
Copyright (c) 2000 Joseph Pelrine/Daedalos Consulting GmbH 1

Advanced eXtreme Programming
Testing Techniques in Smalltalk

Joseph Pelrine [|]
Daedalos Consulting

jpelrine@acm.org
http://www.daedalos.com/~j_pelrine

15.08.00
Copyright (c) 2000 Joseph Pelrine/Daedalos Consulting GmbH

2

SUnit is not enough

• Quality control doesn't stop at development, but should
include the whole delivery and deployment process.
– It doesn't help to have a running application if you can't package

and deliver it to your customers reliably.

• For this reason, companies who have built their reputation
on delivering quality software to customers on time tend to
develop strategies for testing the deliverability of their
code.

• SUnit alone isn't sufficient, so we need additional tools.

15.08.00
Copyright (c) 2000 Joseph Pelrine/Daedalos Consulting GmbH

3

Outline

• Model-vs. view-level testing
• SUnit
• Test Resources
• Skins
• Performance testing
• Packaging & delivery testing
• Hands-on

15.08.00
Copyright (c) 2000 Joseph Pelrine/Daedalos Consulting GmbH

4

GUI Testing

• Skeleton interfaces
– XP has profitted from the proliferation of the Internet, as the Net

has gotten users accustomed to GUIs which are suboptimal, not
user-friendly, and which change on an unpredictable basis. Users
have become less fussy about how the GUI works.

• Any non-trivial project will tend have a significant amount
of code stuffed away in the user interface. This code needs
to be tested as stringently as model-level code does.
– The quantity of code missed by not doing GUI – level testing can

be amazing. In a series of impromptu coverage tests run on two
production systems implemented in XP, it was found that barely
the half of the total code was covered by the SUnit tests.

15.08.00
Copyright (c) 2000 Joseph Pelrine/Daedalos Consulting GmbH

5

View level testing

• Window geometry and behavior
• This area relates to all aspects of the behavior of the window as a whole, and

in relation to the underlaying operating system. Does the window resize
properly? If a window is minimized and restored, is the appearance and
behavior the same?

• Inter-widget synchronisation
• This area relates to all aspects of the behavior of the window internally. When

an input field has content, is the OK button enabled?

• Model-view communication
• This area relates to all aspects of the flow of information from the window to

the data objects being manipulated in the window. Does information get from
the view to the model and back?

15.08.00
Copyright (c) 2000 Joseph Pelrine/Daedalos Consulting GmbH

6

Validation

• We also need to test validation of the data input by the
user.

• .Syntactic validation – ‚30/foo/1999‘ can not be a Date
• .Semantic validation – Feb. 30, 1999 is not a valid Date
• Contextual validation – Someone born on ‚30/2/1999‘ can not be a parent, or a

parent can not be younger than their child.

Copyright (c) 2000 Joseph Pelrine/Daedalos Consulting GmbH 2

15.08.00
Copyright (c) 2000 Joseph Pelrine/Daedalos Consulting GmbH

7

Model/View Testing Rules of Thumb

• If there is significant latency between appearance of view after
model, test the model. Note: Still need to test model-view
connection if there is risk in it.

• If other components in addition to a single view depend on a
model, test the model

• If a high degree of control is required, test from the model
• If model and view are highly interdependent, test from view (can

be considered same subsystem)
• For deep object verification, implement object verification at

model level. Note: This may be used to support view testing.

15.08.00
Copyright (c) 2000 Joseph Pelrine/Daedalos Consulting GmbH

8

SUnit

• Originally invented by Kent Beck
– "Simple Smalltalk Testing", Smalltalk Report, October 1994

• Rewritten XP-style using itself in 1998
• Taken over by Camp Smalltalk (Sames Schuster) in 2000

15.08.00
Copyright (c) 2000 Joseph Pelrine/Daedalos Consulting GmbH

9

SUnit Situation

• Incompatible across dialects
• Camp Smalltalk version on SourceForge

– http://ansi-st-tests.sourceforge.net/SUnit.html
– current version is 2.7

• ANSI standard core
– dialect-specific preLoad code
– dialect-independent tests
– dialect-specific UI

15.08.00
Copyright (c) 2000 Joseph Pelrine/Daedalos Consulting GmbH

10

Test Resources

• Instantiating test objects can be expensive
– Database connections
– Extremely complex objects

• We don't want to have to do this for each TestCase
• Keeping a test object alive over multiple TestCases

– breaks one of the primary rules of unit testing
– is nevertheless desirable

• This is why we've developed TestResources

15.08.00
Copyright (c) 2000 Joseph Pelrine/Daedalos Consulting GmbH

11

The TestResource class

• Implemented as an optional singleton
– Follows standard singleton #current protocol
– #new is not overridden to return an error

• Polymorphic syntax with TestCase
– #setUp
– #tearDown

15.08.00
Copyright (c) 2000 Joseph Pelrine/Daedalos Consulting GmbH

12

Initializing Resources

• All required resources are initialized before a TestSuite runs
– This occurs non-deterministically
– TestResource classes are sent the message #isAvailable

• TestCases optionally/preferably define required resources
– TestCase class>>#resources
– By not defining a resource in this method, its initialization becomes

responsibility of the TestCase itself

• Future directions
– Initialization order
– Conditional initialization (dependent upon a pre-run TestCase)

Copyright (c) 2000 Joseph Pelrine/Daedalos Consulting GmbH 3

15.08.00
Copyright (c) 2000 Joseph Pelrine/Daedalos Consulting GmbH

13

Running tests with resources

TestSuite>>#run
| result |
result := TestResult new.
(self resources conform: [:each | each isAvailable]) ifFalse: [

^TestResult signalErrorWith: 'Resource could not be initialized'].
[self run: result] ensure: [

self resources do: [:each | each reset]].
^result

15.08.00
Copyright (c) 2000 Joseph Pelrine/Daedalos Consulting GmbH

14

Releasing a TestResource

• When do you release a TestResource?
• We let you decide

– TestRunner sends #reset to the resource class when it is finished
– This invokes #tearDown on the resource and nils it out
– You can easily implement a

• TimedReleaseTestResource
• ManualReleaseTestResource

15.08.00
Copyright (c) 2000 Joseph Pelrine/Daedalos Consulting GmbH

15

Performance Testing

• If performance is an issue, write a story card for it,
implement a TestCase, and do it like any other task

self assert: ((Time millisecondsToRun: [foo]) < 1000)

15.08.00
Copyright (c) 2000 Joseph Pelrine/Daedalos Consulting GmbH

16

Performance Testing Tools

• Profilers exist for most Smalltalk dialects
– ENVY/Stats and Benchmark Workshop for VA
– Advanced Tools Profilers for VW
– etc.

• Call profiling tools from SUnit?

15.08.00
Copyright (c) 2000 Joseph Pelrine/Daedalos Consulting GmbH

17

Build Testing

• An important aspect of quality control in development
projects is to have a stable, reproducible build process
from the vendor’s base Smalltalk image through the
development environment to the final stripped or packaged
run-time image.
– There are numerous projects where the developers are unable to

reconstruct their development environment from a virgin Smalltalk
image. This is a great (and sometime insurmountable) handicap
when upgrading the base Smalltalk dialect or third-party tools.

15.08.00
Copyright (c) 2000 Joseph Pelrine/Daedalos Consulting GmbH

18

Package early, package often

Copyright (c) 2000 Joseph Pelrine/Daedalos Consulting GmbH 4

15.08.00
Copyright (c) 2000 Joseph Pelrine/Daedalos Consulting GmbH

19

Prerequisite Testing

• Prerequisites define dependencies and loading order
between classes in VisualAge.

• There are system-level tests to analyze these dependencies.
• SUnit can be extended to include these tests.

– But what about method-level dependencies?

15.08.00
Copyright (c) 2000 Joseph Pelrine/Daedalos Consulting GmbH

20

Sorting Out Prerequisites

• Don’t ignore Warning 49
– The method which has just been compiled references a class which

it shouldn't. This is because the class referenced is not "visible" in
the prerequisite chain of the application containing the method.

• This can be corrected in two ways:
– You can move the method to another application which has the

class in its prerequisite chain.
– You can move the class to make it visible, by including the class's

defining application into the prerequisite chain for the method's
application

• First you have to find out where something's wrong

15.08.00
Copyright (c) 2000 Joseph Pelrine/Daedalos Consulting GmbH

21

Prerequisites Browser for VA

• Thanks to Glenn Jones

http://www.netkonect.co.uk/~paget/

15.08.00
Copyright (c) 2000 Joseph Pelrine/Daedalos Consulting GmbH

22

Finding Warning 49

• CompiledMethod>>#testVisibilityIn:

SubApplication class publicMethods

badPrereqs

Transcript cr; show: 'Looking for bad prereqs…'.
self withAllSubApplications do: [:app |

Transcript cr; show: 'Checking ', app name.
app classes do: [:class |

(class methodsIn: app) do: [:method |
method testVisibilityIn: app]]].

Transcript cr; show: 'Done'.

15.08.00
Copyright (c) 2000 Joseph Pelrine/Daedalos Consulting GmbH

23

Nil Globals

• Iterate through the literal frame

CompiledMethod publicMethods

testForNilGlobals

self allLiteralsDo: [:literal |
literal isAssociation ifTrue: [

| key |
key := literal key.
((self isClassOrPoolVar: key) not and: [
self isNilOrUnmanaged: key]) ifTrue: [

| qualifiedName |
qualifiedName := ' the nil or unmanaged class or global ', key.
EmImageSupport errorReporter

logError: 49
withParms: (Array

with: self printString
with: qualifiedName)]]]

15.08.00
Copyright (c) 2000 Joseph Pelrine/Daedalos Consulting GmbH

24

…nil Globals...

CompiledMethod>>isClassOrPoolVar: key

^(self methodClass
variableAssociationAt: key
using: Smalltalk
ifAbsent: [nil]) notNil

isNilOrUnmanaged: key

"VisualAge version"
^(System image globalNamespace

at: key
ifAbsent: [nil]) isNil or: [

System image globalNamespace unmanagedNamespace includesKey: key]

isNilOrUnmanaged: key

"VisualWorks version. This may be changed in VW 5 "
^(Smalltalk at: key ifAbsent: [nil]) isNil

or: [Undeclared includesKey: key]

Copyright (c) 2000 Joseph Pelrine/Daedalos Consulting GmbH 5

15.08.00
Copyright (c) 2000 Joseph Pelrine/Daedalos Consulting GmbH

25

…nil Globals

SubApplication class publicMethods

badPrereqs

EmImageSupport errorReporter logDevice
cr; show: ('Scanning %1...' bindWith: self name).

self withAllSubApplications do: [:app |
Transcript cr; show: 'Checking ', app name.
app classes do: [:class |

(class methodsIn: app) do: [:method |
method

testVisibilityIn: app;
testForNilGlobals]]].

EmImageSupport errorReporter logDevice
cr; show: 'Done'.

15.08.00
Copyright (c) 2000 Joseph Pelrine/Daedalos Consulting GmbH

26

Error Logger

Object subclass: #MedSilentErrorLogger
classInstanceVariableNames: 'current '
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''

nextPutAll: aString
(aString indexOfSubCollection: 'Warning: 49' startingAt: 1) = 1 ifTrue: [

self restoreDefaultLogger.
TestResult exFailure signalWith: aString]

restoreDefaultLogger
EmImageSupport errorReporter logDevice: System errorLog

15.08.00
Copyright (c) 2000 Joseph Pelrine/Daedalos Consulting GmbH

27

Prereq Checking Test Case

TestCase subclass: #PrereqCheckTestCase
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''

testBadPrereqs
self should: [MedErrorReporterTestApp badPrereqs]

15.08.00
Copyright (c) 2000 Joseph Pelrine/Daedalos Consulting GmbH

28

Refactoring Prerequisites

• Although it is not needed by a specific application, a
prerequisite can not be removed if it is required by a
dependent of the application

15.08.00
Copyright (c) 2000 Joseph Pelrine/Daedalos Consulting GmbH

29

How to do it

• Version and release any open class editions
– You‘re going to reload the current (released) lineup

• Browse Application Editions
• Remove the prereq
• Add the prereq
• From the AppMan, choose both, then reload current

15.08.00
Copyright (c) 2000 Joseph Pelrine/Daedalos Consulting GmbH

30

Quality Testing

• SmallLint includes numerous tests for code quality.
– Methods sent but not implemented

– Methods sent but not implemented in application

• SUnit can also be extended to include these tests.

Copyright (c) 2000 Joseph Pelrine/Daedalos Consulting GmbH 6

15.08.00
Copyright (c) 2000 Joseph Pelrine/Daedalos Consulting GmbH

31

Packaging Testing

• Packaging is a pain in the &*/*%
• Suit can be extended to run the VA Packager.
• This increases the feedback loop time unacceptably :-(

15.08.00
Copyright (c) 2000 Joseph Pelrine/Daedalos Consulting GmbH

32

Packaging/Delivery Testing Rules of
Thumb

• Incorporate prerequisite testing into the SUnit test suite.
• Correct prerequisite problems immediately.
• A clean load into a virgin image, and a packaging run with

no errors, are required prior to integration.
• If possible, run view-level tests on the packaged image

before integration.

15.08.00
Copyright (c) 2000 Joseph Pelrine/Daedalos Consulting GmbH

33

Tool Support

• SmallLint (from the Refactoring Browser)
• Test Mentor (Silvermark)
• VA Assist Pro (Smalltalk Systems)
• Mastering ENVY/Developer tools

Maybe we need an InstallShieldUnit???

15.08.00
Copyright (c) 2000 Joseph Pelrine/Daedalos Consulting GmbH

34

Hands-on Exercises

• TestRunner support for TestResources
• SmallLint skin
• Warning 49 skin
• ...

15.08.00
Copyright (c) 2000 Joseph Pelrine/Daedalos Consulting GmbH

35

For more Info:

• http://ansi-st-tests.sourceforge.net/SUnit.html
• http://wiki.cs.uiuc.edu/CampSmalltalk
• http://www.xProgramming.com
• http://www.daedalos.com/~j_pelrine

15.08.00
Copyright (c) 2000 Joseph Pelrine/Daedalos Consulting GmbH

36

Thanks to:

• Alan Knight & Adrian Cho
• Sames Schuster & the Camp Smalltalk SUnit group
• Sridhar & Jeff Odell
• Kent Beck
• Eric Clayberg
• Mark & Mike from Silvermark
• all the guys at Daedalos

