified
one-method commands tests, while our average precision rate was 89% (see
Table 1). Finally we applied our automatic approach to a new case study and
found that more than a third of the unit tests focus on single methods.

5 See http://www.iam.unibe.ch/∼gaelli/mavenUnitTests.html

4.1 Instrumentation

To detect the feature properties we rely on dynamic analysis of the code, as
we are dealing with runnable test cases in a dynamically typed environment.

Many of the unit tests of the Squeak base system test low level classes like
Arrays etc. It is therefore not feasible to use method wrappers [7], because
recursion would almost certainly arise when the wrapping algorithm uses a
method which is about to be wrapped — thereby bringing our system to a
halt. We therefore used the bytecode interpreter found in the class ContextPart,
which is also used in the debugger of Squeak to step and send through methods.

Using and enhancing the bytecode interpreter of Squeak has the advantage of
being more general than method wrappers and base level classes can be tested
too. However, it comes with the following disadvantages:

• It is slower than current VM optimized method wrapper code.
• Simulation of exception handling code is buggy in the current implemen-

tation in the SqueakVM: As a consequence it did not work for exception
handling code used by mainly by optimistic or pessimistic method examples.

• Methods which only return a variable are inlined by the Smalltalk-compiler
and thus cannot be detected 6 .

4.2 Lightweight Heuristics

In the following we present a list of heuristics used to detect the feature prop-
erties displayed in the left subtree of the Figure 2. We have not yet developed
any heuristics to classify leaves of the right subtree.

The first question in the decision tree is whether a unit test focuses on a single
method. Three possible ways to detect this property are:

(1) Deduction of the focused method from the command name. One approach
to deduce if a command focuses on one method is to examine the method
name of the command. Often the developer includes the name of the
method under test as part of the test method. A typical unit test looks
like FooTest�testBar which denotes that a method named bar of the class
named Foo is tested and thus focused on. The execution of the test method
can be simulated with our bytecode interpreter and thus checked, if it calls
directly a method of the form Foo�bar or Foo�bar:.

6 On the other hand this might be a welcome side effect as one would normally not
focus a test on a method that merely returns a variable.

If the naming convention of the test method name can be decoded and
exactly one candidate method matches, then the developer has clearly
indicated that this would be the method under focus. More specifically
we deleted the first four characters “test” of the command name, and
searched for a selector in the trace in the first level, that matches the
remaining string, possibly converting the leading character to lower case,
and ignoring parameters.

Example: If the test method name is BarTest�testFoo then we look
for an event in which a candidate method foo is called. If there are two
selectors called, like foo: and foo, the result is ambiguous and we cannot
say on which of them our test would focus.

(2) Deduction of the focused method by the command structure. We say that
the command focuses on this method, if exactly one candidate method
is called directly: A simple way to detect if a unit test focuses on one
method is to find out if the test method only calls one candidate method,
that is only one method of the package under test. This approach cannot
be complete, as many unit tests do the setup of the test scenario not in
the extra TestCase�setUp method, but in the test method itself, and there
they often have to call methods of the package under test for the setup.
We do not make a distinction whether a candidate method is called only
once or more than once, as long as it is the only called candidate method.

(3) Deduction of the focused method by using historical information. In in-
cremental test-driven approaches the less complex methods will be built
before the more complex ones. To test a more complex method the de-
veloper will likely refer to simpler candidate methods, either to build the
scenario on which the complex method can be run or to use already ex-
isting methods as test oracles. However, in Squeak we do not know if a
test case was developed before another test case, as Squeak still relies on
a code exchange mechanism which destroys this versioning information.

To determine if a one-method command is a one-method test command or
a one-method example command we check if it only calls self should: [] raise:

Exception, self shouldnt: [] raise: Exception or friends, and if all the expressions
inside the “shoulds” call the same method.

We can distinguish one-method tests from one-method test suites by simply
counting how often the method under test is called. Accordingly we do the
further split up in the right subtree, the one-method example command and
then use the difference between the calls should:raise: and shouldnt:raise: to make
the last distinction. With this heuristic we classify any one-method test as
one-method test command which does not call any kind of should:raise: and
shouldnt:raise:.

Category Manual
result

Computed
Result

Hits Recall Precision

One-method tests 387 207 202 52% 98%

One-method test suites 114 86 57 50% 66%

Pessimistic method ex-
amples

11 15 10 91% 66%

Optimistic method ex-
amples

15 16 10 67% 63%

One-method example
suites

10 1 1 10% 100%

Total 537 334 280 52% 89%
Table 1
Preliminary manual and automatic classifications of one-method commands of the
Squeak Unit Tests.

Category Manual
result

Computed
Result

Hits Recall Precision

One-method tests 59 19 5 8% 26%

One-method test suites 80 48 37 46% 77%

One method example
suites

3 3 3 100% 100%

Total 142 70 45 32% 64%
Table 2
Preliminary manual and automatic classifications of one-method commands of the
SmallWiki Unit Tests.

4.3 A First Case Study: Squeak Unit Tests

Having categorized the Squeak Unit Tests before, we could compare the results
of our lightweight heuristic with our manual results. (See Table 1). Squeak 3.7
has no notion of packages and relies on a naming convention of class-categories.
We only automatically categorized 671 of 982 tests, whose class-category name
allowed us to identify their package under test. Our heuristics were able to
categorize 52% of the leaves of the left subtree from our taxonomy with a
mean precision of 89%, meaning that only 11% of the categorized test cases
were put in a different category than by the human reengineer.

4.4 A Second Case Study: SmallWiki

After having done a manual categorization (see Figure 6) we automatically
categorized the 200 unit tests of SmallWiki [8], a collaborative content man-
agement tool written in VisualWorks Smalltalk and ported to Squeak. We
chose this system as a case study, as it is a medium sized application devel-
oped by a single experienced developer in a test-driven way.

A surprising result here was that more tests could be detected as focusing
on one method by considering the calls of only one candidate method, rather
than by exploiting their naming convention.

One-method tests
30%

One-method test suites
39%

Multi-facet test suites
6%

Constraint tests
10%

Independent Test Suite
1%

One-method
example commands

3%

MetaTest
1%

Cascaded test suites
10%

Fig. 6. Manual classification of unit tests for the SmallWiki system

We only programmed the detection for three categories, namely one-method
tests, one-method test suites, and one-method example suites. All of them to-
gether represented already more than a third of all tests. Figure 6 shows that
contrary to the Squeak case study, the developers here wrote more one-method
test suites than one-method tests. The recall and precision for one-method tests
displayed in Table 2 is only 5% respectively 26% as there have been many tests
for getter/setter pairs: The getter-methods of variables are inlined and could
thus not be detected by our bytecode interpreter. Only setter methods have
been detected leading to false positives.

5 Discussion

Although the taxonomy we have derived appears promising, it is a preliminary
result for several reasons:

• Our taxonomy is based on only three case studies. Though it seldom arises
that we discover new categories, more case studies need to be conducted.

• We focused on XUnit Tests, as described by Beck et al.[1] so we do not
know if developers write other kinds of unit tests while using other testing
frameworks.

• We have not addressed the question if unit tests should be considered white-
box or blackbox-tests and if they could likewise be used as acceptance, in-
tegration, or end-to-end tests.

• Only three of the Squeak Unit Test developers wrote 70% of the test cases
making our sample data of this case study less representative.

Developers have complete freedom to write any kind of unit tests — mak-
ing automatic classification a difficult business. The automatic classification
heuristics are similarly preliminary and may fail in the following cases:

*.Ambiguity of the naming convention Using the naming convention for au-
tomatic detection of the method under test is unreliable and ambiguous. For
example, does the following test focus on Foo�bar:, on Foo�bar, or both of
them? A similar problem arises in Java, as the naming convention will not
differentiate between overloaded methods that take different types of param-
eters.

FooTest�testBar
|aFoo|
aFoo:= Foo new.
aFoo bar: 1.
self assert: (aFoo bar = 1)

We would manually categorize this one as a constraint test.

*.Test framework tests Tests of the test framework may be incorrectly catego-
rized. The following test could be classified as a pessimistic method example
of error: but its intent is to be an optimistic method example of should:raise:

SUnitTest�testException
self

should: [self error: ’foo’]
raise: TestResult error

*.Assertions come only after clean up In some tests cleanups are necessary.
As the cleanup does not have to influence the test result, developers also write
the assertions after the cleanup.

In the following example both assertion statements could be moved two lines
up preserving the test case. Thus it is activate and not wait or suspend which is
tested.

StopwatchTest�testMultipleTimings
aStopwatch activate.
aDelay wait.
aStopwatch suspend.
aStopwatch activate.
aDelay wait.
aStopwatch suspend.
self assert: aStopwatch timespans size = 2.
self assert:
aStopwatch timespans first asDateAndTime <

aStopwatch timespans last asDateAndTime

*.Tested method is not the last called of the package under test Some tests are
testing methods which are not the last method of the package called before
the assertion occurred. Example: Is the method under test removeActionsWith-

Receiver: or actionForEvent:? The name of the command indicates the former,
but the structure of the test suggests the latter:

EventManagerTest�testRemoveActionsWithReceiver
| action |

eventSource
when: #anEvent
send: #size to: eventListener;
when: #anEvent
send: #getTrue to: self;
when: #anEvent:
send: #fizzbin to: self.

eventSource removeActionsWithReceiver: self.
action := eventSource actionForEvent: #anEvent.
self assert: (action respondsTo: #receiver).
self assert: ((action receiver == self) not)

*.Mock objects The following test is interesting, as it is programmed by an
experienced developer (it uses mock principles [9] to deal with program be-
havior). Here the methods under test in a cascaded scenario are overwritten
so that additional information about the number of calls could be transcribed
and tested. We currently subsume this kind of test under meta tests.

MorphTest�testIntoWorldCollapseOutOfWorld
| m1 m2 collapsed |

”Create the guys”
m1 := TestInWorldMorph new.
m2 := TestInWorldMorph new.
self assert: (m1 intoWorldCount = 0).
self assert: (m1 outOfWorldCount = 0).
self assert: (m2 intoWorldCount = 0).
self assert: (m2 outOfWorldCount = 0).

”add them to basic morph”
morph addMorphFront: m1.
m1 addMorphFront: m2.
self assert: (m1 intoWorldCount = 0).
self assert: (m1 outOfWorldCount = 0).
self assert: (m2 intoWorldCount = 0).
self assert: (m2 outOfWorldCount = 0).
(...)

*.Naming convention indicates one-method test, but it is not Which is the
method under test here, weeks: or days? Days are computed too so it is also
an interesting method to test. Our heuristic would detect Duration�weeks as
the method under test. We would manually categorize this one as a constraint
test.

DurationTest�testWeeks
self assert: (Duration weeks: 1) days= 7.

*.Developers do not agree on method under test Consider the two following
tests written by two different developers: They both check if two different
kinds of instantiations yield the same result. The name of the first indicates
that it is testing =, the name of the second indicates that it tests the creation
of instances. Both tests have at least two candidate methods, namely the
instance creation methods and the = method.

IntervalTest�testEquals4
self assert: (3 to: 5 by: 2) = #(3 5).
self deny: (3 to: 5 by: 2) = #(3 4 5).
self deny: (3 to: 5 by: 2) = #().
self assert: #(3 5) = (3 to: 5 by: 2).
self deny: #(3 4 5) = (3 to: 5 by: 2).
self deny: #() = (3 to: 5 by: 2).

MonthTest�testInstanceCreation
| m1 m2 |

m1 := Month fromDate: ’4 July 1998’ asDate.
m2 := Month month: #July year: 1998.
self assert: month = m1.
self assert: month = m2.

Any meaningful definition of focuses on one method, where at least two differ-
ent candidate methods are involved, is likely to be dismissed by at least one
of those developers. As a compromise they could categorize both of them as
constraint tests.

6 Related Work

Binder [10] discriminates between methods under test (MUT) and classes
under test (CUT) but he does not discriminate between unit tests which
focus on one or on several MUTS.

Beck [5] argues that isolated tests would lead to easier debugging and to
systems with high cohesion and loose coupling. One-method commands are
isolated tests, whereas multiple method-commands execute several tests and
in the case of cascaded method test suites or multi-facet test suites depend on
each other or on a common scenario.

Eclipse [11] provides a Search�Referring Tests menu item which allows one to

navigate from a method to a JUnit Test that executes this method. However
no distinction is made between methods used for setting up the test scenario
and those actually under test.

Jézéquel [12] discusses how testing can rely on the Design by Contract prin-
ciple [13] and classes are seen as self-testable entities as much as possible
by embedding unit test cases with the class. We found that developers write
many tests we could categorize as one-method commands. The concept of one-
method commands even makes methods self-testable. Squeak version 3.7 had
almost 900 unit tests but only 24 assertions in the non test code. Associating
one-method examples with assertion containing methods yields highly abstract
and executable tests.

Van Deursen et al.[14] talk explicitly about unit tests that focus on one method
and start to categorize them using bad smells like indirect testing, which de-
scribe tests that we would categorize as independent tests. In another paper
[15] Van Deursen and Moonen explore the relationships between testing and
refactoring, they suggest that refactoring of the code should be followed by
refactoring of the tests. Many of these dependent test refactorings could be
automated or at least made easier, if the exact relationships between the unit
tests and their methods under test would be known.

Bruntink et al.[16] show that classes which depend on other classes require
more test code and thus are more difficult to test than classes which are
independent. Using cascaded test suites, where a test of a complex class can
use the tests of its required classes to set up the complex test scenario, should
improve the testability of complex classes.

Thomas [17] argues that the message-centric view deserves more attention.
One-method tests, optimistic and pessimistic method examples are all reifica-
tions of messages and are the atoms of all one-method commands and multiple-
method test suites.

Edwards [18] is making a claim for example centric programming :

In general, examples are standalone snippets of code that call the code under
observation. Unit tests (...) are a good source of examples, and should be
automatically recognized as such.

Our taxonomy should help us to link the different kinds of unit tests to the
code they are exemplifying.

Test cases are implemented in XUnit using the “pluggable selector” pattern,
which avoids the need to create a new class for each new test case at the cost
of using the reflection capabilities of the system, thus making the “code hard
to analyze statically” [5].

7 Conclusions and Future Work

We have developed a taxonomy which categorizes the relations

• between unit tests and methods under test and
• between unit tests and other unit tests.

Knowing these relations can help the developer to refactor, compose and run
the program together with the tests, and thus to speed up their co-evolution.
It can also help the reengineer to assess if a given method is adequately tested.

We have given initial evidence that the “unit” under test in object-oriented
programs is most often a method and that most other kinds of unit tests can
be decomposed into one-method tests.

We have started to develop some lightweight heuristics to automate this cate-
gorization. Our simple heuristics can identify a relevant portion of categories
with a high precision rate. We have given evidence why complete automatic
classification of unit tests using our taxonomy is impossible for all our sug-
gested algorithms.

We have also discovered that developers write tests which do not have any
assertion at all, but only establish whether a given method should or should
not throw an exception: 5% of the tests in our manual case study and 2% in
the automatic one fell into this category.

In the future we want to explore the following axes of research:

• We want to make the relationships between unit tests and methods under
test explicit: First experiments show that if one-method tests also delivered
the result of their focused method as a return value, one could parse the one-
method test and clearly identify the focused method. This link also allowed
the composition of tests, and would be stable to refactorings like renaming.
Methods in statically typed languages can be void, thus we want to return a
complex result object consisting of the receiver, parameters and possibly the
return value of the focused method. We want to research the pros and cons
of alternative denotations of the focused method using method comments,
specific method sends or in case of Smalltalk bracketing blocks as markers.

• We want to evaluate if an optional 5-pane Smalltalk browser for navigating
between tests and methods will be accepted by the Squeak community [19].

• We want to come up with heuristics to automatically categorize multiple
method commands.

• We have previously proposed a partial order of unit tests by means of cover-
age sets — a unit test A covers a unit test B, if the set of method signatures
invoked by A is a superset of the set of method signatures invoked by B [20].

In the four case studies we conducted, 75% of the unit tests were comparable
to at least one other unit test in terms of that partial order. These results
indicate that unit tests could be refactored into composed one-method tests
leading to lower testing time and easier scenario building. We plan to en-
hance the IDEs of Squeak and Eclipse, so that developers can compose new
tests from existing tests.

• We also plan to exploit this overlapping of many tests to identify focused
methods under tests: If two tests TestA�testOne and TestA�testTwo directly
call a method Foo�foo but TestA�testOne in addition calls only a method
Bar�bar, chances should be high, that TestA�testOne is focusing on Bar�bar.

We see this work as the beginning of the work on classifying unit tests and
hope to spawn a discussion about this subject. For this reason we decided to
put our taxonomy together with a nomenclature on our web site 7 , so that we
can easily integrate new kinds of unit tests we find or you report to us.

References

[1] K. Beck, E. Gamma, Test infected: Programmers love writing tests, Java Report
3 (7) (1998) 51–56.

[2] M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts, Refactoring: Improving
the Design of Existing Code, Addison Wesley, 1999.

[3] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison Wesley, Reading, Mass., 1995.

[4] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, A. Kay, Back to the future:
The story of Squeak, A practical Smalltalk written in itself, in: Proceedings
OOPSLA ’97, ACM Press, 1997, pp. 318–326.

[5] K. Beck, Test Driven Development: By Example, Addison-Wesley, 2003.

[6] Maven, http://maven.apache.org.

[7] J. Brant, B. Foote, R. Johnson, D. Roberts, Wrappers to the Rescue, in:
Proceedings ECOOP ’98, Vol. 1445 of LNCS, Springer-Verlag, 1998, pp. 396–
417.

[8] L. Renggli, Smallwiki: Collaborative content management, Informatikprojekt,
University of Bern (2003).

[9] T. Mackinnon, S. Freeman, P. Craig, Endotesting: Unit testing with mock
objects (2000).

[10] R. V. Binder, Testing Object-Oriented Systems: Models, Patterns, and Tools,
Object Technology Series, Addison Wesley, 1999.

7 http://kilana.unibe.ch/nomenclatureofunittests/

[11] Eclipse Platform:
Technical Overview, http://www.eclipse.org/whitepapers/eclipse-overview.pdf
(2003).

[12] J.-M. Jézéquel, Object-Oriented Software Engineering with Eiffel, Addison
Wesley, 1996.

[13] B. Meyer, Object-Oriented Software Construction, 2nd Edition, Prentice-Hall,
1997.

[14] A. Deursen, L. Moonen, A. Bergh, G. Kok, Refactoring test code, in:
M. Marchesi (Ed.), Proceedings of the 2nd International Conference on Extreme
Programming and Flexible Processes (XP2001), University of Cagliari, 2001, pp.
92–95.

[15] A. Deursen, L. Moonen, The video store revisited - thoughts on refactoring and
testing, in: M. Marchesi, G. Succi (Eds.), Proceedings of the 3nd International
Conference on Extreme Programming and Flexible Processes in Software
Engineering (XP2002), 2002.

[16] M. Bruntink, A. van Deursen, Predicting class testability using object-oriented
metrics, in: Proceedings of the Fourth IEEE International Workshop on Source
Code Analysis and Manipulation (SCAM), IEEE Computer Society Press, 2004.

[17] D. Thomas, Message oriented programming, Journal of Object Technology 3 (5)
(2004) 7–12.

[18] J. Edwards, Example centric programming, in: OOPSLA 04: Companion to
the 19th annual ACM SIGPLAN conference on Object-oriented programming
systems, languages, and applications, ACM Press, 2004, pp. 124–124.

[19] M. Gälli, O. Nierstrasz, S. Ducasse, One-method commands: Linking methods
and their tests, oOPSLA Workshop on Revival of Dynamic Languages (Oct.
2004).

[20] M. Gälli, M. Lanza, O. Nierstrasz, R. Wuyts, Ordering broken unit tests for
focused debugging, in: 20th International Conference on Software Maintenance
(ICSM 2004), 2004, pp. 114–123.

