
7/29/10 ESUG 2001, Essen 1

QSOUL/Aop

Aspect Oriented Software
Development using Logic

Meta Programming

Johan Brichau,
Programming Technology Lab,
Vrije Universiteit Brussel,
Brussel, Belgium

7/29/10 ESUG 2001, Essen 2

Overview

 Aspect Oriented Software Development
 Goals of QSOUL/Aop
 Logic Meta Programming in QSOUL
 Aspect Oriented Logic Meta Programming
 QSOUL/Aop tool
 Demo time

7/29/10 ESUG 2001, Essen 3

Software Development
 Software development today happens through

hiërarchical decomposition in ‘generalised
procedures’
  Break program complexity
  Modularize concerns

7/29/10 ESUG 2001, Essen 4

Aspect Oriented Software
Development

 But some concerns cannot be modularized
and occur in every module of the
decomposition
  Cross-cutting concern (= aspect)
  E.g. synchronization, distribution, …

7/29/10 ESUG 2001, Essen 5

Aspect Oriented Software
Development
 AOSD tries to modularize these aspects.
 Aspects are combined with component program

using a weaver
 Aspects specified in an aspect-language

  Describing
•  Cross-cutting
•  Functionality

  Examples:
•  COOL (synchronisation)
•  RG (loop fusion optimisation)
•  AspectJ (advices over methods)

7/29/10 ESUG 2001, Essen 6

Overview

 Aspect Oriented Software Development
 Goals of QSOUL/Aop
 Logic Meta Programming in QSOUL
 Aspect Oriented Logic Meta Programming
 QSOUL/Aop tool
 Demo time

7/29/10 ESUG 2001, Essen 7

Goals of QSOUL/Aop (1)

 Declarative Aspect Language
  Aspects have a declarative nature
  Examples

•  Synchronisation: declare what methods are
synchronized

•  Error handling: declare what errors should be
catched where and what should be executed.

•  Wrap methods: declare what methods should be
wrapped and what should be executed.

7/29/10 ESUG 2001, Essen 8

Goals of QSOUL/Aop (2)

 User-defined aspect-languages
  An open framework that allows definition of

user-defined aspect-languages
  Express one aspect-language in another aspect-

language
  Examples:

•  A ‘wrap methods’ aspect-language could be used to
introduce synchronisation or error handling, but is
less suited than a specialized ‘synchronisation’ or
‘error handling’ aspect-language.

7/29/10 ESUG 2001, Essen 9

Goals of QSOUL/Aop (3)

 Combination and composition of several
aspects
  Implemented in one aspect-language
  Implemented in different aspect-languages
  Detect and resolve conflicts between aspects

 Example conflict:
  If a scheduler-aspect does not know about a

synchronisation aspect, deadlocks can occur!

7/29/10 ESUG 2001, Essen 10

Overview

 Aspect Oriented Software Development
 Goals of QSOUL/Aop
 Logic Meta Programming in QSOUL
 Aspect Oriented Logic Meta Programming
 QSOUL/Aop tool
 Demo time

7/29/10 ESUG 2001, Essen 11

Logic Meta Programming

 Combines a logic meta language with
a standard object-oriented base
language
  base-level programs are expressed as

terms, facts and rules at the meta level
  meta-level programs can manipulate and

reason about the base-level programs

7/29/10 ESUG 2001, Essen 12

QSOUL: setup

Reason about and manipulate
source code:

 check, extract, search,
 generate, enforce, transform

Smalltalk
implementation

artefacts

M
eta-level Interface

QSOUL Smalltalk
Image

7/29/10 ESUG 2001, Essen 13

QSOUL language

 Prolog and…
  Smalltalk terms

  Smalltalk clauses

  Quasi Quoted Code

write(?text) if 	

	
[Transcript show: (?text asString). true].	

allClasses([Smalltalk allClasses])	

aCollection object	

true	

methodCode(Foo,bar, { ^ nil })	

7/29/10 ESUG 2001, Essen 14

LMP achievements
 Emerging technique to build state-of-the art

software development tools
 In particular, tools to support co-evolution in all

facets and phases of the software life-cycle
•  information in implementation and earlier life-cycle phases

may evolve independently
•  need to keep information in these phases synchronised

 To support advanced software engineering
techniques

7/29/10 ESUG 2001, Essen 15

LMP Achievements

Declarative Reasoning about object-oriented base programs
supporting the Co-Evolution of design and implementation

 Extract design information from the implementation.
 Verify the implementation with the corresponding design.
 Generate the implementation from the design
Theo D'Hondt, Kris De Volder, Kim Mens & Roel Wuyts, Co-evolution of Object-
Oriented Software Design and Implementation. In Proceedings of SACT 2000. Kluwer
Academic Publishers, 2000

7/29/10 ESUG 2001, Essen 16

Overview

 Aspect Oriented Software Development
 Goals of QSOUL/Aop
 Logic Meta Programming in QSOUL
 Aspect Oriented Logic Meta Programming
 QSOUL/Aop tool
 Demo time

7/29/10 ESUG 2001, Essen 17

Aspect Oriented Logic Meta
Programming (AOLMP)
 Aspect language embedded in logic language.
 An aspect language consists of two parts

  the aspect-code
  how the aspect crosscuts the base program

 Inference engine gathers the logic declarations of
all aspects and weaves them in the base program.

 Using logic rules we can build a domain-specific
aspectlanguage embedded in the logic language.

 E.g. TyRuBa and QSOUL/Aop

7/29/10 ESUG 2001, Essen 18

AOLMP using QSOUL/Aop
 Composition-mechanism to support composition

of aspects
 Integrated Smalltalk-weaver
 Exploit symbiosis

  Use reasoning about base program to specify user-
defined crosscuts. (E.g.: all places in the program
where a certain variable is initialized)

  Multi-paradigm programming (logic & procedural
programming) eases complexity of rules that implement
a user-defined aspect-language

7/29/10 ESUG 2001, Essen 19

Overview

 Aspect Oriented Software Development
 Goals of QSOUL/Aop
 Logic Meta Programming in QSOUL
 Aspect Oriented Logic Meta Programming
 QSOUL/Aop tool
 Demo time

7/29/10 ESUG 2001, Essen 20

QSOUL/Aop

 Consider a simple aspect-language for
error-handling:
  onError(?class,?selector,?error,?error-handling-block)

 Consider two simple error-handling
aspects:
  onError([Array],[#at:put:],[OutOfBoundsError],

 {[:e | … handle exception e…]})
  onError(?class,[#at:put:],[OutOfBoundsError],{…}) if

 subclass([SequenceableCollection],?class)

7/29/10 ESUG 2001, Essen 21

QSOUL/Aop
 Consider a wrap-around aspect-language:

  around(?class,?selector,?code)
 Define the meaning of the error-handling aspect-

language in terms of the wrap-around aspect-
language
  around(?class,?selector,

 {[original()] on: ?error do: ?errorcodeBlock}) if
 onError(?class,?selector,?error,?errorcodeBlock).

 Define the wrap-around aspect-language in terms
of another aspect-language…

7/29/10 ESUG 2001, Essen 22

QSOUL/Aop

 Basic weaver
  Hard-coded in Smalltalk
  Invisible overriding of methods

•  Only supports method-crosscuts

  Share state in group of overriden methods

Basic weaver
Smalltalk

QSOUL

7/29/10 ESUG 2001, Essen 23

Basic weaver

 Basic aspect language: crosscut declarations
  weave(method(?class,?selector),{<aspect-code>})

Override the method ?selector in ?class with
<aspect-code>

  scopeOf(?instVarList,{ <aspect-scope-code> })
Share instance variables in all executions of
aspect-code where <aspect-scope-code> results in
same value. Create new instance variables where
<aspect-scope-code> results in a new, unique
value.

N>0

N=0,1

7/29/10 ESUG 2001, Essen 24

Basic weaver

 Basic aspect language: aspect-code weave(method(?
class,?selector),{<aspect-code>})
  Smalltalk code and…
  thisObject

Access to the current receiver in aspect-code
  original()

Execute the original method (with the original
arguments)

  thisAspect
not yet…

7/29/10 ESUG 2001, Essen 25

A basic-weaver aspect: Logging
Write the size of the collection to the Transcript every time after an
 element is added to an Array or an OrderedCollection

Basic weaver
Smalltalk

QSOUL

weave(?pc, { |tempResult| tempResult := original().
 Transcript write: thisObject size asString.
 ^ tempResult }) if
 location(?pc).

location(method([Array],at:put:)).
location(method([OrderedCollection],add:))

7/29/10 ESUG 2001, Essen 26

Building your own aspect
language

 An AspectWeaverMixin…
  …defines a new aspect-language in terms of

another aspect-language.
  …defines a transformation of a higher-level

aspect language to a lower-level aspect-
language

  …can be mixed with other aspectweavermixins
and the basic weaver to form a complete
aspectweaver

7/29/10 ESUG 2001, Essen 27

Building your own aspect
language

Basic weaver
Smalltalk

QSOUL

weave(method(?class,?sel), { |tempResult| tempResult := original().
?code. ^ tempResult }) if

 after(execution(?class,?sel),?code).

after(execution(?class,?selector),{Transcript write: thisObject size asString}) if
 location(?class,?selector).

location([Array],at:put:).
location([OrderedCollection],add:)

7/29/10 ESUG 2001, Essen 28

Building your own aspect
language

Basic weaver
Smalltalk

QSOUL
Advice AspectWeaverMixin

location([Array],at:put:).
location([OrderedCollection],add:)

Size Logging AspectWeaverMixin

before/after/around

location

weave

7/29/10 ESUG 2001, Essen 29

Combination of aspect-languages

Basic weaver
Smalltalk

QSOUL

Logging and Synchronizing
AspectWeaverMixin

Logging aspect Synchronization aspect

7/29/10 ESUG 2001, Essen 30

Combination of aspect-languages

Basic weaver
Smalltalk

QSOUL

Advice
Combination Weavermixin

Logging
Weavermixin

Synchronization
Weavermixin

Logging
aspect

Synchronization
 aspect

Advice Weavermixin

7/29/10 ESUG 2001, Essen 31

QSOUL/Aop:
Open crosscut language
 QSOUL’s reasoning about Smalltalk basecode

allows detection of patterns.
  Extract implicit call-structure
  Extract design patterns
  Etc…

 This information can be used to implement user-
defined crosscuts
  Method that initializes instance variables
  Methods that send messages to a Stack instance
  Etc…

7/29/10 ESUG 2001, Essen 32

Integration in Smalltalk

Smalltalk system

QSOUL/Aop AspectWeaverMixins
(an AspectWeaverMixin is a logic program) Smalltalk metasystem

QSOUL/Aop basic-weaver

Invisible
generated aspect-class class

Invisible woven-calls

metaclass

7/29/10 ESUG 2001, Essen 33

QSOUL/Aop: Future Work
 thisAspect
 Scope per aspect-instance variable
 Aspect methods
 Extend basic weaver to weave on other language

elements
 Technical improvements

  Use method wrappers instead of hidden classes
  Check for uses of self in aspect-code
  …

7/29/10 ESUG 2001, Essen 34

Demonstration:
The Conduits Framework

7/29/10 ESUG 2001, Essen 35

Aspects in Conduits-Framework

 User Interface update
  After each fill, update view

 Synchronization and message order
  fill and drain: in alternate order + blocking

 Overflow logging
  Setting of content everywhere should produce

same message (throws error?)
 Etc…

7/29/10 ESUG 2001, Essen 36

Links

http://prog.vub.ac.be/poolresearch/aop/qsoulaop.html

QSOUL/Aop:

QSOUL2:

Declarative (Logic) Meta Programming:

http://prog.vub.ac.be/poolresearch/dmp/

http://prog.vub.ac.be/poolresearch/qsoul/qsoul2.html

johan.brichau@vub.ac.be

7/29/10 ESUG 2001, Essen 37

QSOUL LMP-tool

 Strong symbiosis between logic language
and Smalltalk
  Logic language acts on current Smalltalk image
  Smalltalk objects are constants in the logic

language
  Logic clauses can execute parameterised

Smalltalk expressions
 Code generation through manipulation of

quasi-quoted codestrings

7/29/10 ESUG 2001, Essen 38

Aspect Oriented Software
Development

 Subject Oriented Programming and
Multidimensional Separation of Concerns
  Different views on the program’s

decomposition, each addressing a concern
  Compose the different views with composition

rules
 Composition Filters

  Place wrappers around encapsulations, each
addressing a cross-cutting concern

7/29/10 ESUG 2001, Essen 39

Aspect Oriented Software
Development

 Design Patterns
  Use exisiting ‘generalised procedure’

techniques to separate cross-cutting concern
(e.g. Visitor pattern)

 Aspect Oriented Programming
  Encapsulate aspects
  Aspect-weaver composes aspects with other

encapsulations guided by a pointcut-language

7/29/10 ESUG 2001, Essen 40

AOLMP using TyRuBa

Logic program
representing aspect

declarations	

Weaver	

Logic Program	

Facts representing	

basic functionality code	

+	

Code 	

with 	

aspects	

Basic Functionality Code	

Parser	

