The C language interface to the SQL.ite library Page 1 of 13

The C language interfaceto the SQLitelibrary

(This page was last modified on 2002/07/13 17:18:37 UTC)

The SQLite library is designed to be very easy to use from a C or C++ program. This document gives an
overview of the C/C++ programming interface.

The Core API

The interface to the SQL.ite library consists of three core functions, one opague data structure, and some
constants used as return values. The core interfaceis as follows:

typedef struct sqlite sqglite
#define SQLI TE_OK 0 /* Successful result */

sqglite *sqglite_open(const char *dbnane, int node, char **errnsg);
void sqlite_close(sqlite*);

int sqlite_exec(
sqgliter,
char *sql
int (*)(void*,int,char**, char**),
voi d*,
char **errnsg

)

The aboveisall you really need to know in order to use SQLite in your C or C++ programs. There are
other convenience functions available (and described below) but we will begin by describing the core
functions shown above.

Opening a database

Usethe sglite_open() function to open an existing SQL ite database or to create a new SQL ite database.
The first argument is the database name. The second argument is intended to signal whether the database
isgoing to be used for reading and writing or just for reading. But in the current implementation, the
second argument to sglite_open isignored. The third argument is a pointer to a string pointer. If the
third argument isnot NULL and an error occurs while trying to open the database, then an error message
will be written to memory obtained from malloc() and *errmsg will be made to point to this error
message. The calling function is responsible for freeing the memory when it has finished with it.

The name of an SQL ite database is the name of afile that will contain the database. If the file does not
exist, SQLite attempts to create and initialize it. If the file is read-only (due to permission bits or because
it islocated on read-only medialike a CD-ROM) then SQL ite opens the database for reading only. The
entire SQL database is stored in asingle file on the disk. But additional temporary files may be created
during the execution of an SQL command in order to store the database rollback journal or temporary
and intermediate results of a query.

The return value of the sglite_open() function is a pointer to an opague sglite structure. This pointer
will be the first argument to all subsequent SQL ite function calls that deal with the same database.

http://www.hwaci.com/sw/sglite/c_interface.html 7/25/2002

The C language interface to the SQL.ite library Page 2 of 13

NULL isreturned if the open fails for any reason.

Closing the database

To close an SQL.ite database, call the sglite_close() function passing it the sglite structure pointer that
was obtained from a prior call to sglite_open. If atransaction is active when the database is closed, the
transaction is rolled back.

Executing SQL statements

The sglite_exec() function is used to process SQL statements and queries. This function requires 5
parameters as follows:

1. A pointer to the sglite structure obtained from a prior call to sglite_open().

2. A null-terminated string containing the text of one or more SQL statements and/or queriesto be
processed.

3. A pointer to acalback function which isinvoked once for each row in the result of aquery. This
argument may be NULL, in which case no callbacks will ever be invoked.

4. A pointer that isforwarded to become the first argument to the callback function.

5. A pointer to an error string. Error messages are written to space obtained from malloc() and the
error string is made to point to the malloced space. The calling function is responsible for freeing
this space when it has finished with it. This argument may be NULL, in which case error
messages are not reported back to the calling function.

The callback function is used to receive the results of aquery. A prototype for the callback function is as
follows:

int Callback(void *pArg, int argc, char **argv, char **col utmNames) {

return O;
}

The first argument to the callback isjust a copy of the fourth argument to sglite_exec() This parameter
can be used to pass arbitrary information through to the callback function from client code. The second
argument is the number of columnsin the query result. The third argument is an array of pointersto
strings where each string is a single column of the result for that record. Note that the callback function
reportsa NULL valuein the database asa NULL pointer, which is very different from an empty string.
If the i-th parameter is an empty string, we will get:

argv[i][0] ==
But if the i-th parameter is NULL we will get:

argv[i] ==

The names of the columns are contained in the fourth argument.

http://www.hwaci.com/sw/sglite/c_interface.html 7/25/2002

The C language interface to the SQL.ite library Page 3 of 13

If the EMPTY_RESULT_CALLBACKS pragmais set to ON and the result of aquery isan empty set,
then the callback is invoked once with the third parameter (argv) set to O. In other words

argv ==

The second parameter (argc) and the fourth parameter (columnNames) are still valid and can be used to
determine the number and names of the result columnsiif there had been aresult. The default behavior is
not to invoke the callback at all if the result set is empty.

The callback function should normally return O. If the callback function returns non-zero, the query is
immediately aborted and sglite_exec() will return SQLITE_ABORT.

Error Codes

The sglite_exec() function normally returns SQLITE_OK. But if something goeswrong it can return a
different value to indicate the type of error. Here is a complete list of the return codes:

#define SQLI TE_ OK 0 /* Successful result */

#defi ne SQLI TE_ERROR 1 /* SQL error or mssing database */

#defi ne SQLI TE_| NTERNAL 2 /* An internal logic error in SQ.ite */
#define SQLI TE_PERM 3 /* Access perm ssion denied */

#defi ne SQLI TE_ABORT 4 /* Call back routine requested an abort */

#def i ne SQLI TE_BUSY 5 [* The database file is | ocked */

#defi ne SQLI TE_LOCKED 6 /* Atable in the database is |ocked */

#def i ne SQLI TE_NOVEM 7 /* A malloc() failed */

#def i ne SQLI TE_READONLY 8 /* Attenpt to wite a readonly database */
#defi ne SQLI TE_| NTERRUPT 9 /* Operation termnated by sqlite_interrupt() *
#define SQLI TE_| CERR 10 /* Some kind of disk I/O error occurred */
#defi ne SQLI TE_CORRUPT 11 /* The database di sk inmage is mal formed */
#defi ne SQLI TE_NOTFOUND 12 /* (Internal Only) Table or record not found */
#define SQLI TE_FULL 13 /* Insertion failed because database is full */

#defi ne SQLI TE_CANTOPEN 14 /* Unable to open the database file */
#defi ne SQLI TE_PROTOCOL 15 /* Database | ock protocol error */

#define SQLI TE_EMPTY 16 /* (Internal Only) Database table is enpty */
#def i ne SQLI TE_SCHENA 17 /* The dat abase schema changed */
#define SQLI TE_TOOBI G 18 /* Too much data for one row of a table */

#define SQLI TE_CONSTRAI NT 19 /* Abort due to contraint violation */
#define SQLI TE_M SMATCH 20 /* Data type m smatch */
#define SQLI TE_M SUSE 21 /* Library used incorrectly */

The meanings of these various return values are as follows:
SQLITE_OK
Thisvalueisreturned if everything worked and there were no errors.
SQLITE_INTERNAL
This value indicates that an internal consistency check within the SQL.ite library
failed. This can only happen if thereisabug in the SQLite library. If you ever get an

SQLITE_INTERNAL reply from an sglite_exec() call, please report the problem on
the SOLite mailing list.

http://www.hwaci.com/sw/sglite/c_interface.html 7/25/2002

The C language interface to the SQL.ite library Page 4 of 13

SQLITE_ERROR

This return value indicates that there was an error in the SQL that was passed into the
sglite_exec().

SQLITE_PERM

Thisreturn value says that the access permissions on the database file are such that
the file cannot be opened.

SQLITE_ABORT
Thisvaueisreturned if the callback function returns non-zero.
SQLITE BUSY

This return code indicates that another program or thread has the database |ocked.
SQL.ite allows two or more threads to read the database at the same time, but only one
thread can have the database open for writing at the same time. Locking in SQLiteis
on the entire database.

SQLITE_LOCKED
Thisreturn codeis similar to SQLITE_BUSY in that it indicates that the database is
locked. But the source of the lock isarecursive call to sglite_exec(). This return can
only occur if you attempt to invoke sglite_exec() from within a callback routine of a
guery from a prior invocation of sglite_exec(). Recursive callsto sglite_exec() are
allowed as long as they do not attempt to write the same table.

SQLITE_NOMEM
Thisvalueisreturned if acall to malloc() fails.

SQLITE_READONLY

This return code indicates that an attempt was made to write to a database file that is
opened for reading only.

SQLITE_INTERRUPT

Thisvalueisreturned if acal to sglite_interrupt() interrupts a database operation in
progress.

SQLITE_IOERR
Thisvalueisreturned if the operating system informs SQL.ite that it is unable to
perform some disk 1/O operation. This could mean that there is no more space left on
the disk.

SQLITE_CORRUPT

http://www.hwaci.com/sw/sglite/c_interface.html 7/25/2002

The C language interface to the SQL.ite library Page 5 of 13

Thisvalueisreturned if SQLite detects that the database it is working on has become
corrupted. Corruption might occur due to arogue process writing to the database file
or it might happen due to an perviously undetected logic error in of SQLite. This
valueisaso returned if adisk 1/0 error occurs in such away that SQLiteisforced to
leave the database file in a corrupted state. The latter should only happen dueto a
hardware or operating system malfunction.

SQLITE_FULL

Thisvalueisreturned if an insertion failed because there is no space left on the disk,
or the database is too big to hold any more information. The latter case should only
occur for databases that are larger than 2GB in size.

SQLITE_CANTOPEN
Thisvalueisreturned if the database file could not be opened for some reason.
SQLITE_PROTOCOL

Thisvalueisreturned if some other processis messing with file locks and has
violated the file locking protocol that SQLite uses on its rollback journal files.

SQLITE_SCHEMA

When the database first opened, SQL ite reads the database schema into memory and
uses that schemato parse new SQL statements. If another process changes the
schema, the command currently being processed will abort because the virtual
machine code generated assumed the old schema. Thisisthe return code for such
cases. Retrying the command usually will clear the problem.

SQLITE_TOOBIG

SQLite will not store more than about 1 megabyte of datain asingle row of asingle
table. If you attempt to store more than 1 megabyte in asingle row, thisisthe return
code you get.

SQLITE_CONSTRAINT

This constant is returned if the SQL statement would have violated a database
constraint.

SQLITE_MISMATCH

This error occurs when there is an attempt to insert non-integer data into a column
labeled INTEGER PRIMARY KEY. For most columns, SQL.ite ignores the data type
and allows any kind of datato be stored. But an INTEGER PRIMARY KEY column
isonly allowed to store integer data.

SQLITE_MISUSE

http://www.hwaci.com/sw/sglite/c_interface.html 7/25/2002

The C language interface to the SQL.ite library Page 6 of 13

This error might occur if one or more of the SQLite API routinesis used incorrectly.
Examples of incorrect usage include calling sglite_exec() after the database has been
closed using sglite_close() or calling sglite_exec() with the same database pointer
simultaneously from two separate threads.

The Extended API

Only the three core routines shown above are required to use SQL ite. But there are many other functions
that provide useful interfaces. These extended routines are as follows:

int sqlite_last_insert_row d(sqlite*);
int sqglite_changes(sqglite*);

int sqlite_get table(
sqliter,
char *sql
char ***result,
i nt *nrow,
int *ncol um,
char **errnsg

);

void sqlite_free_tabl e(char**);

void sqlite_interrupt(sqlite*);

int sqlite_conplete(const char *sql);

void sqlite_busy handler(sqglite*, int (*)(void*,const char*,int), void*);
void sqlite_busy tinmeout(sqglite*, int ns);

const char sqglite_version[];

const char sqglite_encoding[];

int sqlite_exec_printf(
sqlite*,
char *sql
int (*)(void*,int,char**, char**),
voi d*,
char **errnsg,

);...

int sqlite_exec_vprintf(
sqlite*,
char *sql
int (*)(void*,int,char**, char**),
voi d*,
char **errnsg,
va_li st

)

int sqlite_get_table_printf(
sqlite*,

http://www.hwaci.com/sw/sglite/c_interface.html 7/25/2002

The C language interface to the SQL.ite library Page 7 of 13

char *sql

char ***result,
int *nrow,

int *ncol um,
char **errnsg,

.

int sqlite_get table_vprintf(
sqgliter,
char *sql
char ***result,
i nt *nrow,
i nt *ncol um,
char **errnsg,
va_list

)
char *sqlite_nprintf(const char *zFormat, ...);
char *sqglite_vnprintf(const char *zFormat, va_list);

void sqglite_freenmen(char*);

All of the above definitions are included in the "sglite.h” header file that comes in the source tree.

The ROW!ID of the most recent insert

Every row of an SQL ite table has a unique integer key. If the table has a column labeled INTEGER
PRIMARY KEY, then that column serves asthe key. If thereisno INTEGER PRIMARY KEY column
then the key isaunique integer. The key for arow can be accessed in a SELECT statement or used in a
WHERE or ORDER BY clause using any of the names"ROWID", "OID", or *_ROWID_".

When you do an insert into atable that does not have an INTEGER PRIMARY KEY column, or if the
table does have an INTEGER PRIMARY KEY but the value for that column is not specified in the
VALUES clause of the insert, then the key is automatically generated. Y ou can find the value of the key
for the most recent INSERT statement using the sglite last_insert_rowid() API function.

The number of rowsthat changed

The sglite_changes() API function returns the number of rows that were inserted, deleted, or modified
during the most recent sglite_exec() call. The number reported includes any changes that were later
undo by aROLLBACK or ABORT. But rows that are deleted because of a DROP TABLE are not
counted.

SQL ite implements the command "DELETE FROM table" (without a WHERE clause) by dropping
the table then recreating it. Thisis much faster than deleting the elements of the table individually. But it
also means that the value returned from sglite_changes() will be zero regardless of the number of
elements that were originaly in the table. If an accurate count of the number of elements deleted is
necessary, use "DELETE FROM table WHERE 1" instead.

http://www.hwaci.com/sw/sglite/c_interface.html 7/25/2002

The C language interface to the SQL.ite library Page 8 of 13

Querying without using a callback function

The sglite_get_table() function is awrapper around sglite_exec() that collects al the information from
successive callbacks and write it into memory obtained from malloc(). Thisis a convenience function
that allows the application to get the entire result of a database query with asingle function call.

The main result from sglite_get_table() isan array of pointers to strings. Thereis one element in this
array for each column of each row in the result. NULL results are represented by aNULL pointer. In
addition to the regular data, there is an added row at the beginning of the array that contains the names
of each column of the result.

As an example, consider the following query:
SELECT employee_name, login, host FROM users WHERE logic LIKE 'd%;

This query will return the name, login and host computer name for every employee whose login begins
with the letter "d". If this query is submitted to sglite_get_table() the result might look like this:

nrow = 2

ncolumn =3

result[O] = "employee _name"
result[1] = "login"

result[2] = "host"

result[3] = "dummy"
result[4] = "No such user"

result[5] =0
result[6] = "D. Richard Hipp"
result[7] = "drh"

result[8] = "zadok"

Notice that the "host" value for the "dummy" record is NULL so the result[] array containsa NULL
pointer at that slot.

If the result set of aquery is empty, then by default sglite_get_table() will set nrow to 0 and leave its
result parameter isset to NULL. But if the EMPTY_RESULT_CALLBACKS pragmais ON then the
result parameter isinitialized to the names of the columns only. For example, consider this query which
has an empty result set:

SELECT employee name, login, host FROM users WHERE employee name ISNULL;
The default behavior gives this results:

nrow =0

ncolumn =0

result =0
Butif the EMPTY_RESULT_CALLBACKS pragmais ON, then the following is returned:

nrow =0
ncolumn = 3

http://www.hwaci.com/sw/sglite/c_interface.html 7/25/2002

The C language interface to the SQL.ite library Page 9 of 13

result[0] = "employee name"
result[1] = "login"
result[2] = "host"

Memory to hold the information returned by sglite_get _table() is obtained from malloc(). But the
calling function should not try to free this information directly. Instead, pass the complete table to
sglite free table() when the tableis no longer needed. It is safe to call sglite_free table() with a
NULL pointer such as would be returned if the result set is empty.

The sglite_get_table() routine returns the same integer result code as sglite_exec().

Interrupting an SQL ite operation

The sglite_interrupt() function can be called from a different thread or from a signal handler to cause
the current database operation to exit at its first opportunity. When this happens, the sglite_exec()
routine (or the equivalent) that started the database operation will return SQLITE _INTERRUPT.

Testing for a complete SQL statement

The next interface routine to SQL.ite is a convenience function used to test whether or not a string forms
acomplete SQL statement. If the sglite_complete() function returns true when its input is a string, then

the argument forms a complete SQL statement. There are no guarantees that the syntax of that statement
is correct, but we at least know the statement is complete. If sglite_complete() returns false, then more

text isrequired to complete the SQL statement.

For the purpose of the sglite_complete() function, an SQL statement is completeif it endsin a
semicolon.

The sglite command-line utility uses the sglite_complete() function to know when it needs to call
sglite_exec(). After each line of input is received, sglite calls sglite_complete() on al input inits
buffer. If sglite_complete() returnstrue, then sglite_exec() is called and the input buffer is reset. If
sglite_complete() returns false, then the prompt is changed to the continuation prompt and another line
of text isread and added to the input buffer.

Library version string

The SQLite library exports the string constant named sglite_version which contains the version number
of the library. The header file contains a macro SQLITE_VERSION with the same information. If
desired, a program can compare the SQLITE_VERSION macro against the sglite_version string
constant to verify that the version number of the header file and the library match.

Library character encoding

By default, SQLite assumes that all data uses afixed-size 8-bit character (is08859). But if you give the --
enable-utf8 option to the configure script, then the library assumes UTF-8 variable sized characters. This
makes a difference for the LIKE and GLOB operators and the LENGTH() and SUBSTR() functions.
The static string sglite_encoding will be set to either "UTF-8" or "is08859" to indicate how the library
was compiled. In addition, the sglite.h header file will define one of the macrosSQLITE_UTF8 or

http://www.hwaci.com/sw/sglite/c_interface.html 7/25/2002

The C language interface to the SQL.ite library Page 10 of 13

SQLITE_1S08859, as appropriate.

Note that the character encoding mechanism used by SQL ite cannot be changed at run-time. Thisisa
compile-time option only. The sglite_encoding character string just tells you how the library was
compiled.

Changing thelibrary'sresponseto locked files

The sglite_busy handler () procedure can be used to register a busy callback with an open SQL.ite
database. The busy callback will be invoked whenever SQL ite tries to access a database that is locked.
The callback will typically do some other useful work, or perhaps sleep, in order to give the lock a
chanceto clear. If the callback returns non-zero, then SQL.ite tries again to access the database and the
cycle repeats. If the callback returns zero, then SQL ite aborts the current operation and returns
SQLITE BUSY.

The argumentsto sglite_busy handler () are the opague structure returned from sglite_open(), a pointer
to the busy callback function, and a generic pointer that will be passed as the first argument to the busy
callback. When SQL ite invokes the busy callback, it sends it three arguments: the generic pointer that
was passed in as the third argument to sglite_busy handler, the name of the database table or index
that the library is trying to access, and the number of times that the library has attempted to access the
database table or index.

For the common case where we want the busy callback to sleep, the SQL.ite library provides a
convenience routine sglite_busy timeout(). The first argument to sglite_busy timeout() is apointer to
an open SQL ite database and the second argument is a number of milliseconds. After

sglite_busy timeout() has been executed, the SQLite library will wait for the lock to clear for at least
the number of milliseconds specified before it returns SQLITE_BUSY . Specifying zero milliseconds for
the timeout restores the default behavior.

Usingthe printf() wrapper functions

The four utility functions

sglite_exec _printf()
sglite_exec vprintf()
sglite_get_table printf()
sglite_get_table vprintf()

implement the same query functionality as sglite_exec() and sglite_get_table(). But instead of taking a
complete SQL statement as their second argument, the four _printf routines take a printf-style format
string. The SQL statement to be executed is generated from this format string and from whatever
additional arguments are attached to the end of the function call.

There are two advantages to using the SQL ite printf functionsinstead of sprintf(). First of all, with the
SQL.ite printf routines, there is never adanger of overflowing a static buffer as there is with sprintf().
The SQL.ite printf routines automatically allocate (and later free) as much memory asis necessary to
hold the SQL statements generated.

The second advantage the SOL ite printf routines have over sprintf() are two new formatting options

http://www.hwaci.com/sw/sglite/c_interface.html 7/25/2002

The C language interface to the SQL.ite library Page 11 of 13

specificaly designed to support string literals in SQL. Within the format string, the %q formatting
option works very much like %sin that it reads a null-terminated string from the argument list and
insertsit into the result. But %q translates the inserted string by making two copies of every single-quote
(") character in the substituted string. This has the effect of escaping the end-of-string meaning of single-
guote within astring literal. The %Q formatting option works similar; it translates the single-quotes like
%oq and additionally encloses the resulting string in single-quotes. If the argument for the %Q formatting
optionsisaNULL pointer, the resulting string is NULL without single quotes.

Consider an example. Suppose you are trying to insert a string value into a database table where the
string value was obtained from user input. Suppose the string to be inserted is stored in a variable named
zString. The code to do the insertion might look like this:

sqlite_exec_printf(db,
"I NSERT | NTO tabl el VALUES('%s')",
0, 0, 0, zString);

If the zString variable holds text like "Hello", then this statement will work just fine. But suppose the
user entersastring like "Hi y'all!". The SQL statement generated reads as follows:

I NSERT | NTO tabl el VALUES('Hi y'all")

Thisisnot valid SQL because of the apostrophy in the word "y'al". But if the %q formatting option is
used instead of %s, like this:

sqlite_exec_printf(db,
"I NSERT | NTO tabl el VALUES('%g')",
0, 0, 0, zString);

Then the generated SQL will look like the following:

| NSERT | NTO tabl el VALUES(' Hi y''all")
Here the apostrophy has been escaped and the SQL statement is well-formed. When generating SQL on-
the-fly from data that might contain a single-quote character (), it is always a good ideato use the

SQLite printf routines and the %q formatting option instead of sprintf.

If the %Q formatting option is used instead of %q, like this:

sqglite_exec_printf(db,
"I NSERT | NTO t abl el VALUES(%Q ",
0, 0, 0, zString);

Then the generated SQL will ook like the following:

I NSERT | NTO tabl el VALUES('Hi y''all")

If the value of the zString variableis NULL, the generated SQL will look like the following:

I NSERT | NTO t abl el VALUES(NULL)

All of the printf() routines above are built around the following two functions:

http://www.hwaci.com/sw/sglite/c_interface.html 7/25/2002

The C language interface to the SQL.ite library Page 12 of 13

char *sqlite_nprintf(const char *zFormat, ...);
char *sqlite_vnprintf(const char *zFormat, va_list);

The sglite_mprintf() routine works like the the standard library sprintf() except that it writes its results
into memory obtained from malloc() and returns a pointer to the malloced buffer. sglite_ mprintf() also
understands the %q and %Q extensions described above. The sglite_vmprintf() is a varargs version of
the same routine. The string pointer that these routines return should be freed by passing it to
sglite_freemem().

Adding New SQL Functions

Beginning with version 2.4.0, SQL ite allows the SQL language to be extended with new functions
implemented as C code. The following interface is used:

typedef struct sqlite_func sqlite_func;

int sqlite_create_function(
sqglite *db,
const char *zNane,
i nt nArg,
void (*xFunc)(sqglite_func*,int,const char**),
voi d *pUserDat a
)
int sqlite_create_aggregat e(
sqlite *db,
const char *zNane,
i nt nArg,
void (*xStep)(sqglite_func*,int,const char**),
void (*xFinalize)(sqglite_func*),
voi d *pUserDat a
)

char *sqglite_set _result_string(sqlite_func*,const char*,int);
void sqlite_set _result_int(sqglite_func*,int);

void sqlite_set_result_double(sqlite_func*, double);

void sqlite_set_result_error(sqglite_func*,const char*,int);

void *sqglite_user_data(sqglite_func*);
void *sqlite_aggregate context(sqlite_ func*, int nBytes);
int sqlite_aggregate_count(sqlite_func*);

The sglite_create function() interface is used to create regular functions and sglite_create aggregate
() isused to create new aggregate functions. In both cases, the db parameter is an open SQL ite database
on which the functions should be registered, zZName is the name of the new function, nArg isthe
number of arguments, and pUser Data is a pointer which is passed through unchanged to the C
implementation of the function.

For regular functions, the xFunc callback isinvoked once for each function call. The implementation of
xFunc should call one of the sglite_set_result_... interfaces to return its result. The sglite_user_data()
routine can be used to retrieve the pUser Data pointer that was passed in when the function was
registered.

For aggregate functions, the xStep callback isinvoked once for each row in the result and then
xFinalize isinvoked at the end to compute a final answer. The xStep routine can use the

http://www.hwaci.com/sw/sglite/c_interface.html 7/25/2002

The C language interface to the SQL.ite library Page 13 of 13

sglite_aggregate context() interface to allocate memory that will be unique to that particular instance
of the SQL function. This memory will be automatically deleted after xFinalize is called. The
sqlite_aggregate count() routine can be used to find out how many rows of data were passed to the
aggregate. The xFinalize callback should invoke one of the sglite_set_result_... interfaces to set the
final result of the aggregate.

SQLite now implements all of its built-in functions using this interface. For additional information and
examples on how to create new SQL functions, review the SQL ite source code in thefile func.c.

Usage Examples

For examples of how the SQLite C/C++ interface can be used, refer to the source code for the sglite
program in the file src/shell.c of the source tree. Additional information about sglite is available at
gglite.html. See also the sourcesto the Tcl interface for SQLite in the source file src/tclsglite.c.

%Backtothe Lite Home Page

http://www.hwaci.com/sw/sglite/c_interface.html 7/25/2002

