
Tutorial

Seaside Web Applications

Lukas Renggli
renggli@iam.unibe.ch

www.lukas-renggli.ch

Software Composition Group
Institut für Informatik und angewandte Mathematik

Universität Bern, Switzerland

netstyle.ch GmbH
Bern, Switzerland

February 2005

1

CONTENTS 2

Contents

1 Getting Started 3

2 Development Tools 3

3 Control Flow 3

3.1 User Guesses a Number . 4

3.2 Computer Guesses a Number . 4

3.3 TicTacToe Game . 5

4 Components 5

4.1 Introduction . 5

4.2 Choosing a Play . 6

4.3 Choosing a Show . 8

4.4 Buying and Printing Tickets . 9

5 Composition 10

5.1 Frame, Subcomponent and Backtracking 10

5.2 Reuse of Components . 11

5.3 Reporting and Batching . 11

5.4 Editing a Play . 11

6 Advanced 12

6.1 Continuations . 12

6.2 Bookmark-able URLs . 13

1 GETTING STARTED 3

1 Getting Started

Follow the instructions given on the slides to install Seaside. Make sure your Sea-
side server is up and running by accessing the example application at http://-
localhost:8080/seaside/counter in Squeak or at http://localhost:8008/-
seaside/go/counter in VisualWorks.

In Squeak load the monticello package tutorial.mcz and in VisualWorks
the parcel tutorial.pcl. Both packages contain examples shown during the
presentation and some class skeletons that will assist you to do these exercises.

Save your image. From now on work within a copy of this image, so that
you can easy go back to a working configuration, in case you severely screw
something up.

2 Development Tools

Exercise 1 Use your web browser to navigate to the counter example appli-
cation. Toggle on the halos to see the border of the component this application
is built of. Experiment and interact with the application in render- and source-
mode.

Exercise 2 Change the behaviour of the increase and decrease buttons: edit
the methods #increase and #decrease from within the web browser to increase
by 2 and decrese by 3.

Exercise 3 Inspect the living component from within the web browser. There
are two instance variables visible, whereas count is representing the state of the
component. The other instance variable is defined in a super-class of WACounter
and will be discussed later on.

Exercise 4 Change the background color of the web application by using the
style editor from within your web browser. Try using something like body {
background-color: yellow; }.

Question 5 Why do you think the style editor is used more often in industrial
settings than the system browser?

Exercise 6 Introduce an error to the method #increase using your web
browser. Play with your application so that the error occurs. Click on the
debug link which opens a debugger within your image. Fix the bug and proceed
the evaluation.

3 Control Flow

During the theoretical part an example was shown where the user had to guess
a number the computer was thinking of. In this exercise we will have a look at
the implementation of two similar games. Some skeletons are provided, so you

3 CONTROL FLOW 4

don’t need to implement all by yourself.

3.1 User Guesses a Number

Exercise 7 Have a look at the source code of STUserNumberGuesser in the
package Tutorial-Flow and play the game several times to make sure it works
as expected.

Exercise 8 Modify the method #go in STUserNumberGuesser to count the
number of guesses. Show the total number of guesses the user required to get
the right number in the end of the game.

Question 9 Try using the back button while playing the game. How does the
application handle this?

Question 10 What happens if you open multiple windows in the same session
and play within the different windows independently?

Question 11F Is it possible to cheat the counter by using the back button or
by opening new windows within the same session? Does this behavior change if
you use an instance variable instead of a temporary one for counting?

3.2 Computer Guesses a Number

Exercise 12 Write a new web application that allows the computer to guess
a number the user is thinking of. In case you run into troubles, you can always
have a look at the implementation of STUserNumberGuesser.

1. Create a subclass of WATask called STComputerNumberGuesser.

2. Create an initialization method on the class side of the newly created
class, registering the component as a new web application with the path
segment cng.

3. Implement the method #go following the rules of the game. Use #inform:
to tell the user what he should do and #confirm: to ask the user if the
guess of the computer is too big.

4. Play the game several times to make sure it works as expected.

Exercise 13 Implement yet another task asking the user if he wants to guess or
not. Depending on the answer either call STUserNumberGuesser or STComputer-
NumberGuesser. Modify those two classes to answer the numbers of steps re-
quired and call them from within your new task. Don’t forget to register your
new application with a class initialization method.

4 COMPONENTS 5

3.3 TicTacToe Game

There are three prepared classes for this game in the package Tutorial-TicTacToe
following the MVC-Pattern:

Model STTicTacToeController is a simple model of a game holding the cur-
rent board configuration. It includes methods to access and modify its
configuration (#boardAt: and #boardAt:put:) and to call an algorithm
in order to look for the best possible move of a given player (#find:).

View STTicTacToeView is a simple Seaside view onto the game model. You
will learn later on how to create views with Seaside.

Controller STTicTacToeController is a subclass of WATask and this is the
place that needs your work now. It already implements a few convenience
methods like #newModel, #computerMove and #userMove.

Exercise 14 Register STTicTacToeController as a new web-application,
but this time don’t use a class initialization method but the configuration
interface. Make sure that you have a method #canBeRoot on the class-side
so that Seaside recognizes this class as a possible root of a web application.
Browse to http://localhost:8080/seaside/config when using Squeak or
http://localhost:8008/seaside/go/config when using VisualWorks, enter
your password, add a new entry point with the name ttt and select STTicTac-
ToeController as the root component.

Exercise 15 Implement the game in the method #go using the provided con-
venience methods. You will also need some testing methods of the model to
check if the game is finished (#isFinished) and who was the winner (#winner).
Don’t put all your code into one single method, split it among different ones to
ensure readability. Ask the user in the beginning of the game if he prefers to
start playing or not.

Exercise 16F Ensure that the user can’t cheat the game by using the back
button of the web browser. Don’t wrap too much or to few of your code into
#isolate: blocks.

4 Components

For the rest of this tutorial we will be working on an example of a possible
real-world web application: it should be useable by a theater having different
plays in its program. The application should manage the plays, the shows and
the booking of the tickets.

4.1 Introduction

Here we will be starting step by step building up this project. Follow the
exercises one by one as they depend on each other. However don’t let you hinder

4 COMPONENTS 6

from bringing in your own ideas and from implementing some extra features, if
you think they could be useful for this project.

STTheater STPlay

STShowSTTicket

1 *

1

*
1*

Figure 1: Theater-Model

All the code altogether should be put into the bundle Tutorial-Theater that
contains some packages, namely Theater-Model, Theater-View and Theater-
Tests. The package Theater-Model contains a very simple model, as seen in
Figure 1, to be used to build up a web-interface around. Feel free to enhance
the model when you need to do so, but do run the tests and add new ones to
make sure that all the features work as expected after your modifictions.

On the class side of STTheater you can find a method #default returning
the domain model to be used for the web application. Usually you do not keep
your model just within the image, but use a proper external storage mechanism
instead: this can be simply done by dumping out the object graph to the filesys-
tem from time to time or by using a relational- or object-database. However, as
possible storage strategies are out of the scope here, we will just keep everything
within the image.

Exercise 17 Start out by creating a new task called STBuyTicketTask that
will model the steps required to buy a ticket. Register it as a new Seaside
application as you will need it later on to test your components. Leave the
method #go empty for now. This method should define the flow as seen in
Figure 2 by the end of the tutorial.

4.2 Choosing a Play

Exercise 18 Create a subclass of WAComponent called STPlayChooser that
will give the user the possibility to choose a theater-play. Add an instance
variable plays and create accessors to hold a collection of plays that should
be displayed with this component. Call your newly created component from
STBuyTicketTask, but don’t forget to initialize it with the collection of plays.
If you browse to your application, you should get a blank page as you haven’t
defined any view yet.

Exercise 19 Implement the method #renderContentOn:. As a first step,

4 COMPONENTS 7

STPlayChooser

STShowChooser

STTicketChooser

STTicketPrinter

ok

ok

sort

ok

cancel

validation

validation /
filter / next

Figure 2: Theater-Flow as defined by STBuyTicketTask

Figure 3: View of STPlayChooser

.sort {
background: #eeeeee;
padding: 5px;

}
.play {

margin-top: 10px;
}
.play .head {

font-size: 16pt;
}
.play .body {

margin-left: 10px;
width: 490px;

}

Figure 4: Stylesheet of STPlayChooser

4 COMPONENTS 8

enumerate the plays and display the title of each. If you go back to your web
browser and refresh, you should see the titles now. Then display the other
information you get from the model. Use your own style sheet or copy the
example from Figure 4 to make the output look like Figure 3.

Exercise 20 So far there is no interaction possible with the component. Cre-
ate an anchor-callback #anchorWithAction:do: around the title and answer
the selected play to the caller. Test your code by extending the task that is
calling your component and inform the user about the selected play.

Exercise 21F To set up the list of the plays more convenient, add three links
at the top of the page to make it possible to sort the plays according to #title,
#kind or #author. To remember the state of the selected sort order you need
to add another instance variable. Make it also possible to sort in reverse order
by clicking a second time onto the same link.

4.3 Choosing a Show

Exercise 22 Create another subclass of WAComponent called STShowChooser
that allows the user to choose a show. Add instance variables to hold a collection
of shows to choose from and one for the current selection. Create appropriate
accessors and call your newly created and properly initialized component from
STBuyTicketTask.

Figure 5: View of STShowChooser

Exercise 23 Implement the method #renderContentOn: using Figure 5 as a
reference; don’t worry about the filter yet. Make sure hitting ok only answers if
the user actually selected a valid show, else show a message that a selection is
missing and return to the dialog. Add a button to select the next possible show
automatically.

Exercise 24F Implement a facility to allow filtering for a certain date range.
Write a method returning a possible list of dates and add two instance variables
to keep the selected date for start and end of the period to be filtered. Render
two drop-down boxes and a button to update the filtered list. Use live-callbacks
to update the list of shows without the need to press the update button anymore.

4 COMPONENTS 9

Exercise 25F Experiment with other form controls. How does the interface
look like when using option-boxes instead of the list? What do you need to
change in the code?

4.4 Buying and Printing Tickets

Exercise 26 Write a component that allows the user to select the number of
tickets he wants to buy. Give an error message, if there are not enough places
available for the selected show or if the user doesn’t enter a valid number.
Update the domain model according to the tickets sold and answer a collection
of tickets to the task. The view of a minimal implementation can be seen in
Figure 6.

Figure 6: View of STTicketChooser

Exercise 27 Last but not least write yet another component printing out a
collection of tickets. This might look like Figure 7. No links or form elements
are required in this component. Update your flow accordingly.

Figure 7: View of STTicketPrinter

Exercise 28 Make sure that your application implements all the paths that
are visible in the state diagram in Figure 2. Make sure that the user cannot go
back after having bought the tickets.

5 COMPOSITION 10

5 Composition

In this section we will compose different components we have written before.
Create a few more components and plug together an appealing and simple user
interface.

Figure 8: View of STMainFrame

5.1 Frame, Subcomponent and Backtracking

Exercise 29 Create a new subclass of WAComponent and register it as a new
entry point to your application. Render into different div-tags the name of the
theater and the current season; you can find this information in the model. Also
create a simple menu that is empty for now. Create a style-sheet to make the
application look nicer.

Exercise 30 Add an instance variable to your main-frame to hold a child
component. Create a method #buyTicket that initializes the variable with a
new instance of STBuyTicketTask and send #buyTicket in the initialization
method of the component. Place the child beside the menu you have created
before. Don’t forget to implement the message #children, else you will sooner
or later run into troubles. Create a menu item called Buy Ticket that sends the
message #buyTicket when clicked. Enjoy the application with the halos turned
on.

Exercise 31F Test the new functionality you implemented. Especially try
out the behavior of the application when using the back-button. Try clicking
on Buy Ticket, hit the back-button of your web-browser and then click on any
link or control within the child-component. Why do you get an error? Fix the
problem and make sure everything works as expected.

5 COMPOSITION 11

5.2 Reuse of Components

In this part of the exercises you are basically free about the implementation
details of a new requirement of the application: The theater company wants to
be able to let the customers return tickets and exchange them with another one
from the same play but a different show.

Exercise 32 Use the id of the ticket to identify the one to be replaced. Prob-
ably you need to improve the model to make the necessary mutations possible.
Also write tests to ensure it works as expected. For the web interface try to write
as few lines of code as possible. Reuse the existing components that you have
written in the previous steps. You might also want to use components provided
by the framework. The example solution requires 7 lines of code, including the
validation of the ticket id. Can you do it with less lines of code?

5.3 Reporting and Batching

Exercise 33 Create a new component called STShowReport showing a report
of all the shows from the model as seen in Figure 9. Use WABatchedList to
enable the batching of the huge list and only display 10 items at once. For the
reporting you might want to use WATableReport or write your own component.
By default the list should be sorted according to the timestamp. Add the new
component to the menu in the main-frame.

Figure 9: View of STShowReport with halos toggled on

5.4 Editing a Play

In this part we are going to implement a dialog to edit the attributes of a play.
Have a look at Figure 10 to get an idea of the look. Add a link to the title of

6 ADVANCED 12

every play in your report that calls the component you are going to create in
the following exercise:

Exercise 34 Create a new subclass of WAComponent and add an instance
variable to hold the play. In the method #initialize wrap the component
with two decorations:

1. WAFromDecoration to render a form around the component and display
ok and cancel buttons.

2. WAValidationDecoration to validate the input fields and display an error
message if necessary.

Ensure that the validation errors are properly displayed and that the model
isn’t touched when hitting cancel.

Figure 10: View of STEditPlay

Exercise 35F Load Mewa and try to write the same dialog using a descriptive
meta model.

6 Advanced

6.1 Continuations

To answer the following question it might be useful to have a look at the class
Continuation. You might also want to run the different tests of Continuation-
Test and type and evaluate a few expressions in the workspace.

Question 36 When should one not use a continuation based web framework?

Question 37 How are continuations implemented in Smalltalk? Why are
there no primitives required?

Question 38 What about the time- and space-performance of continuations?

6 ADVANCED 13

Question 39F Why is the implementation of the class Continuation poly-
morphic to BlockClosure? What are the differences?

Question 40F When are ensure-blocks evaluated, if you create a continuation
within a protected context?

6.2 Bookmark-able URLs

Exercise 41 Implement #updateUrl: in the three top-level sub-components
of your web application and add an appropriate path-element to the URL. De-
pending on the context of your application, the URL should now look like:
../theater/buy, ../theater/change and ../theater/report.

Exercise 42 So far it isn’t possible to navigate to these sub-components di-
rectly using an URL. To get the desired result, create a subclass of WARender-
LoopMain called STRenderLoopMain and override the message #start: to parse
the URL and to setup the root component as requested.

