ESUG, Gent 1999

Numerical Methods

Didier Besset
Independent Consultant

Road Map

- Dealing with numerical data
- Framework for iterative processes
- INewton's zero finding
o.Eigenvalues and eigenvectors
o.Cluster analysis
- Conclusion

Road Map

o!Dealing with numerical data

- Framework for iterative processes
- INewton's zero finding
o.Eigenvalues and eigenvectors
o.Cluster analysis
- Conclusion

Dealing With Numerical Data

- Besides integers, Smalltalk supports two numerical types
-! Fractions
$-!$ Floating point numbers

Using Fractions

- Results of products and sums are exact.
- Cannot be used with transcendental functions.
olComputation is slow.
- Computation may exceed computer's memory.
ol.Convenient way to represent currency values when combined with rounding.

Using Floating Point Numbers

- IComputation is fast.
- Results have limited precision (usually 54 bits, ~ 16 decimal digits).
- Products preserve relative precision.
o:Sums may keep only wrong digits.

Using Floating Point Numbers

o:Sums may keep only wrong digits. Example: $-!$ Evaluate
$2.71828182845905-2.71828182845904$ $-!\ldots=9.76996261670138 \times 10^{-15}$ -! Should have been 10^{-14} !

Using Floating Point Numbers

- Beware of meaningless precision!
-!In 1424, Jamshid Masud al-Kashi published $\pi=3.141592653589793$ 25...
-!...but noted that the error in computing the perimeter of a circle with a radius 600'000 times that of earth would be less than the thickness of a horse's hair.

Using Floating Point Numbers

o! Donald E. Knuth :
$-!$ Floating point arithmetic is by nature inexact, and it is not difficult to misuse it so that the computed answers consist almost entirely of "noise". One of the principal problems of numerical analysis is to deternine bow accurate the results of certain numerical metbods will be.

Using Floating Point Numbers

olNever use equality between two floating point numbers.
olUse a special method to compare them.

Using Floating Point Numbers

- Proposed extensions to class Number

relativelyEqualsTo: aNumber upTo: aSmallNumber | norm |
norm := self abs max: aNumber abs. ^norm <= aSmallNumber
or: [(self - aNumber) abs < (aSmallNumber * norm)]
equalsTo: aNumber
^self relativelyEqualsTo: aNumber upTo: DhbFloatingPointMachine default defaultNumericalPrecision

Road Map

- IDealing with numerical data
- :Framework for iterative processes
- INewton's zero finding
o.Eigenvalues and eigenvectors
- .Cluster analysis
- Conclusion

Iterative Processes

- Find a result using successive approximations
- Easy to implement as a framework
- Wide field of application

Successive Approximations

Iterative Processes

Implementation

Begin

Compute or choose initial object
iterations := 0

Compute
next object
正

desiredPrecision

$$
\begin{aligned}
& \text { iterations := } \\
& \text { iterations }+1
\end{aligned}
$$

Perform clean-up

Methods

Begin

Compute or choose initial object
iterations := 0

Compute

 next objectevaluateIteration

Simple example of use

| iterativeProcess result |
iterativeProcess $:=<a$ subclass of
IterativeProcess $>$ new.
result := iterativeProcess evaluate.
iterativeProcess hasConverged
ifFalse: [<special case processing>].

Advanced example of use

| iterativeProcess result precision |
iterativeProcess $:=$ <a subclass of DhbIterativeProcess> new.
iterativeProcess desiredPrecision: 1.0e-6;
maximumIterations: 25.
result := iterativeProcess evaluate.
iterativeProcess hasConverged
ifTrue: [Transcript nextPutAll: 'Result obtained after '. iterativeProcess iteration printOn: Transcript. Transcript nextPutAll: 'iterations. Attained precision is '. iterativeProcess precision printOn: Transcript.]
ifFalse:[Transcript nextPutAll: 'Process did not converge'].
Transcript cr.

Class Diagram

IterativeProcess
evaluateinitializeIterationhasConvergedevaluateIteration
finalizoTtoration
precisionOf:relativeTo:desiredPrecisionmaximumIterationsprecision(g,s)(g,s)
(g)iterationsresult(g)

Case of Numerical Result

- Computation of precision should be made relative to the result
- General method:

Absolute precision Result
precisionOf: aNumber1 relativeTo: aNumber2
^aNumber2 > DhbFloatingPointMachine default
defaultNumericalPrecision
ifTrue: [aNumber1 / aNumber2]
ifFalse: [aNumber1]

Example of use

> I iterativeProcess result 1 iterativeProcess $:=<a$ subclass of FunctionalIterator> function: (DhbPolynomial new: \#(1 2 3). result $:=$ iterativeProcess evaluate. iterativeProcess hasConverged ifFalse: $[$ <special case processing $>]$.

Class Diagram

IterativeProcess

FunctionalIterator
initializeIteration computeInitialValues relativePrecision setFunction:
functionBlock

AbstractFunction

Road Map

- Dealing with numerical data
- |Framework for iterative processes
- INewton's zero finding
o!Eigenvalues and eigenvectors
o.Cluster analysis
- Conclusion

Newton's Zero Finding

- It finds a value x such that $f(x)=0$.
- More generally, it can be used to find a value x such that $f(x)=c$.

Newton's Zero Finding

- Use successive approximation formula $x_{n+1}=x_{n}-f\left(x_{n}\right) / f^{\prime}\left(x_{n}\right)$
- Must supply an initial value
-loverload computeInitialValues
o:Should protect against $f^{\prime}\left(x_{n}\right)=0$

Newton's Zero Finding

Example of use

| zeroFinder result | zeroFinder:= DhbNewtonZeroFinder

$$
\begin{aligned}
& \text { function: [: x | x } \\
& \text { errorFunction - 0.9] }
\end{aligned}
$$

derivative: [:x | x normal]. zeroFinder initialValue: 1. result := zeroFinder evaluate. zeroFinder hasConverged
ifFalse: [<special case processing>].

Class Diagram

IterativeProcess λ
FunctionalIterator
Δ
NewtonZeroFinder
evaluateIteration computeInitialValues defaultDerivativeBlock
initialValue: setFunction:
(0)

AbstractFunction
derivativeBlock

Newton's Zero Finding

Effect of a nearly 0 derivative during iterations

Road Map

- Dealing with numerical data
- IFramework for iterative processes
- INewton's zero finding
- :Eigenvalues and eigenvectors
o.Cluster analysis
- Conclusion

Eigenvalues \& Eigenvectors

0 .Finds the solution to the problem

$$
\mathbf{M} \cdot \mathbf{v}=\lambda \cdot \mathbf{v}
$$

where \mathbf{M} is a square matrix and \mathbf{v} a non-zero vector.

- $\ \lambda$ is the eigenvalue.
- l v is the eigenvector.

Eigenvalues \& Eigenvectors

- Example of uses:
-IStructural analysis (vibrations).
-! Correlation analysis (statistical analysis and data mining).

Eigenvalues \& Eigenvectors

- We use the Jacobi method applicable to symmetric matrices only.
- $\mathrm{A} 2 \times 2$ rotation matrix is applied on the matrix to annihilate the largest off-diagonal element.
o!This process is repeated until all offdiagonal elements are negligible.

Eigenvalues \& Eigenvectors

o! When \mathbf{M} is a symmetric matrix, there exist an orthogonal matrix \mathbf{O} such that: $\mathbf{O}^{\mathrm{T}} \cdot \mathbf{M} \cdot \mathbf{O}$ is diagonal.
o!The diagonal elements are the eigenvalues.
o! The columns of the matrix \mathbf{O} are the eigenvectors of the matrix \mathbf{M}.

Eigenvalues \& Eigenvectors

- LLet i and j be the indices of the largest offdiagonal element.
$0!$ The rotation matrix \mathbf{R}_{l} is chosen such that $\left(\mathbf{R}_{I}{ }^{\mathrm{T}} \cdot \mathbf{M} \cdot \mathbf{R}_{I}\right)_{i j}$ is 0 .
0 ! The matrix at the next step is: $\mathbf{M}_{2}=\mathbf{R}_{I}{ }^{\mathrm{T}} \cdot \mathbf{M} \cdot \mathbf{R}_{l}$.

Eigenvalues \& Eigenvectors

$0!$ The process is repeated on the matrix \mathbf{M}_{2}.

- One can prove that, at each step, one has: $\max \left|\left(\mathbf{M}_{n}\right)_{i j}\right|<=\max \left|\left(\mathbf{M}_{n-1}\right)_{i j}\right|$ for all $i \neq j$.
0 :Thus, the algorithm must converge.
0 :The matrix \mathbf{O} is then the product of all matrices \mathbf{R}_{n}.

Eigenvalues \& Eigenvectors

- The precision is the absolute value of the largest off-diagonal element.
o! To finalize, eigenvalues are sorted in decreasing order of absolute values.
0 There are two results from this algorithm:
-! A vector containing the eigenvalues, $-!$ The matrix \mathbf{O} containing the corresponding eigenvectors.

Example of use

| matrix jacobi eigenvalues transform | matrix := DhbMatrix rows: \#(($3-20$) (-2 7 1) (0 1 5)).
jacobi := DhbJacobiTransformation new: matrix.
jacobi evaluate.
iterativeProcess hasConverged
ifTrue: [eigenvalues := jacobi result. transform := jacobi transform.
]
ifFalse: [<special case processing>].

Class Diagram

IterativeProcess Δ

JacobiTransformation

evaluateIteration
largestOffDiagonalIndices transformAt: and:
finalizeIteration sortEigenValues exchangeit: printon:
lowerRows
transform

Road Map

- Dealing with numerical data
- IFramework for iterative processes
- INewton's zero finding
- :Eigenvalues and eigenvectors
o!Cluster analysis
- Conclusion

Cluster Analysis

-IIs one of the techniques of data mining.
o!Allows to extract unsuspected similarity patterns from a large collection of objects.

- IUsed by marketing strategists (banks).
- Example: BT used cluster analysis to locate a long distance phone scam.

Cluster Analysis

- Each object is represented by a vector of numerical values.
olA metric is defined to compute a similarity factor using the vector representing the object.

Cluster Analysis

0 At first the centers of each clusters are defined by picking random objects.

- Objects are clustered to the nearest center.
- A new center is computed for each cluster.
- IContinue iteration until all objects remain in the cluster of the preceding iteration.
-:Empty clusters are discarded.

Cluster Analysis

o!The similarity metric is essential to the performance of cluster analysis.
0 Depending on the problem, a different metric may be used.
0 :Thus, the metric is implemented with a Strategy pattern.

Cluster Analysis

- The precision is the number of objects that changed clusters at each iteration.
0 The result is a grouping of the initial objects, that is a set of clusters.
olSome clusters may be better than others.

Example of use

```
| server finder |
server := <a subclass of DhbAbstractClusterDataServer >
    new.
finder := DhbClusterFinder new: 15
server: server
    type: DhbEuclidianMetric.
```

finder evaluate.
finder tally

Class Diagram

IterativeProcess

ClusterFinder
evaluateIteration accumulate:
indexOfNearestCluster:
initializeIteration
finalizeIteration dataServer
clusters

ClusterDataServer

openDataStream
closeDataStream dimension
seedClusterIn.
accumulateData In

Cluster

accumulate: distance:
isEmpty:
reset
accumulator metric

Conclusion

- When used with care numerical data can be processed with Smalltalk.
- IOO programming can take advantage of the mathematical structure.
- Programming numerical algorithms can take advantage of OO programming.

Questions

To reach me: didier@ieee.org

