
Open Spaces Thomas F Hofmann August 2000 1

OpenSpaces
An Object-Oriented Framework

for Heterogeneous Coordination

ESUG Summer School 2000

Thomas F Hofmann

University of Berne, Switzerland

hofmann@iam.unibe.ch

Open Spaces Thomas F Hofmann August 2000 2

Heterogeneous Coordination
or: what's this framework for?

„Coordination is managing dependencies between
activities“ . This means activities that are performed by
individual processes or agents which need to synchronize
to accomplish their tasks.

Heterogeneity requirements for coordinating agents in
distributed open systems are:

• Being able to deal with several platforms

• Being usable with multiple programming languages.

OpenSpaces has these properties and offers a set of
highly configurable coordination models.

Open Spaces Thomas F Hofmann August 2000 3

Communication
To cooperate, the processes need to exchange
informations. Communication paradigms like message
passing, RPC or RMI all have the disadvantage of tight
coupling :

• The sender of a message must know the exact
identity and address of a receiver.

• Need for synchronization: the sender must wait for
the receiver to be ready for communicating.

In open systems this tends to be too restrictive. One
solution is the concept of generative communication
which was introduced with the coordination language
Linda. [Carriero and Gelernter, ‘86].

Open Spaces Thomas F Hofmann August 2000 4

Blackboard Architecture
The blackboard is a shared repository where agents can
exchange „stuff“, which can be messages, calculation results,
tasks, etc.

The Blackboard

Agent

Agent

Agent Agent

Agent

Open Spaces Thomas F Hofmann August 2000 5

Linda (I)
Tuple A vector of typed elements

Tuple Space The shared repository for tuples

Operation primitives:

• out (aTuple) Write aTuple to the space.

• in (aTemplate) Take a tuple from the space
that matches with aTemplate.

• rd (aTemplate) Read: get a copy of a matching
tuple, don’t remove it.

• eval (anActiveTuple) This creates a process at the
space that results in a passive
tuple.

Open Spaces Thomas F Hofmann August 2000 6

Linda (II)
The retrieval of tuples is associative. A template is a
tuple with 0..n wildcards that acts as a mask to specify
the kind of tuples the caller is interested in.

A tuple matches a template if:

• both have the same number of fields

• the types of their corresponding fields are equal

• every actual field of the tuple has the same value as
the corresponding field of the template

Wildcards are denoted with a '?' followed by the variable
to which the corresponding value of a found tuple will be
bound.

Open Spaces Thomas F Hofmann August 2000 7

Using Linda
Examples:

out('hello', 'world', 123, 3.14);

int i; float f;

rd('hello', 'world', ?i, ?f);

succeeds and binds 123 to i and 3.14 to f

in('hello', 'world', ?i, ?f);

succeeds and removes tuple from Space

rd('hello', 'world', ?i, ?f);

does NOT succeed ...

Open Spaces Thomas F Hofmann August 2000 8

Properties of Linda
Associative Addressing
Agents specify what data they need, not where to find it.

Non-Determinism
It is not known which tuple will be retrieved if there are
more than one at the space that would match the
template.

Uncoupling of Agents
Agents do not need to know about each other's identity or
location, only the Tuple Space must be known. They also
do not have to synchronize to communicate, not even
simultaneous existence is needed.

Open Spaces Thomas F Hofmann August 2000 9

Expressiveness
It has been shown that Linda is capable to express a
large class of parallel and distributed algorithms.

[Carriero, Gelernter 90]
With a suitably choosen design all typical architectural
styles may be realized.

E.g. master-worker:
• The master writes to the space a set of tuples to be

worked on.

• All workers repeatedly take task-tuples, do their job
with it and put the resulting tuple back to the space.

Open Spaces Thomas F Hofmann August 2000 10

Design aspects
Many implementations have been developed since the
original Linda. They introduced extensions like:
f

• Multiple tuple spaces

• Tuples as objects

• New operations like e.g. bulk-retrieving

• New matching strategies

• Rules gouverning the spaces semantics

• Transactions, distributed events

OpenSpaces is designed to be most extensible and
configurable to offer every application a mass tailored
coordination language.

Open Spaces Thomas F Hofmann August 2000 11

A Market Place Example
A simple protocol of a typical trading situation:

Buyer Seller

request a product

make an offer

accept the best

deliver product

Open Spaces Thomas F Hofmann August 2000 12

The Space Adaptation

Buyer Seller

make a request

make an offer

accept the best

pickup product

Space

look for requests

look for offers

look for accepted deals

del iver product

Open Spaces Thomas F Hofmann August 2000 13

Analysis
• Two kinds of actors: Buyer and Seller .

• Space entries to represent requests , offers and
deals.

• Requests describe a wanted product or service.

• Offers reference a request and specify the price.

• Deals reference a deal.

• Requests must be readable by anyone interested.

• Offers must be readable (only) for the buyer who
issued the referenced request.

• Deals must be readable (only) for the seller.

Open Spaces Thomas F Hofmann August 2000 14

Stepping through a Trade
As actual participants we specialize SpaceAgent to Buyer
and Seller . Their respective protocols support the role
specific actions of their respective parts:

Buyer>>makeRequest Append a new request form.
Seller>>collectRequests Scan for newly arrived requests.
Seller>>makeOffer Append a new offer form

referencing a request by its
index.

Buyer>>collectOffers Scan for offers to ownrequest(s)
and take them from the market.

Buyer>>acceptOffer Append a deal form referencing
the offer by its index. Remove
the referenced request.

Seller>>collectDeals Scan for deals accepting own
offers and remove them.

Open Spaces Thomas F Hofmann August 2000 15

Open Spaces
The core classes of the framework:

SpaceAdministratorSpaceServer

SpaceAgent OpenSpace

Entry

ConfigurationPolicy

<<associated>>

Open Spaces Thomas F Hofmann August 2000 16

OS 1: Class Entry
Entries contain the data to be exchanged. To define
suitable attributes each application has to subclass the
(empty) root class Entry . Any single objects or
collections may be used as instance variables.

The class of a concrete Entry descendant also forms
the key to associate the entry with a policy object. This
Configuration Policy defines the Space's
semantics affecting instances of the associated entry
classes. This includes the used matching algorithm.

Open Spaces Thomas F Hofmann August 2000 17

OS 2: Class OpenSpace
OpenSpace is the abstraction of the blackboard medium.
It holds a collection of entries and offers several ways of
accessing it.

The standard operation primitives:
write: anEntry write anEntry to the space

read: aTemplate ^ a matching entry or nil

take: aTemplate ^ a matching entry or nil

The blocking an bulk-retrieving variants:
blockingRead: aTemplate blocks until success

readAll: aTemplate ^ all matching entries

Analogous for take

Open Spaces Thomas F Hofmann August 2000 18

OS 3: Class SpaceAgent
SpaceAgent is the standard abstraction for clients of the
space. Space agents hold a reference to their current
host space which they get from the globally accessible
space server.

The class SpaceAgent is often subclassed to add
application specific behavior and to hide the underlying
communication structures.

Open Spaces Thomas F Hofmann August 2000 19

OS 4: Getting a Space
The SpaceServer is a name server used by all space
agents to access a space. Spaces are looked up by their
name, they must be registered to become available.
If a request is made specifying an unknown space name,
the space server may act as a factory. It can create and
register a new space with the given name.

The space server delegates the actual managing of the
space references to the SpaceAdministrator and
redirects the allowed requests to it.

Open Spaces Thomas F Hofmann August 2000 20

Forms
In the Market Place example requests, offers and deals
are represented with the Entry subclass Form. Its sole
attribute is a dictionary, called bindings , to hold any
key-value binding. This offers flexibility since additionally
needed values can be added without subclassing.
A form matches a template if:

• The form is an instance of the same class as the
template or of a subclass

• The forms bindings contain all the keys of the
templates bindings

• Their respective values are equal
Additional keys are not considered.

Open Spaces Thomas F Hofmann August 2000 21

Form Matching
FormPolicy >> does: aForm matchWith: aTemplate

 "Answer true if aForm contains all keys of aTemplate

and all respective values are equal."

 |ok|

 ok := (aForm isKindOf: aTemplate class)

 and: [aTemplate bindings notNil].

 ok ifTrue:

 [aTemplate bindings keys

 do: [:key |

 (aForm bindings includesKey: key)

 ifFalse: [ok := false]

 ifTrue:

 [ok := (aForm bindings at: key)

 = (aTemplate bindings at: key)]]].

 ^ ok

Open Spaces Thomas F Hofmann August 2000 22

OS 5: Configuration Policies

Each entry needs an associated ConfigurationPolicy
which defines the matching algorithm to be used for the
associative retrieval of such entries from the space.

Additionally the policy defines hook methods which are
called before and after each of the space operations. Like
that every access can be controlled. The hook methods
can change or refuse a used entry or template. They can
also access the space. Basically any action may be
triggered. (!)

Open Spaces Thomas F Hofmann August 2000 23

The Read Contract
aTemplate

foundEntry

checkedEntry

checkedTemplate

1. create

5. c
reate

8.
 c

re
at

e

anAgent
2. read: aTemplate

9. ^ checkedEntry

3. aConfigurationPolicy :=
configurations at: aTemplate class

aSpace aConfigurationPolicy

4. checkedTemplate :=
 preReadCheck: aTemplate

7. checkedEntry :=
 postReadCheck: foundEntry

6.
 fo

un
dE

nt
ry

 :=

de
te

ct
: [

:e
ac

h
|

aC

on
fig

ur
at

io
nP

ol
icy

do
es

: c
he

ck
ed

Te
m

pl
at

e

m
at

ch
W

ith
: e

ac
h]

entries

Open Spaces Thomas F Hofmann August 2000 24

Unique References
Each offer must reference the request it reacts to, each
deal the respective offer. Therefore each form gets a
binding #index->anIndex where anIndex should be
unique. A specialized TailEntry remembers the
highest index used so far.

To append a form the MarketAgent must:

• take the tail entry

• increase its index

• write it back

• set the forms #index -value to the new index

• write the form

Open Spaces Thomas F Hofmann August 2000 25

Market Place V 2
∆ Consistency of the Market Place does require:

• unique indices
• equal indices of a to be written form and the tail
• correct referencing
• complete forms

⇒ The ConfigurationPolicy>>preWriteCheck
method can assert this: only correct forms pass, others
are rejected. Three different subclasses define the
method for the respective forms.

Form is subclassed to Request , Offer and Deal , which
can be associated with the corresponding policies
(without any changes in the implementation).

Open Spaces Thomas F Hofmann August 2000 26

Consistency Checks
RequestPolicy>>preWriteCheck: aForm

• check if the forms bindings include the keys
#section , #product and #index .

• read the tail entry and check if the forms #index -
value is equal to the tails index and if there is no
other form present with this index.

• if OK answer the form, else nil to reject it.

The pre-write checks in OfferPolicy and DealPolicy
are similar. Additionally they check the references of the
forms. The DealPolicy removes the referenced request
form if it still is present.

Open Spaces Thomas F Hofmann August 2000 27

Market Place V 3
∆ The index incrementing procedure is a bit awkward.
Doing this at the space would reduce the responsibility of
the market agents and also the network traffic.

⇒ In its preWriteCheck method a specialized
AutomaticIndexPolicy takes care of the tail business
and sets the index of the form that should be written.

Since the write operation returns the actually written
entry, the space agent can check it for the received
index.

Open Spaces Thomas F Hofmann August 2000 28

 Market Place V 4
∆ After some running time it is quite probable that
forgotten entries start to clutter a space. Some garbage
collection is needed. One solution is adding a timestamp
to every entry beeing written to the space. After expiry of
its lifetime it will be discarded.

⇒ At the space this can be done with a suitable
configuration policy. On preWriteCheck a binding
#arrivalTime->(Time now) is added to the form. On
every call of a retrieving operation the preWriteCheck
discards every outdated form at the space.

Open Spaces Thomas F Hofmann August 2000 29

Garbage Collection
To discard the outdated forms the pre-access hook
perform a readAll . The received collection is scanned
and each expired form is removed from the space by
perfoming a take .

Since the two operations again will call the pre-access-
hooks this could cause loops! To distinguish between a
client-initiated and a policy-initiated call of the pre-access
hook a flag is set before calling the actual cleanup
method and unset after it. The pre-access-hooks check
this flag to bypass the usual checks if set.

Open Spaces Thomas F Hofmann August 2000 30

Reconfiguration
The space offers a method to register an entry class with
a specific configuration policy and one to cancel such an
association. Since the policy is looked up for every
access, it is easy to reconfigure the system on the fly.

The only thing to consider thereby is how to proceed with
the already present entries of the affected class. The
configuration policy has a special hook method:
updateOldEntriesOfClass: aClass , which is called
right after a new registering of the class with the new
policy. Any necessary action for a clean transition can be
done there.

Open Spaces Thomas F Hofmann August 2000 31

CORBA: I3

DST offers the Implicite Invocation Interface (I3) which
provides remote communication without explicit IDL
definitions. It works only between Smalltalk images with
DST loaded, but all CORBA features may be used.

However, to be interoperable with other CORBA
compilant languages, we need to declare IDL modules to
instruct the ORB how to marshall and unmarshall
requests and parameters or results.

It is straight forward to extend a system built using I3 to
support any language by adding the IDL.

Open Spaces Thomas F Hofmann August 2000 32

CORBA: IDL
• Each object which will be called remotely must have

an interface definition.

• Each parameter and return value must be an
instance of a declared type.

• Every IDL type is recursively built from simple data
types like float, short, string, etc.

• Interfaces are transmitted as remote object
references.

• An IDL-struct is passed by value.

• Both participating ORBs must have synchronized
repositories containing the same IDL modules.

Open Spaces Thomas F Hofmann August 2000 33

IDL Examples (I)
interface OpenSpaceInterface {

#pragma selector write write:

any write(in any anEntry);

#pragma selector read read:

any read(in any aTemplate);

#pragma selector take take:

any take(in any aTemplate);

(...)

#pragma selector takeAll takeAll:

OrderedCollection takeAll(in any aTemplate);

};

};

Open Spaces Thomas F Hofmann August 2000 34

IDL Examples (II)
#pragma class OrderedCollection OrderedCollection

typedef sequence<any> OrderedCollection;

#pragma class Association Association

struct Association{ any key; any value; };

#pragma class Dictionary Dictionary

typedef sequence<Association> Dictionary;

#pragma class Form Form

struct Form {

Dictionary bindings;

};

Open Spaces Thomas F Hofmann August 2000 35

Conclusion
OpenSpaces is configurable and extensible

• The matching algorithm is arbitrarily definable.

• The access hooks may perform any side-effect.

• White-box style extensions by subclassing and black-
box style extensions by setting up configuration
policies are possible.

OpenSpaces works heterogeneous
Several server platforms: Visual Works runs on UNIX,
windows, mac, Linux.
Clients may be written in any language with an ORB.

Open Spaces Thomas F Hofmann August 2000 36

Outlook / Extensions
• Distributed transactions

• Authorization for reconfiguring the system

• Remote registering new entry types through the client
(IDL description). Needs generic configuration
policies.

