Reuse Contracts as a basis for
investigating reusability of
Smalltalk code

Koen De Hondt
Programming Technology Lab
Computer Science Department

Vrije Universiteit Brussel

kdehondt@vub.ac.be http:/ progwww.vub.ac.be/

Overview

Problems with reuse
Problems with evolution
What are reuse contracts?
Reuse contracts at work

Examining class hierarchies based on
reuse contracts

Reuse contract research
Exercises: introduction to the browser

How do You Reuse a Class?

Cloning (copy and paste)

Inheritance / method overriding

Composition / delegation

Reuse by Cloning

Reused “components” are not easily
adaptable

no support is provided for adaptation/reuse

No relation between original and result

difficult to maintain since bug tixes and
upgrades are not propagated to the derived
application (proliferation of versions)

A This kind of reuse should be avoided

Reuse by Inheritance

How do you determine

"V
'Y

"V

hat to reuse (inherit)?
nat to adapt (override)?

hat to write from scratch?

Class A

A

Subclass B

A

Subclass C

A

Subclass D

Example: Make a Subclass of
Set

Framework Wh at to override?

A #add: if #addAll: uses #add:

#add & addAll: if #addAll:
does not use #add:

A CountingSet is a Set that
Application counts all added elements

Reuse by Composition

How do you determine

what to reuse (what to compose, what to
delegate)?

what to adapt (how to compose)?
what to write from scratch?

Class B

Class A

Class C

Reusing a Class is Hard

Current OOA /OOD notations do not provide
enough information to reuse a class

Usually, developers do not document how a class
can be reused, they only document what each
method does

If a class comment contains reuse information, it
usually has the form of a cookbook

Reusers are compelled to
inspect the source code

Inspecting the Source Code

To reuse a class:
inspect the class
inspect all its superclasses
inspect all the classes it co-operates with

Source code inspection is error-prone

If source code inspection doesn’t work:
talk to the developer (i.e. the expert)!

What are You Looking for?

Self sends
Super sends

R h
Abstract methods eusers need the
specialisation interface

Template methods
Default methods

Methods that are overridden frequently

Methods that are part of a design pattern
Co-operation with other objects/classes

Self Sends are Important

Self sends & template methods & abstract
methods reify the design of a class

Method decomposition

distinguish “core” methods from “peripheral”
methods

Using self sends = planning for reuse

fine-grained overriding of methods

Self Sends: Planning for Reuse

ApplicationModel in VisualWorks 2.5

openinterface: aSymbol
builder := self builderClass new.

“a lot of expressions here”

ApplicationModel in VisualWorks 2.0

openinterface: aSymbol
builder := UIBuilder new.

“a lot of expressions here”

can be reused with other builders

same external interface
(#builderClass is private)

cannot be reused with other builders
without overriding all methods that

refer to UlBuilder

Co-operation with Other
Objects/Classes is Important

Delegation of responsibilities principle

Using delegation= planning for reuse

a system can easily be extended by adding
new classes

objects with “the same interface” can be
substituted for each other

Delegation: Planning for Reuse

Menu

Menu in VisualWorks 2.0

Menultem

PopUpMenu in VisualWorks 1.0

PopUpMenu

labels

__— Strings !

can be reused for
different menu items

same external behaviour
same interface
for instance creation

cannot be reused for
different menu items

Overview

Problems with reuse
Problems with evolution
What are reuse contracts?
Reuse contracts at work

Examining class hierarchies based on
reuse contracts

Reuse contract research
Exercises: introduction to the browser

Evolution is Important

Iterative development
a framework is never finished
Changing requirements

functional: user requirements

non-functional: maintainability,
adaptibility, reusability, customisability, ...

What to do When the
Framework Changes?

Framework 1.0 | | Framework 2.0
] (]

Evolution

Application Application

Example Evolution Conflict (1)

Framework 1.0

Evolution

— — P instance of

== sibclass of

Example Evolution Conflict (2)

Framework 1.0 | | Framework 2.0

C self send

— — P instance of

w5 (1bclass of

More Evolution Conflicts

Interface conflicts

the name of a reused method / class has been
changed

a method that was added by a reuser has been
introduced by the new version of the framework

Unanticipated recursion

a method invokes another one in the application
while the new version of the framework introduces
an invocation of the first by the latter

Spotting Evolution Problems

Unless the changes to the framework
are well-documented (informally), the
application developer is condemned to
perform code inspection to determine
what has changed

Often evolution conflicts are not spotted
until the application is running based on
the new version of the framework

What are the Challenges?

Supporting reuse

what can be reused, what must be adapted, and what
must be built from scratch ?

formal documentation on how classes are reused

Supporting evolution
change propagation
Support for estimates/ testing / metrics

feasibility of reusing a class
the cost of “upgrading” the class repository

Overview

Problems with reuse
Problems with evolution
What are reuse contracts?
Reuse contracts at work

Examining class hierarchies based on
reuse contracts

Reuse contract research
Exercises: introduction to the browser

Reuse Contracts

Are contracts between the framework
developer and the application
developer

State what assumptions can be made
about reusable components

State how components are actually
reused

Reuse Contract Notation

Notation based on OMT (UML)

Methods are annotated with
specialisation clauses to make the

specialisation interface explicit

“Reuse operators”, or “modifiers”, lay
down how reuse is achieved

Reuse Contracts for Inheritance

specialisation clause

Enhance the interface of a class
abstract method /

with specialisation clauses

Identify what changes are made \ Collection /
when a class is subclassed: igz'!eCt: [#df;/

concretisation/ abstraction #select: [#do:]

concretisatio

extension /cancellation ”A
refinement/ coarsening #do:

Specialisation clauses may contain
names of methods invoked
through self sends, and “super”

Set

#collect: [#do:]
#do:

reuse Operator #select: [#do:]

Reuse Operator: Concretisation

h Collection
Makes abstract methods Foolloct. (0o

concrete #do:
#select: [#do:]

Does not change the

specialisation clause of Aconcretisation

the concretised methods #ao:

Set

. #collect: [#do:
Inverse = abstraction oo ot

#select: [#do:]

Design preserving

Reuse Operator: Abstraction

View

#preferredBounds [|

Makes a concrete method
abstract A

Design breaching

SimpleView

#preferredBounds []
Inverse = concretisation A

BasicButtonView
#preferredBounds []

Aabstraction

#preferredBounds
LabeledButtonView

#preferredBounds []

Reuse Operator: Extension

Typically performed by an
application developer to add

:

application specific behaviour

Adds new methods to the
interface of a class

Design preserving

Inverse = cancellation

Collection

extension
#_

#grow

Set

#- 1]
#grow []

Reuse Operator: Cancellation

Typically performed by an
application developer to
remove behaviour

Removes methods from
the interface of a class

Design breaching
Inverse = extension

Collection

#add: []
#remove:ifAbsent: []

Acancellation
#remove:ifAbsent:

SequenceableCollection

#add:[]

Acancellation
#add:

ArrayedCollection

Reuse Operator: Refinement

Adds elements to the
specialisation clause of a
method
Used to e.g.:

reduce redundancy

specialise the behaviour of
an existing method with an
existing behaviour

Design preserving

Inverse = coarsening

Object

#postCopy [|

refinement
#postCopy [super,

+ #breakDependents]

Model

#postCopy
[super, #breakDependents]

Reuse Operator: Coarsening

Removes elements from
the specialisation clause of
a method

Used to e.g.:

optimize performance
Design breaching
Inverse = refinement

Collection

#size [#do:]

coarsening
#size [- #do:]

Set

#size []

Reuse Operators

Make a distinction between different
kinds of inheritance

State how a class is derived from its
superclass

Are orthogonal basic operators

Usually, one subclassing step is a
combination of several reuse operators

Frequently Used Combinations
of Reuse Operators

Extension & refinement

Coarsening & cancellation
Concretisation & refinement
Concretisation & extension & refinement
Coarsening & refinement = redefinition

Coarsening & extension & refinement
= factorization

Multi-Class Reuse Contracts
(in short)

Co-operating classes are put in one reuse
contract; these classes are called “participants”

Interfaces of classes as in reuse contracts for
inheritance

Specialisation clauses are extended with names
of methods invoked on other classes

Reuse operators identify what changes are
made to a whole contract

Reuse Contract Notation

Interface opening

specialisation clauses participants

/\

/]

ApplicationModel

#openlnterface:
[#source:, #add:,

/

#openWithExtent:]
o

|

UIBuilder

#openlnterface:

self

>
#openlnterface:

[#preBuildWith:,

#postBuildWith:,
#postOpenWith:]

#hookupWindow:spec:builder:,

builder

#openlnterface:
[#model:, #displayPendinglpvalidation]

#source:
#add:
#openWithExtent:

ApplicationWindow

#model:
#displayPendinglnvalidation

Overview

Problems with reuse
Problems with evolution
What are reuse contracts?
Reuse contracts at work

Examining class hierarchies based on
reuse contracts

Reuse contract research
Exercises: introduction to the browser

Reuse Contracts at Work

The formal nature of reuse contracts
enables their use in a development
environment

code generation from reuse contracts

impact analysis when a framework
changes (assessing evolution conflicts)

effort estimation for framework
customisation

extraction from source code

Estimating Reuse

Framework

#add:
#addAll:

What to override?

Application

Framework

#add: []
#addAll: [#add:]

#add: [super, #incCount]
#incCount []

Application

Eovolution

Framework Framework

#add: [] \(| \(- #add: []

#addAll: [#add:] Evolution #addAll: [#2d:]

#add: [super, #incCount] #add: [super, #incCount]
#incCount [] #incCount []

Not all additions
Application blication
are counted anymore

Documenting Reuse

Framework
Framework #add: []
#add: [] #addAll: [#add:]
#addAll: [#add:]

extension
#incCount
refinement
#add: [super,+#incCount]

:

#add: [super, #incCount] _
#incCount [] #add: [super, #incCount]

#incCount []

Application
Application

Documenting Evolution

Framework Framework

et |fadd: [\(\(* Set |fadd: 11

#addAll: [#add:] Evolution #addAll: [#

\ 4

Framework ~ { ~N,, Framework
a4

#add:[] _ #add: []
#addAll: [#add:] coarsening #addAll: []
#addAll: [-#add:]

]

Estimating Impact of Changes
Framework Framework

#add: [] \(\(* #add:[]

#addAll: [#add:] coarsening #addAll: []
#addAlf [-#add:]

extension extension
#incCount #incCount
refinement Arefinement
#add: [super,+#incCount] #add: [suger,+#incCount]

[Countingset |

#add: [super, #incCount] #add: [super, #incCount]

AANEERUITE | #addAll: needs to be
Application overridden too

Overview

Problems with reuse
Problems with evolution
What are reuse contracts?
Reuse contracts at work

Examining class hierarchies based on
reuse contracts

Reuse contract research
Exercises: introduction to the browser

Extraction of Reuse Contracts

Reuse contracts for

inheritance can be

extracted from

Smalltalk code reuse

Each subclassing step ©pPerators
is decomposed in a
combination of
maximum 6 different
reuse operators

extension

Object

extension

Stream

extension
PeekableStream
concretisation
refinement
extension
PositionableStream
coarsening
extension

o s InternalStream

cancellation
concretisation
extension
WriteStream
extension
ReadWriteStream

Too Much Extracted
Information

The extractor does not know which
methods are important

Interaction with a developer is required
to strip implementation details

Inspecting Extracted
Extensions

v

extension
Object
extension
Stream

extension

PeekableStream
concretisation
refinement
extension
PositionableStream
coarsening
extension
InternalStream
cancellation
concretisation
extension
WriteStream
extension
ReadWriteStream

| v

2l Abstract
skip: {}

Concrete
fileln {close nextChunk skipSeparators peekFor: atEnd
nextChunk {class skipSeparators peekFor: next}
peek {next skip:atEnd}
peekFor: {next skip:atEnd}
skipSeparators{class skip: next}
skipUpTo: {next skip: atEnd}

Inspecting Extracted
Concretisations

v

extension

Object

extension

Stream

extension
PeekableStream

concretisation

refinement
extension
PositionableStream
coarsening
extension
InternalStream
cancellation
concretisation
extension
WriteStream
extension
ReadWriteStream

| v

2l Abstract

concrete
atEnd {}
contents |}

skip: {}

Inspecting Extracted
Refinements

| ¥

2l Abstract

Concrete
nextinto:startingat: {nextatEnd}
skip: {position:}

efinement
PositionableStream

InternalStream
cancellation

WriteStream
extension
ReadWriteStream

Inspecting Extracted
Coarsenings

v

| v
extension 2l Abstract
Object concrete
extension displayString {printString}
Stream
extension
PeekableStream
concretisation
refinement
extension
PositionableStream
Koarsening
extension
InternalStream
cancellation
concretisation
extension
WriteStream
extension
ReadWriteStream

Inspecting Extracted
Cancellations

v

extension

Object

extension

Stream

extension
PeekableStream
concretisation
refinement
extension
PositionableStream
coarsening
extension
InternalStream

cancellation

concretisation
extension
WriteStream
extension
ReadWriteStream

| v

2l Abstract
next {}

Concrete

Spotting Bad Designs in a
Class Hierarchy

Look for design breaching reuse
operators

they indicate methods that do not respect

the design as laid down by a superclass
Examine what happens with the
affected methods in reuse operators that
are applied later on

Spotting Bad Designs: Example

The Stream hierarchy is awkward

wrt. the #next method.

v

extension

Object

extension

Stream

extension
PeekableStream
concretisation
refinement
extension
PositionableStream
coarsening
extension
InternalStream
cancellation
concretisation
extension
WriteStream
extension
ReadWriteStream

Abstract
atEnd {}
contents {}
flush {}
isReadable{}
isWritable {}

[next [}

¢

nextPut: {}
Concrete

close {}

contentsSpecies

U

Abstract
Concrete

next {pastEnd)

readPosition

{position}

Impact of Bad Coding Style

Bad coding style is troublesome for the
extractor

e.g. only super send, bad super send, ...

This has driven us to make qualitative
assessment of source code possible

An analysis tool is integrated in our
browser

Overview

Problems with reuse
Problems with evolution
What are reuse contracts?
Reuse contracts at work

Examining class hierarchies based on
reuse contracts

Reuse contract research
Exercises: introduction to the browser

Reuse Contract Research

Reuse contracts have been applied to
classes (inheritance)
sets of interacting classes/components
state diagrams

Under investigation:

can reuse contracts describe design patterns?
generic reuse contracts

extraction of multi-class reuse contracts

software architectures and componentware

reuse contracts in a development environment

more documentation than interfaces and invocations

Design Pattern Example

Client Component (g graphics

#operation A

concretisation A A refinement | | operation [operation]
extension

Composite K— |
P concretisation
Leaf

#operation
#add:
#remove:
#getChild:

#operation

CompositeA

#operation
#add:
#remove:
#getChild:

Summary: Theory

Reuse contracts formally document what
a reuser can assume about a “reusable
component”

Reuse operators formally document how
a reusable component is actually reused

Formal rules for change propagation
enable automatic detection of evolution
conflicts

Summary: Practice

Reuse contracts for inheritance can be
extracted
examination of existing source code
understanding the design

human input is needed to filter out
implementation details

bad coding style may give rise to extraction
problems

Overview

Problems with reuse
Problems with evolution
What are reuse contracts?
Reuse contracts at work

Examining class hierarchies based on
reuse contracts

Reuse contract research
Exercises: introduction to the browser

The Browser for the Exercises

Home-made fully-functional browser

Composed of reusable “browser part
components” built with ApplFLab

Can easily be See ESUG’96 Summer School

; “ApplFLab: Custom-made user
eXtended Wlth Other interface components in VisualWorks”
“class view / editor

components”

Enhanced Browser — General

Browser

4 § Definition |@Methods | a3 Hierarchyl Comment| A=RC
, ,

:xT-S upp

AT-Syet Different views

. Different views/tools Al

contents

AT-Tools
Collections-Abstract
Collections-Amrayed
Collections-Sequenceable
Collections-Streams
Collections-Skring Support
Collections-3Support
Collections-Text

=l Class selector

Ent
InternalEncodedShreamConsbructor
InternalShream

PeekableStream
PositionableShream

ReadSheam

ReadWrite Stream

Shream

StreamEncoder

(®) Instance () Class

- [_next
readPosition

Method selector

A
E
<

3

vl

J__;? Text |32 Canvas | § Menu | B Image |

Different views

|

next

“Answer the

Different method editors

collection.”

the collection of this stream is notan Amay or a Skring. Fail if the
stream is positioned at its end, or if the position is out of bounds in the

the receiver. Fail if

position == readLimit

<primitive: 65 MethOd Edit()l'

iFTrue: [*self pastEnd]
IfFalse: [“collection at: (position = position + 1)]

Browser — Reuse Contracts

[Browser

‘ =i | = | =g A K; ’ 1R Commentl A=RC |(;)Analysis |%? Clusters '|'lm]Metrics ‘

AT-Systemanalysis Reuse Conlracts Specialisation Interface
AT-Tools v | v

Collections-Abstract extension 2l Abstract
Collections-Amrayed Object Concrete

Collections-Sequenceable i : : ; -
Collections-Streams ;xttfenas:zn | displaySting {printSiringg

Collections-Skring Support

Collections-S upport extension
Collections-Text PeekableStream

Collections-Unordered concretisation
extension

refinement <]
PositionableStream Method Text

EncodedSheam
EncodedShreamConstructor coarsening
InternalEncodedStreamConstructor : X — -
InternalStream extension displayString
Peekable Stream InternalStream . _ .
PositionableStream cancellation “~'some internal stream
Readstream concretisation

ReadWrite Stream
Stream
StreamEncoder

(®) Instance () Class

extension
WriteStream
extension
ReadWriteStream

Browser — Code Analysis

= Browser =) '
BIE=] %] =] 1 @ Methods | 4, Hierarchy | B Comment| A= RC | £2 Analysis \—p

vLJIBasics_DamSetS ! ' Self'Se ndS ' tt:-‘lf:)ecj‘ll.'l". ’ prlrr'lltl"."e

UlBasics-Notebook W factory W accessorimutator W abstract W lemplate
UlBasics- S upport _ - - .
UIBuilder-Framework W super-sends W Ssuper-does-nol-uriefettadper-send W bad-super-sends
UlBuilder-Specifications W self-does-not-unde stani W self-argument

UlBuilder-5S upport
UlLooks-Default :
UlLooks-Framework update | | invert | allon | allOF
UlLooks-Mac =

UlLooks-hotif 2llgap typed-1¥Y [required interface: {} assigned types: {Smalllnteger besttype: {Sma

v £ |2
EtchedBorder v

InputFieldComposedText beCheckMark

KeyboardProcessor beFolder

Label displayOn: self-sends [offsel] super-sends [displayOn]

LabelAndlcon gap:

MenuBarwrapper
MessageChannel <
Rangehap r
ReComposingComposite berlde'r
Reversing\Wrapper icon = Folder

(®) Instance () Class

Browser — Clusters

O Browser = '
Biala i]4] 4‘ 3 Herarchy| B Comment] A= AC | £ Analysis | $P Clusters |)

Collections-Streams readGeneralSuctureon: , findKey:ifAbsentRaise:, findKeyOrNil;, declare from:, cf

Collections-3tring S upport @, includes., values, colleck, oCCUmencesor
Collections-3 upport remove:ifAbsent

Collections-Text traceWalkFrom:, bindingsDo:, change CapacityTo:, associationsDo:, printOn:, asg_
Collections-Unordered

Computed Categories sl E
Database-Intetface show cluster usina:
Database-5 upport 9
Database-Tools

Drag-And-Drop =

Divided Clusters

{doincludes: yalues,collect; occurrencesOr}

Bag

Dictionary
Identity Dictionary
Identity Set

Sel
WeakDictionary

(®) Instance () Class

Browser — Metrics

O

Browser

=I=]

4‘ B Commentlv A=RC | 42 Analysis |‘§' Clusters | LiMetrics | b

Collections-Streams
Collections-5kring Support
Collections-3 upport
Collections-Text
Collections-Unordered
Computed Categories
Database-Interface
Database-5 upport
Database-Tools
Drag-And-Drop

Bag

Dictionary
Identity Dictionary
Identity Set

Sel
WeakDictionary

nr. of Superclasses:

nr. of Subclasses:

nr. of Class Methods:

nr. of Instance Methods:

nr. of Available Instance Methods:
nr. of Available Class Methods:
nr. of Class Yariables:

nr. of Instance Yariables:

% Commented Methods:

Average Number of Method Arguments:

Response:

Specialisationindex:

3
16
3
45

0
0
88

2.35556

129
1.33333

(®) Instance () Class

Exercises

Use the enhanced browser to
investigate Smalltalk code

Examine class hierarchies based on
extracted reuse contracts

Analyse the code to find methods that
hinder reuse

Explore the different tools

File in your own Smalltalk classes/
frameworks

Up-to-date Information

http://progwww.vub.ac.be/prog/pools/rcs/

