
Seaside – A Multiple Control Flow

Web Application Framework ?

Stéphane Ducasse a Adrian Lienhard b Lukas Renggli b

aSoftware Composition Group
Institut für Informatik und angewandte Mathematik

Universität Bern, Switzerland
bnetstyle.ch GmbH
Bern, Switzerland

Abstract

Developing web applications is difficult since (1) the client-server relationship is
asymmetric: the server cannot update clients but only responds to client requests
and (2) the navigation facilities of web browsers lead to a situation where servers
cannot control the state of the clients. Page-centric web application frameworks
fail to offer adequate solutions to model control flow at a high-level of abstrac-
tion. Developers have to work manually around the shortcomings of the HTTP
protocol. Some approaches offer better abstractions by composing an application
out of components, however they still fail to offer modeling control flow at a high
level. Continuation-based approaches solve this problem by providing the facilities
to model a control flow over several pages with one piece of code. However combining
multiple flows inside the same page is difficult.

This article presents Seaside. Seaside is a framework which combines an object-
oriented approach with a continuation-based one. A Seaside application is built
out of components (i.e., objects) and the logic of the application benefits from
the continuation-based program flow infrastructure. Seaside offers a unique way to
have multiple control flows on a page, one for each component. This enables the
developer to write components that are highly reusable and that can be used to
compose complex web applications with higher quality in less time.

? We gratefully acknowledge the financial support of the Swiss National Science
Foundation for the projects “Recast: Evolution of Object-Oriented Applications”
(SNF 2000-061655.00/1) and netstyle.ch.

Email addresses: ducasse@iam.unibe.ch (Stéphane Ducasse),
alienhard@netstyle.ch (Adrian Lienhard), renggli@netstyle.ch (Lukas
Renggli).

ESUG Conference 2004 Research Track (www.esug.org)

1 Introduction

With the victory of the World Wide Web as an information platform the
Internet has become one of the most important platforms for applications.
When the WWW was invented in 1989 its intended purpose was to link static
documents. But soon simple forms processed by cgi-scripts [1] enabled the
user to enter data: Web applications were born. However many of the web
applications that exist today are much more complex than those based on the
original form technology.

One of the major advantages of web applications, compared to conventional
client-server applications, is that the user does not need to install a special
program for each application he likes to use. Furthermore web applications
are easier to deploy – they just have to be installed on a single server. A web
application is an application running on a web server which interacts with web
browsers over the Internet. HTTP is the protocol used for communication: An
interaction between server and client over HTTP is a sequence of requests
from the client and responses from server. The server usually responds with a
HTML document that is then rendered in the web browser on the client side.
Since HTTP is stateless, the server cannot identify the request associated with
the response and the server can only respond to requests from the client but
cannot update the client spontaneously.

A major difficulty of web applications is that they are based on the asymmetric
design of the HTTP Protocol and the fact that it is stateless [2]: The server
is unable to send updates to the client and has to wait for incoming requests.
Moreover, the web server is unable to control the navigation facilities in web
browsers, like the back- and forward-buttons or the capability to open new
windows of the same page. These navigation facilities lead to synchronization
problems with the state of the server and its clients. This means that the
server has to deal with the fact that for one question asked (e.g., filling in an
order form) there may be more than one answer. This happens if the user uses
the back button or clones a window and submits a form a second time. Thus
a user can follow several paths of interaction in a session at the same time.

Another major problem arises from the architecture of web pages: Each HTML
link or form-action encodes in its URL the file which handles the request –
and additional parameters that can be passed with the query string. Whereas
this scheme is appropriate for static documents it is not ideal for program-
ming complex applications. Without an appropriate abstraction it leads to the
problem that control flow logic which would ideally be implemented in a single
piece of code has to be split into different parts – one for each request sent by
the client. From this point of view URLs with their query strings are proce-
dure calls that do never return: control flow has to be defined in a goto-like

2

manner which leads to poor designs [3] [4]. This problem remained unsolved
since the existence of cgi-scripts – even by widely used page-centric frame-
works or newer technologies such as WebObjects [5] or ASP.NET [6]. Several
frameworks like Jakarta Struts [7], JWIG [8,9] or RIFE [10] have proposed
solutions that model control flow explicitly on a higher level of abstraction.

Continuation-based frameworks propose a more innovative approach to web-
serving [11] [12] [13] [14] [15] [2]. Using continuations enables the web appli-
cation server to offer a procedural view to the programmer that makes it very
convenient to model a flow of pages using a single piece of code. Continuations
increase application control flow abstraction. However, current continuation-
based frameworks make it difficult to combine several control flows into a single
page. This hampers the design of truly reusable and composable components
from which web application could be built.

Seaside [16] is a mature framework which combines an object-oriented ap-
proach with a continuation-based one. A Seaside application is constructed
out components (i.e., objects) and the logic of the application benefits from
the power provided by continuation-based program flow infrastructure. This
combination enables a framework in which applications are built out com-
ponent each having its own control flow. This unique multiple control flow
enables the definition of highly reusable components that can be even used
multiple times on the same page and the definition of control flow at a high
level of abstraction. Seaside is developed in Squeak [17], an open-source plat-
form and development environment for Smalltalk, by Avi Bryant and Julian
Fitzell. The last two authors are using Seaside professionally.

The contributions of the paper are: (1) a description of the most common
problems in web application development, (2) the description of the Sea-
side framework a combination of object-oriented application composition with
continuation-based flow and (3) the description of the multiple control flow
provided by this combination. Before presenting the core concepts of Seaside
and going into some details of its implementation, we describe the problems
that a web application has to face. As a motivating example and for illustra-
tion purposes we use a simple web shop example throughout the rest of the
article.

2 A Web Shop as a Motivating Example

Our shop that comes as an example application with Seaside, selling sushis,
is composed of various elements: it provides a search on the left, a batched
list of products with a detail view of a selected product in the middle, and a
shopping cart on the right (see Figure 1). The title bar, the search and the

3

shopping cart are displayed on every page.

search component

list component

batch component

cart view component

Fig. 1. The Sushi Web Shop and its components.

The shop application also defines several control flows that the user can follow.
For example the checkout process, which is the following (see Figure 2): When
the user wants to check out, he first has to confirm the contents of the cart,
and if he agrees, he is asked for the shipping address. Subsequently, a dialog
asks him if he wants to have a separate billing address. If he answers with yes,
an additional address dialog is displayed. After having entered the payment
information the order is finished and a confirmation page is displayed. Between
each of these steps there is a validation logic that may decide to redisplay the
previous dialog with an error message.

3 Current Limits of Web Application Development

There are basically two kinds of problems: the ones related to the control
flow logic and the ones concerned with the state which has to be remembered
during user interaction.

3.1 Control Flow Problems

Many of today’s frameworks (such as Servlets/JSP [18] [19], PHP [20], ASP
[21], JSP [19] or Zope [22]) fail to provide a high-level abstraction over how
pages are linked. Indeed, a web application has to model control flow.

The control flow logic (as illustrated by the check-out in the shop example)
would ideally be implemented in one single piece of code with common pro-

4

Fill cart
Confirm

contents.
Checkout?

buy

no

Shipping
address

yes

Use shipping
as billing
address?

Payment
infos

Billing
address

no

yes

ok

ok

ok

Confirmation

Fig. 2. The checkout process in our shop.

gram statements. Unfortunately, this way of modeling web applications is
inverse to what the HTTP protocol with its request/response model implies.
As long as the framework does not provide the abstractions, the developer is
forced to use unintuitive workarounds. Here is a list of the most important
problems related to control flow.

Mixing Application Logic and Component Logic. The user session in
a in a web application can be seen as two repeating tasks that take place:
The first is generating the page and the second is processing data when the
user submits it. In many frameworks these two parts are disconnected and the
processing takes place in two separate executions of the server program. The
first part produces the HTML representation of the page. The latter processes
the data and starts the generation of the next page, e.g., by doing a validation
and by deciding what to do next i.e., which rendering code to execute to
produce the next page. It might be the same page with the previously entered
values and additional error messages in case of a validation failure or the
next step in the sequence of control flow. Thus, the decision on ”what to
show next” is coupled with the processing of the data of the last page rather
than being defined in a control flow logic at a higher level. In page-centric
frameworks plugging together components of the application and defining how
they should interact with each other (application logic) has to be done in each
component itself (component logic): each page in a sequence of pages has a
hardcoded pointer to the next one. This is comparable to programming with
goto-statements which never return.

5

Difficult Composition of Control Flows. Continuation-based web servers
were a big step forward to support a better abstraction of application control
flow [12] [14] [15]. However, they do not allow an easy composition of mul-
tiple control flows coming from the different components that composed the
application within the same page. For example, the user can be browsing a
detailed description of an item while on the same page, it can get prompted
to know whether the numbers of item he selected is correct, and he does not
have to be forced to answer the question but can perform all kinds of other
tasks before and in parallel. Not being able to easily combine multiple control
flows hampers the definition of truly reusable and composable components.

Controlling Program Flow. In some situations we have to strictly control
which requests are valid and which should not be processed anymore. Because
the user can clone browser windows and go back in the history of pages he
is able to send the same or different requests more than once. In our shop,
the user should not be able to add additional items to his shopping cart after
having payed for it.

3.2 State Problems

A web application typically has to deal with the following kind of states: (1)
user interface state (e.g., remember which is the current page number in a
batched list) (2) domain model state which has to make persistent before
it gets stored in a database (e.g., the billing address in the shop checkout
process) and (3) state related to the user session (e.g., customer id of the
user). But handling state in the web’s client-server context is hard because
the control flow is not linear [23] [24]. This is mainly caused by the fact that
HTTP is stateless and by the capabilities of web browsers: The users are used
to going back in the browser or cloning windows to undo their last step or
to interact with the application with several windows in parallel: A form in a
web application can be submitted more than once and maybe even at a later
time. Since the server cannot update clients, the page shown in the browser
may be out of date.

What makes handling state even more complicated is the fact that the facilities
to pass state from the client to the server or vice versa are very limited: Infor-
mation can be encoded into URLs, submitted in hidden form fields or stored
in cookies. Cookies only hold information per session and not per browser
window and are therefore not suited to store state that is individual for each
path of user interaction.

Instead of passing information back and forth from the client to the server,
storing state on the server in the session object would be an obvious solution.

6

However, this approach fails because there can be more than one path of user
interaction in parallel in the same session. Thus, especially in page-centric
frameworks the developer is forced to encode state in the responses sent to
the client by manipulating query strings or using hidden form fields. Those
values then have to be decoded from the next request of the user. However,
this solution is not only cumbersome, it also leads to the following problems:

Encoding State in Pages. When domain model state should exist over a
sequence of pages, each page has to pass the information from all previous
pages to the next page. This makes code almost not reusable since one page
depends on the previous ones.

Name Clashes. There can be name clashes in URLs or in form fields. The
programmer has to take care that identifiers are unique across each page.
This gets especially bad if we like to reuse code. For example, it is not easily
possible to write reusable user interface components such as batched lists
or tab widgets and use them more than once on the same page.

Mixing Presentation and Domain Logic. To encode state in the pages,
the developer has to mix the generation of HTML with domain logic us-
ing string concatenation or templates. This is cumbersome and leads to
unreadable code.

To summarize, developing web-applications face the following problems: it is
difficult to (1) define reusable components with their own logic, (2) compose
the logic of an application out of component logic, and (3) represent the state
of an application.

4 Seaside Main Building Blocks: Components

The main entities in a Seaside application are objects, but called components
in Seaside parlance. They are responsible of defining the user interface and
the control flow of application part. A component is an instance of a user-
defined subclass of Component that defines the look and the behavior of a
portion of a page. Components therefore can be seen as views and controllers
of the MVC triad [25]. Note that contrary to file-based frameworks component
instances often exist during the whole lifetime of a user session, e.g., the
component displaying the cart in our shop. On each request the session lets
the components evaluate their callbacks and render their current state by
writing onto the response stream as presented hereafter.

Rendering. Each component which is visible in an application gets its hook
method renderContentOn: invoked to render itself, i.e., to generate an XHTML
representation of itself. The component’s method renderContentOn: is invoked
with as argument an instance of HtmlRenderer, named by convention html.

7

Such an instance is a stream-like object that understands different messages
to conveniently create most of the XHTML tags [26].

The following example shows the shop’s root component render method which
defines a table with one row containing the main title and the subtitle, both
embedded in div-tags with specific CSS classes (see the result in Figure 1).
Nesting of XHTML tags (e.g., table:) is done by using Smalltalk blocks. The
last call to html passes the root component’s task which defines the body of
the application. This is discussed in the following paragraphs.

Store � renderContentOn: html
html cssId: ’banner’.
html table: [

html tableRowWith: [
html divNamed: ’title’ with: self title.
html divNamed: ’subtitle’ with: self subtitle]].

html divNamed: ’body’ with: self task.

The example shows how XHTML code is generated programmatically. This is
very convenient because control- and loop-statements can be defined uniformly
without the need to switch between Smalltalk code and HTML definitions.

Embedding Components. To compose an application out of different com-
ponents, components can be embedded into each other. This is what the last
line of the previous example is doing. The method divNamed:with: – as well
as most of the other methods of HtmlRenderer – takes as second argument a
component or any other object that can be rendered. In our example it is a
task that the store component holds as an instance variable. A task is a special
kind of component that only defines control flow. It will be discussed in more
detail in Section 5.

Action Callbacks. So far we only discussed how a component renders itself.
Components can react to actions performed by the user by means of action
callbacks. Action callbacks are defined on buttons and anchors as well as on
form elements such as select boxes, text input fields etc.

Action callbacks are defined using blocks: For buttons and anchors blocks
without an argument are used, for form fields blocks are evaluated with one
argument, the current value of the element. The following code snipped (from
StorePaymentEditor) shows the definition of a select box which lets the user
choose the credit card he likes to pay with:

html
selectFromList: self cardTypes
selected: self cardType
callback: [:value | self cardType: value]

8

labels: [:each | each abbreviation]

The first argument passed to the method selectFromList:selected:callbacl:labels:
is a collection of classes, one for each supported credit card type. The second
argument defines which object, if any, of the previous list should be selected.
StorePaymentEditor holds an instance variable cardType to remember the se-
lection and defines the accessors cardType and cardType:. The third argument
is the action callback block which itself takes one argument. When the user
submits the form which holds the selected value, the block is evaluated with
the selected value. The value is one of the objects of the provided list, in our
case a class. In the example the value is stored for later usage. The last argu-
ment specifies how the items are labeled in the select box, in this example each
class from the list of possible card types responds to abbreviation returning a
description string.

Most of the time action callbacks to anchors or buttons call methods that de-
fine component or application control flow. This is a very central mechanism
in Seaside: the specification of control flow by means of temporarily passing
control from one component to another in a non-goto like manner (i.e., in a
procedural or method invocation manner). This facility is provided on compo-
nent level which enables to define multiple control flows independently from
each other. This is the subject of the following sections.

5 Multiple Control Flows in Seaside

As each component defines its own control flow independently of the other
components displayed on the same page and a component can be composed
of multiple other components, a component or an application has multiple
control flows. Whenever a new page is requested by hitting a link or a button,
one of the components is able to go one step further in its own flow, while the
other remain in the same state. Furthermore, control flow in Seaside does not
have to be sequential: control statements, loops, function calls and domain
code might be mixed with messages to display new web pages. All this is
done simply by writing plain Smalltalk code, there is no need to build state
machines like in Struts [7], JWIG [8] or RIFE [10].

In the following we present how a component defines its own control flow, then
we describe how a component can pass its control to another component and
finally how multiple components can be assembled together to create page
with multiple control flows.

9

5.1 Control Flow

Each component can have its own control flow that may describe simple widget
logic or more advanced control flow. The method StoreTask� go below defines
the control flow of the StoreTask component. It specifies the central logic of
our shop: the sequence of pages which are shown when browsing through the
shop and performing the checkout. It models the process shown in Figure 2
precisely and it almost reads like a piece of pseudo-code. There are different
helper-methods called and each of them displays information, offers choices or
collects data from the user. Users are able to browse products and put them
into their shopping cart: this subprocess is implemented by another component
which is invoked by fillCart:. Finally the user orders the products by providing a
shipping and, if necessary, a billing address and payment information. When
everything has been completed correctly, the method ship:to:billTo:payWith:
executes the final ordering and displayConfirmation confirms the order to the
customer.

StoreTask � go
| cart shipping billing creditCard |
cart := StoreCart new.
[self fillCart: cart

self confirmContentsOfCart: cart] whileFalse.
shipping := self getShippingAddress.
billing := (self useAsBillingAddress: shipping)

ifFalse: [self getBillingAddress]
ifTrue: [shipping].

creditCard := self getPaymentInfo.
self ship: cart to: shipping billTo: billing payWith: creditCard.
self displayConfirmation.

This method models the shop control flow at a high level of abstraction: It
defines how parts of the application are composed. Information from one part
can be:

(1) passed to the next part, e.g., for example the instance of StoreCart, cart
is passed to be filled, then passed to the shipping part,

(2) used to decide what to do next, e.g., useAsBillingAddress: asks the user if
he wants to use the shipping address as billing address) or

(3) stored in a temporary variable for later use, e.g., shipping.

There is neither a need to pass information from one page to another, so
that it is available later one, nor the need to model logic that encodes which
component to display next in a called component.

10

A>>m1
 x := self call:
 x printString

B

B>>m2
 self answer: 69

A>>m1
 x := self call:
 x printString
 -> 69

components in browsercode

A

A

AB

B

Fig. 3. call:/answer: the basic elements of control flow in Seaside. The framed B in
the method m1 is a graphical object displayed as the window B in the web browser.
m2 is a method that is invoked in a callback i.e., when an action on the component
B is invoked such as a button pressed or a link clicked.

5.2 Call and Answer: Passing Control to Another Component

In Seaside the control flow is based on the interplay between the methods call:
and answer: (see Figure 3). Several other methods are built on top of these
two messages, such as inform: to display an information dialog or request: to
ask the user for a string and make the developer’s work more convenient.

Call. At any time a component can pass control to another one. During this
time it is temporarily replaced by the other component. This is achieved by
sending the message call: with the new component as parameter to the com-
ponent that should be replaced. In Figure 3 sending the method call: to the
currently displayed component with the component B installs the component
B and passes it the control. Other components elsewhere on that page stay
functional and can be used independently of the new component.

The sushi listing in our web shop illustrates call: use. The link’s action handler
of each sushi item is implemented as shown in the following piece of code. The
effect of this code is to replace the current main component (the batched list)

11

by a component displaying detailed information about the chosen product.

StoreFillCart � displayItem: anItem
main call: (StoreItemView new

item: anItem;
cart: cart;
yourself)

Answer. At any time a component can give back control to the component
from which it was called using the method answer:. Every call in Seaside
eventually returns at some point and it is even able to return a value to the
caller. This makes it possible to pass resulting objects from called components
back into the control flow and avoids the necessity to pass around strings with
requests and responses.

To pass the control back, a called component should send to itself the message
answer: aValue. In Figure 3, the expression self answer: 69 makes the component
B return the number 69 to component A. As argument of the answer: message,
any object can be given and this object will be handed back to the caller of
the method call:. For example after the expression x := self call: B, the value
of x is the value passed as argument in the expression self answer: 69 of the
method m2. For convenience, if there is no return value needed, one might
also call answer that is implemented as self answer: nil.

It is then possible to collect information by calling a component which will
return an object. In case of a confirmation dialog this might just be a boolean
– but it can also be a business object as the following example of our shop
demonstrates: Whenever a user has finished selecting his sushis, he has to pro-
vide valid payment information. Within the component StoreTask the method
getPaymentInfo calls StorePaymentEditor and returns the result of this message
send.

StoreTask � getPaymentInfo
ˆself call: StorePaymentEditor new.

StorePaymentEditor � ok
self answer: (cardType new

name: name;
number: cardNumber;
expiry: (Date newDay: 1 month: month year: year)).

The message call: replaces the current component instance of StoreTask with a
new instance of StorePaymentEditor and stops the execution until the user has
provided valid payment information. The class StorePaymentEditor implements
a method called ok, which is evaluated when the user is hitting the okay button.
The method ok creates a new instance of the selected cardType and passes the

12

information collected in the dialog (the name, cardNumber, month and year) to
the newly created object. The method answer: returns this object to its caller
(StoreTask � getPaymentInfo) where Seaside resumes the control flow which
has been previously stopped at this position.

The real power of the call and answer mechanism relies in the capability to
build a flow of components which embed several complex user interactions.
Seaside allows one to call different components one after the other, using
control-statements such as loops and conditional clauses, or other non web
related code in-between these calls. An important point is that passing con-
trol to another component is done with normal message sending: A method
returns and the execution continues from this point – even if this is at an
undefined point in the future. This prevents the goto-like definition of control
flow without the possibility to return.

5.3 Composing Components: Multiple Control Flow

The examples discussed so far, illustrate one flow of control at a time: StoreTask
� go (see Section 5.1) models the control flow of the application at the highest
level. This control flow is defined at the top component, however with Seaside
it is possible to let each sub-component define its own control flow. In the
context of our web shop example, this enables the user to interact at the same
time with the sushi list (i.e., getting a detail description of the sushi, browsing
the sushi list) and with the shopping cart.

Figure 4 shows this process in the web browser. It presents four states of
the webshop user interface. First on the left we see the description of a sushi
(Chuboro Magoro) which can be added to the cart displayed on the right. The
card contains five California Rolls and three Chuboro Magoro. In the cart,
the user can change his order by pressing the minus sign in front of the line.
This is what the user did, and the right component is replaced by a dialog box
that checks if the user really wants to remove some of the delicious sushi from
the cart (1). The user is hesitating and quits the description of the Chuboro
Magoro sushi to browse the sushi list (2). Finally he decides to remove all the
Chuboro Magoro sushi from his order (3).

The following code describes how the available sushi list and the cart are
plugged together. The two components are both stored in instance variables
of the component StoreFillCart and are placed inside a HTML table to be
rendered next to each other on the same page.

StoreFillCart � renderContentOn: html
html table: [

html tableRow: [

13

1

2

3

Fig. 4. Multiple flows on the same page in the web shop. The user can interact freely
with different components and their flows of the sushi shop.

html tableData: productList.
html tableData: cartView]]

Each component can have its own control flow. Such a flow is either bound
to the component itself (if our component is a subclass of Task) or defined in
actions connected with user events (if our component is a subclass of Compo-
nent). Whenever there is an interaction with a component and there is either
a message send to call: or answer: a different component is shown instead of
the old one and the flow of that particular component is able to advance. All
the other components on the page however stay in the same state until there

14

is an user interaction allowing them either to return or to call another one.

6 Managing Non-Linear Control Flow

The control flow capabilities of Seaside provide a non-linear control flow im-
plicitly – from the view of the developer the code is linear and does not need
any additional logic to handle backtracking in the control flow. However there
are still some problems related to the application state. Seaside handles back-
tracking in the control flow by resuming computation at the right place. But
since the user interacting with the application modifies state, we also have to
ensure that it is correctly handled. As discussed in the problems Section (see
Section 3) we have to deal with user interface and domain model state. It is
important to handle the latter correctly as it is crucial for security reasons.

In the case of our shop, when the user has checked out and already payed the
products, it should not be possible for him to go back and modify the cart
business object by adding additional sushi to it. Similarly, the user would not
be happy if he were to accidently submit the credit billing page a second time,
and be charged twice as a result.

This leads to two different kinds of situations: In the first situation we would
like to support the user to backtrack. This is solved by backtracking user
interface and domain model state so that when the user goes back, the old state
is restored. The second situation is when the user is forbidden to backtrack.
This is solved by specifying the conditions in which a request should not be
processed anymore. We present these two situations now.

6.1 Backtracking State

Each component in Seaside has its own state which is stored in instance vari-
ables. For example, a batched list remembers its current page number or the
search component stores its last search string and result etc. Since the user
interactions share the same component instances (because the resumed com-
putation is always the same) their instance variables may not represent what
the user sees when he goes back, or takes several paths in parallel.

To solve this problem, Seaside offers a mechanism to register an object to be
backtracked (Session � registerObjectForBacktracking:). After each response
sent to the client, Seaside snapshots the registered objects by creating a copy
and putting them into a cache. The session stores the registry as a temporary
variable in the computation which sends the response to the client and which

15

receives the next request. Since the continuation (which at this point composes
the current request/response loop) restores the context when resuming, the
registry is made persistent to the future point when requests, originated from
this response, are handled. Before processing the request, the registry restores
the registered objects.

This ensures that when processing a request, the values are the same as when
the previous response was created. For example the batched list’s current page
number will be the same as the one shown to the user when a request from
this page is processed.

6.2 Transactions

In complex applications it is often the case that we must ensure that the user
is prevented from going back a sequence of pages to make modifications. This
is applicable in the case of our checkout process, where the user should not
be able to change anything after having paid. Controlling the control flow
is implemented by the method Component � isolate: which takes a block as
argument. It treats the control flow defined in the block as a transaction. The
transaction makes sure that the user can move forward and backward as he
likes within the transaction. But as soon as he completed the transaction, he
cannot backtrack anymore.

The following method shows the shop process enhanced with transactions. By
surrounding the filling of the cart and its confirmation by an isolate: invoca-
tion, we allow backtracking freedom within that part of the application, while
protecting a completed order from being changed. Similarly we are making
sure that after the confirmation has been displayed, the user is unable to go
back and change shipping and payment information.

StoreTask � go
| cart shipping billing creditCard |
cart := StoreCart new.
self isolate: [

self fillCart: cart
self confirmContentsOfCart: cart] whileFalse].

self isolate: [
shipping := self getShippingAddress.
billing := (self useAsBillingAddress: shipping)

ifFalse: [self getBillingAddress]
ifTrue: [shipping].

creditCard := self getPaymentInfo.
self ship: cart to: shipping billTo: billing payWith: creditCard].

self displayConfirmation.

16

1

3

2

a b

cd

Fig. 5. Debugging with Seaside – a continuous loop fixing a bug without restarting
the application.

7 Development Environment

As Seaside is written in Smalltalk it is based on a very powerful, fully object-
oriented language and development environment. In addition to being able to
use the tools provided by the environment, Seaside integrates them seamlessly
with the web. This makes the platform a versatile and productive environment
for web application development. We start by looking at the debugging facil-
ities before presenting the Seaside specific tools.

Incremental Programming. Smalltalk’s philosophy of incremental program-
ming in an interactive environment is supported by Seaside. Code can be added
and edited while the web application is running and there is neither the need
to manually recompile the code nor to restart the server. In many cases this
makes it possible to update a system in production on the fly without any
outage and without the need to set-up a temporary backup server.

Debugging. Most of today’s frameworks do not support debugging of web
applications well. Most display the error and the line number in the web

17

Source View
Rendered View

System Browser
Inspector

Library Browser

Component
Name

(a) Toolbar

(b) Halo

Fig. 6. The Sushi-Shop as seen in Figure 1 in development mode, with toolbar (a)
and halos (b) enabled.

browser only, which makes it very inconvenient to find and fix bugs.

Seaside has unique debugging capabilities: When an unhandled exception oc-
curs as seen in Figure 5, a stack trace is shown in the web browser (a) with a
link called debug. Clicking this link (1), the developer activates a debugger (b)
within the development environment which lets him inspect variables and even
modify the code on the fly. In the given example the message printStringAs-
Cents, that is automatically highlighted in the debugger (b), has been spelled
wrongly and is fixed (2) by the developer. The debugger now displays the
recompiled method (c). During this time, the web browser keeps waiting for
the response of the server. When hitting proceed (3), the processing of the re-
quest which had caused the error is resumed and the resulting page is finally
displayed in the web browser (d).

This feature makes debugging web applications very powerful: There is no
manual recompilation and restarting of the web server required. The developer
is put right back into the questionable page where he is able to see if he fixed
the error properly and is able to continue the testing session.

Toolbar. A toolbar that is shown at the bottom of the web-application during
the development phase (Figure 6) enables the programmer to access additional
tools from within the web. Of course, all these tools have been written in
Seaside itself:

18

b

a

Fig. 7. Browsing (a) and inspecting (b) the CardView component of the running
Sushi-Shop.

• New Session starts the application within a new session.
• Configure opens a dialog letting the user configure the settings of the ap-

plication. This includes properties such as where to start a new session,
what should happen in case of an exception or if the development toolbar
is displayed or not.

• Toggle Halos shows or hides the halos, which are discussed in detail in the
next paragraph.

• Profile shows a detailed report on the computation time that has been con-
sumed while building this page.

• Memory Use displays a detailed report on the amount of memory consumed
by this application.

• XHTML starts an external XML validator on this page.

Halos. When enabling the halos, every component gets surrounded by a thin
grey line and a header giving the class name of the component and a set of
buttons to run tools and to change the viewing mode (Figure 6).

19

• System Browser opens an editor on the current component and lets the de-
veloper modify its class and all the methods from within the web, while
the application is still running in the background (Figure 7, a). When clos-
ing the browser-view the application immediately runs with the new code
without having to restart the session.

• Inspector opens a view on the component, so that the developer can browse
the internal structure of this object (Figure 7, b). It presents the names
of the instance variables and the current values, whereas the user is able
to dive into the referenced objects by clicking on the links. In Figure 7, b,
the first item of the items of the cart instance variable of the WAStoreItem
instance is displayed.

• Library Browser opens an editor that lets a UI designer tweak the associated
CSS-Stylesheets. This makes it very convenient to try out different layouts
directly in the web-browser without leaving the running application.

• Source View provides a pretty-printed and syntax-highlighted XHTML view
onto the source code of the current component. Like this the developer is
able to observe the generation of XHTML while still being able to interact
with the application by clicking on its links.

8 Evaluation

Based on continuations, Seaside transparently manages the request/response
loop and the handling of the necessary URLs, query strings and hidden form
fields. This prevents any name clashes and frees the developer from manually
encoding information in the response and decode it later again. This is the
foundation to model the control flow explicitly at a higher level of abstraction
rather than having to hardcode the next step of flow in each component itself.

Seaside components are responsible for rendering themselves and handling
input by action callbacks. Action callbacks are block closures that are bound
to user interface elements such as input fields or submit buttons. When a
request is processed, the applying action callbacks are evaluated. This enables
the processing of form fields or the execution of embedded control flow directly
in the component in a natural way.

In Seaside, each component can run its own control flow independently of the
others. This makes possible to compose complex applications out of small and
reusable components without having the problem of composing the individual
control flows. This component composition makes possible to have multiple
control flows within the same page naturally. In addition in Seaside, a trans-
action allows one to specify how to group a control flow part and to ensure
that the user cannot go back into it after he left it. This is a powerful solution
to define security independently form the involved components. Again, this is

20

crucial for reusability.

Seaside’s control flow with its unique call/answer semantics offers passing
around business objects between components. In contrast to other frameworks
this avoids the need to pass state from one component/page to the next over
the client. To synchronize state with the current page displayed in the user’s
browsers, Seaside offers backtracking of objects. This makes the back button
to be a fully supported navigation facility of the application.

On the negative side, in the current version all the continuations have to be
kept in memory which consumes resources. Continuations could be stored in
database but this solution implies to be able to serialize continuations which
is a non trivial task [15] [2].

9 Related Work

The idea of modeling sessions as a continuous piece of code has been popping
up independently in multiple places in the past [14] [12] [15].

DrScheme. The Scheme Web Servlets library included with DrScheme [11]
was one of the first frameworks to support continuation-based web develop-
ment. However it does not provide a simple solution to provide multiple control
flows feasible. Furthermore DrScheme does not provide a collection of compo-
nents that can be composed easily and reused with different applications.

CocoonFlow. Most of todays mainstream programming languages unfortu-
nately do not support continuations, therefore the authors of CocoonFlow [27]
decided to enhance their JavaScript runtime to support this concept. However
CocoonFlow does not provide such a high level abstraction over the HTTP
protocol as Seaside does, the function sendPageAndWait has to be called to
suspend the execution after the page has be generated and sent to the client.
This mechanism does not allow to have multiple flows on the same page easily.

RIFE. Java Servlets/JSP [19] is lacking the possibility to model control flow
in a clever way. RIFE [10] provides a declarative way to define application flow
based on state machines. For simple Web applications, this model works. How-
ever, RIFE is facing a well-known problem with state machines: the number
of states and transitions grow fast and it becomes hard to understand what is
happening in the application. Multiple control flows are not supported.

Imposter. Python is lacking support for continuations as well. Imposter [28]
provides an abstraction over the session handling by saving the whole internal
state of the applications between two requests. However, as there is only one

21

snapshot stored in the memory, using the back button is not supported and the
state of the application and the web browser window cannot be synchronized
properly.

WebObjects. Apple Web Objects [5] provides a component-based framework
to reuse and compose components which offers solution to the back button
problems, however it is lacking the possibility to describe a flow of pages as a
continuous piece of code and multiple control flow.

ASP.NET. Microsoft ASP.NET [6] is a web application framework running
on the .NET platform. Its web controls are comparable to Seaside’s compo-
nents. However, web controls are not capable of modeling a continuous flow of
user interaction in one piece of code. Moving to another page is still done in
a goto-like manner by redirecting the user to the next page. Reusability and
flexibility suffers and the problems of the back button and cloning of windows
have to be addressed by the developer by implementing workarounds.

Struts. Struts [7] purpose is to bring the MVC pattern to the J2EE platform.
The Struts architecture acts as a wrapper for Java applications and divides
its code into a Model, View and Controller. Although Struts manages to add
a layer of abstraction to model control flows, the costs are high. Compared to
Seaside a form validation requires rewriting several parts of the application:
the form class, an XML file and the JSP code to display validation error
messages. Adding validation to an existing application even requires changing
the inheritance trees. In Seaside a validation can be done by adding a decorator
around the component.

10 Conclusion

Building web applications raised specific problems due to the disconnected flow
between clients and servers. Application control flow and state management
made web application development difficult and cumbersome. Programmers
are often forced to program using goto-style. The solutions can be roughly
classified into two categories: the ones that use objects to model pages and
applications, and the ones that use the power of continuations to provide an
advanced control flow. The first ones to not address well the problem related
to control flow. While more advanced the second approaches do not support
well the composition of independent control flows.

Seaside, the framework presented in this article, combines both approaches:
a web application is composed of components, each having its own control
flow and been able to pass the control to other component. Applications are
then a composition of components whose control flow is combined and can run

22

independently. This enables Seaside to offer a better reuse and composition
of predefined components. With Seaside, the programmer is able to write
business application logic at a high-level of abstractions.

Acknowledgment. We thank Avi Bryant for his feedback and encourage-
ments, Shriram Krishnamurthi for the discussions on continuations and Orla
Greevy and Alexandre Bergel for their feedback.

References

[1] CGI, The Common Gateway Interface, http://hoohoo.ncsa.uiuc.edu/cgi/.

[2] C. Queinnec, Continuations and web servers, Higher-Order and Symbolic
Computation: an International Journal (2004) 1–16.

[3] E. W. Dijkstra, Go To statement considered harmful, Comm. ACM 11 (3)
(1968) 147–148, letter to the Editor.

[4] O.-J. Dahl, E. W. Dijkstra, C. Hoare, Structured Programming, Academic
Press, 1972.

[5] WebObjects, http://www.apple.com/webobjects/.

[6] ASP.NET, http://www.microsoft.com/net/.

[7] The Apache Struts web application framework,
http://jakarta.apache.org/struts/.

[8] JWIG, Java Extensions for High-Level Web Service Development,
http://www.brics.dk/JWIG/.

[9] A. S. Christensen, A. Moller, M. I. Schwartzbach, Extending java for highlevel
web service construction, ACM Transaction on Programming Languages and
Systems 25 (6) (2003) 814–875.

[10] RIFE, https://rife.dev.java.net.

[11] DrScheme, http://www.drscheme.org.

[12] J. Hughes, Generalising monads to arrows, Science of Computer Programming
37 (2000) 67–111.

[13] P. Graham, Beating the averages, http://www.paulgraham.com/avg.html.

[14] C. Queinnec, The influence of browsers on evaluators or, continuations
to program web servers, in: ACM SIGPLAN International Conference on
Functional Programming, 2000, pp. 23–33.

[15] P. Graunke, S. Krishnamurthi, S. Van Der Hoeven, M. Felleisen, Programming
the Web with high-level programming languages, in: Proceedings of ESOP 2001,
Vol. 2028 of Lecture Notes in Computer Science, 2001, pp. 122–136.

23

[16] Seaside: Squeak enterprise aubergines server, http://www.beta4.com/seaside2/.

[17] Squeak home page, http://www.squeak.org/.

[18] D. Coward, Java servlet specification version 2.3,
http://java.sun.com/products/servlet/ (2000).

[19] Java Server Pages, http://java.sun.com/products/jsp/.

[20] PHP: Hypertext Preprocessor, http://www.php.net/.

[21] ASP, Microsoft Active Server Pages,
http://msdn.microsoft.com/nhp/?contentid=28000522.

[22] Zope, http://www.zope.org.

[23] P. Graunke, R. B. Findler, S. K. and Matthias Felleisen, Automatically
restructuring programs for the web, in: International Conference on Automated
Software Engineering, 2001.

[24] J. Matthews, R. B. Findler, P. Graunke, S. Krishnamurthi, M. Felleisen,
Automatically restructuring programs for the web, Automated Software
Engineering: An International Journal .

[25] G. E. Krasner, S. T. Pope, A cookbook for using the model-view-controller user
interface paradigm in Smalltalk-80, Journal of Object-Oriented Programming
1 (3) (1988) 26–49.

[26] N. Kurt, Using lisp as a markup language the LAML approach, european Lisp
User Group Meeting (1999).

[27] Apache Cocoon, The Apache Cocoon Project, http://cocoon.apache.org/.

[28] Imposter, http://csoki.ki.iif.hu/∼vitezg/impostor/.

24

	Introduction
	A Web Shop as a Motivating Example
	Current Limits of Web Application Development
	Control Flow Problems
	State Problems

	Seaside Main Building Blocks: Components
	Multiple Control Flows in Seaside
	Control Flow
	Call and Answer: Passing Control to Another Component
	Composing Components: Multiple Control Flow

	Managing Non-Linear Control Flow
	Backtracking State
	Transactions

	Development Environment
	Evaluation
	Related Work
	Conclusion
	References

